1 Objectif

Description de la macro complémentaire (add-in) SAS version 4.3 pour Excel. Comparaison des résultats avec ceux de Tanagra.

J'avais vu à la télé, il y a un moment déjà, la biographie d'un homme politique français célèbre. Au crépuscule de sa vie, il se livrait sur son parcours, ses combats. Il a alors prononcé une phrase qui m'avait beaucoup marqué : « avec l'âge, soit on se redit, soit on se contredit » ; et il avait ajouté non sans malice « je crois que j'appartiens plutôt à la première catégorie ». Bon, je ne suis pas encore à l'heure des bilans, loin s'en faut, mais il n'en reste pas moins que j'ai quelques convictions bien ancrées, et j'aime bien les ressortir de temps en temps au risque de me répéter (de radoter).

Entres autres, je pense que la connexion directe entre un logiciel de data mining et un tableur est une idée forte, parce que le tableur est un acteur incontournable de la manipulation des données pour les data miners¹. Et... je ne suis pas le seul à le penser (ouf ! c'est toujours rassurant de savoir que d'autres partagent votre avis). Il n'y a pas longtemps j'avais présenté la solution RExcel pour le logiciel R. Dans ce tutoriel, je décris l'add-in SAS 4.3 (la macro complémentaire SAS version 4.3) pour Excel. Si SAS s'y est mis, c'est qu'il y a réellement une attente derrière. Personne ne peut en douter.

Le logiciel SAS est bien connu des statisticiens (<u>http://www.sas.com/</u>). Il est présent sur le marché des logiciels de statistique depuis un grand nombre d'années maintenant². Il jouit d'une excellente réputation. Son principal défaut, outre le fait qu'il n'est pas accessible gratuitement, est qu'il faut connaître les instructions SAS, et de manière plus générale le langage de macro-commandes, pour pouvoir réellement l'exploiter.

SAS propose plusieurs solutions pour dépasser cet écueil. Entres autres, il a développé une macro complémentaire (add-in en anglais) pour la suite Office de Microsoft³. Je l'ai découvert très récemment sur les machines des salles informatiques de notre département (Département Informatique et Statistique – Université Lyon 2 – <u>http://dis.univ-lyon2.fr/</u>). Je me suis intéressé en particulier à l'add-in dévolue au tableur Excel. De fait, 3 tâches pas toujours évidentes à mettre en œuvre dans la version standard de SAS sont très largement facilitées : l'importation d'un fichier Excel dans SAS, le paramétrage et le lancement des techniques statistiques, la récupération des résultats dans le tableur aux fins de visualisation ou d'élaboration des rapports.

¹ N'en déplaise aux allergiques à Excel, ce dernier est un outil majeur de la pratique du data mining (cf. « <u>Data</u> <u>Mining/Analytic Tools Used</u> », Kdnuggets Polls, 2011 et 2010). Je me suis toujours posé la question d'ailleurs. Est-ce que cette défiance repose sur le rejet de Microsoft, ou sur le rejet des tableurs en général ? Je n'ai jamais compris en vérité. Je pense surtout qu'il s'agit d'un faux débat. Notre rôle consiste à choisir l'outil le plus adapté compte tenu des objectifs de notre étude, des caractéristiques de nos données, et des circonstances. Toute autre considération ne me paraît pas très défendable. Je le dis d'autant plus volontiers que je passe mon temps à défendre R (un autre objet de culte) auprès de ceux qui ne jurent que par Excel.

² http://en.wikipedia.org/wiki/SAS_%28software%29

³ <u>http://support.sas.com/documentation/onlinedoc/addin/index.html</u>. Plusieurs tutoriels PDF décrivent l'installation et la mise en œuvre de la macro complémentaire (ex. statistiques descriptives, régression linéaire, etc.).

Dans ce tutoriel, nous décrivons le comportement de la macro complémentaire lors de la mise en œuvre des tests non paramétriques de comparaisons de populations et de la régression logistique avec sélection de variables. Nous mettrons en parallèle les résultats obtenus avec le logiciel Tanagra. L'idée est de comparer les calculs et le mode de présentation des résultats.

2 Données

Nous utilisons les données « <u>scoring dataset.xls</u> »⁴. Il comporte 2158 observations et 201 variables. La variable « objective » joue un rôle particulier. Les positifs (objective = positive) correspondent aux individus qui ont répondu positivement à une campagne de mailing direct. Nous chargeons les données dans Excel 2007.

3 Utilisation de l'add-in SAS 4.3

Au démarrage d'Excel 2007, nous disposons d'un onglet supplémentaire SAS dans le ruban supérieur. Les techniques statistiques sont disponibles dans le menu TACHES.

0.	scoring dataset.xls [Mode de compatibilité] - Microsoft Excel														
	Ac	┛	Insertion	Mise	en page	For	mules	Données	Révis	ion /	Affichage D	éveloppeur	Compléments	SAS 🔘	- = x
Donr	nées (S	Tâche	s Rapports	Favoris SAS +	S Actualiser	N M	lodifier ropriétés	Gérer le contenu	Outils	2 Aide					
			Analy <u>s</u> e des o	données o	le survie 🕨	ection	n		Outils						
	В		Analyse <u>m</u> ulti	ivariée	•										×
	A		<u>A</u> NOVA			<i>й</i> ч	Analyse	de variance	à une d	imensi <u>o</u> n			- I	J	K
1 0	bject		Ca <u>p</u> abilité		•	盃	<u>A</u> nalyse	de variance	non-pa	ramétriqu	ie à une dimensi	ion	p06rcy	p07rcy	p08rcy 🖵
2 p	ositi		<u>C</u> artes de cor	ntrôle	•	*	Modèle	s <u>l</u> inéaires					0.99	0.99	
3 p	ositiv		Data M <u>i</u> ning		•	*	Modèles	s mixtes				(0 0	0	
4 p	ositiv		Description		•	H	Test t					(0 0	0	
5 p	ositiv		<u>D</u> onnées		•	F			•	202	v		0 0	0.99	
6 p	ositiv		Graphique		•	-	0		0	4574	0.03	0.43	L 0	0	
7 n	negati		Pareto		•	Ŀ	0.99		0	4093	0	(0 0	0	
8 n	negati		Régression			-	0		0	123	0	(0 0	0	
9 p	osití		Cária chronol	logique		⊢	1		0	2422	0	(0 0	1	
10 n	iegati		Serie chronol	iogique		-	1		0	357	0	(0	0	
11 n	egati		Modeles de t	aches	-	J	1		-	543	0	(0	
H 4	► H	data	set 🖉								I ◀ <u>Ⅲ</u>				
Prêt						_							100 % (-)	.::

3.1 Tests non paramétriques

Dans cette section, nous cherchons à comparer les dépenses des clients (« total spend ») selon leur réponse à la sollicitation marketing. Après avoir sélectionné une des cellules de la plage de données, nous actionnons le menu TACHES / ANOVA / ANALYSE DE VARIANCE NON PARAMETRIQUE A UNE DIMENSION.

Une boîte de dialogue apparaît. Elle permet de préciser la plage des données (A1 :GS2159) et l'intitulé de la feuille dans laquelle sera affichée les résultats des calculs. Nous validons en cliquant sur le bouton OK.

<u>Remarque</u>: La connexion est un peu longue la première fois. Il faut patienter simplement.

⁴ http://www.math.mcmaster.ca/peter/sora/case_studies_00/etudes_de_cas.html

Sélectionner des données	-	-	-	-	X
Données d'entrée					
Onnées Excel :					
A1:GS2159					
Données SAS externes :					
				• Parcou	rir
✓ Détails				Filtrer & 1	Trier
Emplacement des résultats					
Nouvelle feuille de calcul :	Analyse de v	ariance non-pa	aramét		
Feuille de calcul existante :					
Nouveau classeur					
Pourquoi est-il impossible d'indiqu	er un emplacer	ment dans Exc	el en cliquant c	lans une feuille de	e calcul ?
			ОК	Annuler	Aide

Une seconde boîte de dialogue permet de paramétrer la technique. Dans un premier temps, nous sélectionnons les variables de l'analyse dans l'onglet DONNEES. Nous plaçons OBJECTIVE en variable indépendante, et TOTALSPEND en dépendante.

Données Analyse p-values exactes Résultats	Données 	comparis
Titres	on\logistic regression\sas add-in\scoring dataset.xls!dataset	
Propriétés	Filtre de tache : Neant	
	Variables à attribuer : Fonctions de la tâche :	
	Nom Nom	
	▲ objective Image: Constraint of the second se	
		•
	Attribue la variable sélectionnée à la fonction que vous avez choisie dans la liste déroulante.	Â.

Dans la page « ANALYSE », nous spécifions les tests à réaliser. Nous les sélectionnons tous à l'exception de « Données brutes ».

se exactes Analyse	
tats Scores de test Wilcoxon Médiane Savage Van der Waerden Ansari-Bradley Klotz Mood Siegel-Tukey Données brutes	Calculer la loi empirique de la fonction de répartition (EDF lnclure les valeurs manquantes comme niveau de classe Supprimer la correction de continuité REMARQUE : les scores de test doivent être sélectionné afin d'activer les p-values exactes de la page "P-values exactes" et les statistiques de la page "Résultats".
Attribue la variable sélectionnée	à la fonction que vous avez choisie dans la liste déroulante.

Dans « P-VALUES EXACTES », nous avons l'opportunité d'utiliser les lois exactes pour asseoir la décision (rejet ou non de l'hypothèse nulle). Attention, les calculs peuvent être très longs, surtout sur un fichier avec un grand nombre d'observations. Dans notre cas, cette option n'est pas pertinente. Enfin, les autres pages servent à préciser la nature des sorties. Nous les ignorons.

🖄 Analyse de variar	ce non-paramétrique à une dimension pour D:\DataMining\Databases_for_mining\dataset_f		
Données Analyse	Analyse		
p-values exactes Résultats Titres	Scores de test		
Aperçu du code de la	âche		8
Insérer du code			
			*
PROC NPAR	WAY DATA=WORK.TMP0TempTableInput WILCOXON MEDIAN SAVAGE VW AB KLOTZ	MOOD ST EDF	
; VAR to	talspend:		
CLASS	objective;		
/*			н
Fin du	code de la tâche. */		
RUN; QUIT;	· · · · · · · · · · · · · · · · · · ·		-
•	III		•
	Attribue la variable sélectionnée à la fonction que vou avez choisie dans la liste démulante		
Aperçu du code	Exécuter 🔻 Annuler Aide		

Notons une option très intéressante, il est possible de consulter les instructions SAS générées pour l'analyse en cliquant sur le bouton APERCU DU CODE. Nous retrouvons une fonctionnalité proposée par les packages du logiciel R qui permettent de piloter par menu les analyses (ex. le package RATTLE⁵). Nous pouvons modifier manuellement les instructions pour affiner notre analyse.

⁵ http://tutoriels-data-mining.blogspot.fr/2010/06/data-mining-sous-r-le-package-rattle.html

<u>Remarque</u>: Précisons que avons souhaité obtenir des sorties au format HTML dans ce didacticiel (menu OUTILS / OPTIONS) : pour d'une part, bénéficier d'une mise en forme plus attrayante dans la feuille de résultats ; et d'autre part, parce que les sorties standards n'ont pas fonctionné lorsque j'ai utilisé la régression logistique dans la section suivante.

Il ne nous reste plus qu'à actionner le bouton EXECUTER. Les résultats des calculs sont insérés dans une nouvelle feuille du classeur. Voyons-en le détail, et comparons-les avec ceux de Tanagra.

Dans Tanagra, TOTALSPEND est la variable cible TARGET, OBJECTIVE est la variable d'entrée INPUT. Les tests non paramétriques sont regroupés dans l'onglet NONPARAMETRIC STATISTICS. Les méthodes abordées dans cette section sont décrites dans un ouvrage libre accessible en ligne (R. Rakotomalala, « <u>Comparaison de populations – Tests non paramétriques</u> », Université Lyon 2, 2008)⁶.

3.1.1 Test de Wilcoxon-Mann-Whitney

Nous comparons les caractéristiques de tendances centrales des distributions conditionnelles. SAS calcule la statistique de Wilcoxon, Tanagra celle de Mann-Whitney. A la sortie, les deux procédures obtiennent la même statistique centrée-réduite |Z| = 9.91233. Au regard de la taille de notre échantillon, la correction de continuité introduite par SAS n'est pas perceptible.

Scores de Wilcoxon (Sommes du rang) pour la variable totalspend								
	Ĩ	Classés pa	r variable ol	bjective				
		So	omme des		Attendue	Ecart-type	Score	
objective		N	scores		sous H0	sous H0	moyen	
positive	10	79	1308241		1164780.5	14472.9379	1212.4569	
negative	107	79	1021320		1164780.5	14472.9379	946.5431	
	Les sco	ores moyens (ont été utilis	és pour les lie	ens.			
Test à deux échantill	lons de Wilcoxon	٦						
Statistique	130824	41						
		-				_		
Approximation normale								
Z	9.912	23						
Unilatéral Pr > Z	<.000	01		242				
Bilatéral Pr > Z	<.000	01		070		\		
Approximation t								
Unilatéral Pr > Z	<.000	01						
Bilatéral Pr > Z	<.000	01						
Z inclut une correction	on de continuité							
de 0.	5.							
			Results					
	Value	Examples	Average	Rank sum	Rank mean	Mann-Whitney l	J 438660.00	
	positive	1079	1763.1909	1308241.0	1212.4569	E(U)	582120.50	
totalspend objective	negative	1079	992.8267	1021320.0	946.5431	V(U)	209465931.84	
TANAGRA	All	2158	1378.0088	2329561.0	1079.5000	IZI	9.91	
				$\mathbf{\nabla}$		P(> Z)	0.00	

Analyse de variance non-paramétrique à une dimension

⁶ Voir aussi <u>http://fr.wikipedia.org/wiki/Test_%28statistique%29</u> pour le positionnement des différents tests.

3.1.2 Test de Kruskal-Wallis

Le résultat du test de Kruskal-Wallis est fourni dans la foulée par SAS. Dans TANAGRA, nous utilisons un composant dédié.

3.1.3 Test de la médiane

Deux approches sont disponibles pour le test de la médiane. La première est basée sur la statistique de rangs. Elle est asymptotiquement normale. La seconde sur un tableau de contingence. Elle suit une loi du KHI-2 sous l'hypothèse nulle. SAS...

Scores médians (Nbre de points au-dessus de la médiane) pour la variable totalspend										
Classés par variable objective										
Somme des Attendue Ecart-type Score										
objective	N	scores	sous H0	sous H0	moyen					
positive	1079	638.333333	539.5	11.609082	0.591597					
negative	1079	440.666667	539.5	11.609082	0.408403					
	Les scores moyens ont été utilisés pour les liens.									

Test à deux échantillons de la						
médiane						
Statistique	638.3333					
Z	8.5134					
Unilatéral Pr > Z	<.0001					
Bilatéral Pr > Z	<.0001					

Analyse à une dimension							
de la médiane							
Khi-2	72.4788						
DLL	1						
Pr > Khi-2	<.0001						

... et TANAGRA proposent les deux résultats.

Attribute_Y	Attribute_X			Statistical test				
		Value	Examples	Average	Scores	Scores	Two-San	nple Test
					sum	mean	S	440.66667
	objective	positive	1079	1763.1909	638.3333	0.5916	E(S)	539.50000
		negative	1079	992.8267	440.6667	0.4084	V(S)	134.77079
		All	2158	1378.0088	1079.0	0.5000	Z	8.51345
totalspend							p-value	0.00000
							One-way	Analysis
		IA	NAGR		Chi-Square	72.47882		
		« [\	Nedian		d.f.	1		
							p-value	0.00000

3.1.4 Test de Van der Waerden

Le résultat est double également pour le test de Van der Waerden.

SAS	Scores de Van der Waerden (Normal) pour la variable totalspend Classés par variable objective						
		Somme des	Attendue	Ecart-type	Score		
objective	N	scores	sous H0	sous H0	moyen		
positive	1079	223.95545	0	23.158361	0.207558		
negative	1079	-223.95545	0	23.158361	-0.207558		

							Results			
Test à deux échantillons de Van		Attribute_Y	Attribute_X	Description Statistical te						cal test
der waerden				Volue Scores Scores				Two-Sample Test		
7	0.6706			value	Examples	Average	sum	mean	s	-223.95545
2	9.6706			positive	1079	1763.1909	223.9555	0.2076	E(S)	0.00000
Unilatéral Pr > Z	<.0001			negative	1079	992.8267	-223.9554	-0.2076	V(5)	536.30966
Bilatéral Pr > Z	<.0001			All	2158	1378.0088	0.0	0.0000	171	9 67061
		totalspend	objective						141	9.07001
Analyse à une dir	nension								p-value	0.00000
de Van der Wa	erden								One-way	Analysis
Khi-2	93.5207			TANAGRA			Chi-Square	93.52068		
DLL	1			d.f				d.f.	1	
Pr > Khi-2	<.0001								p-value	0.00000

3.1.5 Test de Savage

Le test de Savage est présent uniquement dans SAS. Voilà un test à rajouter dans la TODO LIST de Tanagra donc. Il s'agit tout simplement de modifier le score utilisé pour le calcul des statistiques.

Scores selon la formule de Savage (Exponentiel) pour la variable totalspend Classés par variable objective						
Somme des Attendue Ecart-type Scor						
objective	Ν	scores	sous H0	sous H0	moyen	
positive	1079	216.94123	0	23.18801	0.201058	
negative	1079	-216.94123	0	23.18801	-0.201058	
	Les score	s movens ont été uti	lisés pour les liens.			

Analyse de variance non-paramétrique à une dimension

Test à deux échantillons de Savage				
Statistique	216.9412			
Z	9.3558			
Unilatéral Pr > Z	<.0001			
Bilatéral Pr > Z	<.0001			

Analyse à une dimension					
de Savage					
Khi-2	87.5301				
DLL	1				
Pr > Khi-2	<.0001				

3.1.6 Test de Siegel et Tukey

Idem, le test de Siegel et Tukey est présent uniquement dans SAS pour l'instant. Attention, la finalité des tests est modifiée à partir d'ici : il s'agit de comparer les caractéristiques de dispersion dans les deux sous-populations.

Analyse de variance non-paramétrique à une dimension

Scores Siegel-Tukey pour la variable totalspend							
	Classés par variable objective						
Somme des Attendue Ecart-type Sco							
objective	N	scores	sous H0	sous H0	moyen		
positive	1079	1140335.6	1164780.5	14472.8912	1056.84486		
negative	1079	1189225.4	1164780.5	14472.8912	1102.15514		

s scores moyens ont été utilisés pour les li
--

Test à deux échantillons de Siegel-Tukey					
Statistique 1140335.60					
Z	-1.689				
Unilatéral Pr < Z	0.0456				
Bilatéral Pr > Z 0.09					
Z inclut une correction de continuité					
de 0.5.					

Analyse à une dimension					
de Siegel-Tukey					
Khi-2	2.8528				
DLL	1				
Pr > Khi-2	0.0912				

3.1.7 Test de Ansari-Bradley

Scores Ansari-Bradley pour la variable totalspend							
	Classés par variable objective						
	SAS		Somme des	Attendue	Ecart-type	Score	
objective		N	scores	sous H0	sous H0	moyen	
positive		1079	570436.667	582660	7236.44447	528.67161	
negative		1079	594883.333	582660	7236.44447	551.32839	
		Les score	s movens ont été uti	lisés nour les liens			

Ce test est présent dans Tanagra. Les résultats sont cohérents avec ceux de SAS bien évidemment.

Test à deux échantillons de Ansari-Bradley					
Statistique	570436.6667				
Z	-1.6891				
Unilatéral Pr < Z	0.0456				
Bilatéral Pr > Z	0.0912				

					Results				
Attribute_Y	Attribute_X		Description					stical test	
		Value	Examples	Average	Scores sum	Scores	Two-Sample Test		
totalspend objective					mean	S	570436.6666	63	
	positive	1079	1763.1909	570436.6666	528.6716	E(S)	582659.9999	94	
	negative	1079	992.8267	594883.3333	551.3284	V(S)	52366128.4720	.01	
	All	2158	1378.0088	1165320.0	540.0000	Z	1.689	14	
						p-value	0.0911	19	
							One-way	Analysis	
		TANAGRA					Chi-Square	2.85318	
						d.f.	1		
							p-value	0.09119	

Analyse à une dimension de Ansari-Bradley						
DLL	1					
Pr > Khi-2	0.0912					

3.1.8 Test de Klotz

Ce test est également présent dans les deux logiciels.

	Scores Klotz Scores pour la variable totalspend								
Classés par variable objective									
			Somme des	Attendue	Ecart-type	Score			
objective	SAS	N	scores	sous H0	sous H0	moyen			
positive		1079	1131.69048	1072.29604	32.118911	1.048833			
negative		1079	1012.9016	1072.29604	32.118911	0.938741			
		Les score	s movens ont été uti	lisás nour los lions					

es scores moyens d	ont été utilisés	pour les liens.
--------------------	------------------	-----------------

							Results				
lest a deux echantillo	ons de Klotz	Attribute_Y	Attribute_X			Description	ı		Statisti	cal test	
Statistique	1131.6905						Scores	Scores	Two-San	nnle Test	
Z	1.8492			Value	Examples	Average	sum	mean	5	1012.90160	
Unilatéral Pr > Z	0.0322			positive	1079	1763.1909	1131.6905	1.0488	E(S)	1072.29604	
Bilatéral Pr > Z	0.0644			negative	1079	992.8267	1012.9016	0.9387	V(5)	1031.62442	
				All	2158	1378.0088	2144.6	0.9938	Z	1.84920	
		totalspend	end objective	pend objective						p-value	0.06443
Analyse à une din	nension			TANAGRA					One-way Analysis		
de Klotz									Chi-Square	3.41956	
Khi-2	3.4196								d.f.	1	
DLL	1								p-value	0.06443	
Pr > Khi-2	0.0644										

3.1.9 Test de Mood

Il s'agit du test de comparaison des caractéristiques d'échelles (MOOD SCALE TEST dans Tanagra), à ne pas confondre avec le test des séquences (MOOD RUNS TEST).

	Sco	res Mood pour	la variable t	otalspend	1						
		Classés par v	ariable objec	tive							
S	AS	Som	ne des		Attend	ue Eca	art-type	Score			
objective		N	scores		sous	но	sous H0	moyen			
positive	107	9 4317	67608		4187385	90 8064	157.45 40	0155.337			
negative	107	9 4057	09571		4187385	90 8064	157.45 37	6005.163			
	Les sco	res moyens ont	été utilisés p	oour les li	ens.						
Test à deux échanti	llons de Mood						Results				
Statistique	431767608	.4 Attribute	Y Attribute_X	(Descrip	tion		5	Statistical test	
Z	1.615	7		Value	Examples	Average	Scores sum	Scores	Τv	vo-Sample Te	st
Unilatéral Pr > 7	0.053	1				-		mean	S	405709	9571.57231
	0.055			positive	1079	1763.1909	431767608.48	63 400155.3369	E(S)	418738	3590.02930
Bilateral Pr > [2]	0.106	52		negative	1079	992.8267	405709571.57	23 376005.1636	V(5)	65030635439	095.49220
		_		All	2158	1378.0088	837477180	.1 388080.2503	Z		1.61567
Analyse à une	dimension	totalspend	objective						p-value		0.10617
de Mo	bd								One-wa	y Analysis	
Khi-2	2.610	14							Chi-Square	2.61039	
DLL		1			T	ANA	GRA		d.f.	1	
Pr > Khi-2	0.106	2							p-value	0.10617	

SAS Add-in 4.3 fournit en plus les tests de Klomogorov-Smirnov et de Cramer-von Mises qui ne sont pas présents encore dans Tanagra, mais que nous avons décrit dans notre support de cours.

3.1.10 Diagramme Tanagra

Pour réaliser ces analyses, nous avons élaboré le diagramme de traitements suivant sous Tanagra.

3.2 **Régression logistique**

Dans cette section, nous cherchons à expliquer (prédire) le mieux possible la variable cible OBJECTIVE à partir des autres variables en utilisant la régression logistique (pour le détail de la méthode, voir R. Rakotomalala, « Pratique de la régression logistique – Régression logistique binaire et polytomique », 2011). Le problème de l'estimation des paramètres du modèle est couplé avec un processus de sélection de variables. L'affaire n'est pas triviale. En effet, il y a un nombre assez important de variables candidates (200), plusieurs d'entres elles sont certainement non pertinentes ou redondantes. Nous ne devrions retenir qu'un nombre réduit de variables prédictives à la sortie.

Revenons dans la feuille « dataset » dans notre classeur Excel. Toujours en veillant à ce qu'une des cellules de la plage de données soit activée, nous actionnons le menu SAS / TACHES / REGRESSION / **REGRESSION LOGISTIQUE.**

6		17	· (° •) =	scoring d	ataset avec	: results.	xls [N	1ode de con	npatibilit	té] - Mic	rosoft Excel			x
	Acc	ueil:	Insertion	Mise en page	Formules	Donn	ées I	Révision At	fichage	Dévelo	ppeur Complé	ments SAS) - 🗖	X
D	onnées SAS	Tâch	es Rapport	s Favoris SAS +	(tualiser	🔊 Modil 🗄 Propr	fier iétés	Gérer le contenu	Outils	Aide				
			Analy <u>s</u> e de	es données de	survie 🕨	ection			Outils		J			
	P		Analyse <u>m</u>	ultivariée	•									×
	4		<u>A</u> NOVA		•	D		E		F	G	Н	- I	
1	object		Ca <u>p</u> abilité		•	3rcy 👘	р	04rcy	totals	spend	p05spend	p05trans	p06rcy	
2	positiv		<u>C</u> artes de	contrôle	•		1		0	4012	0	0		0
3	positi		Data M <u>i</u> nii	ng	•		0		0	13	0	0		
4	positi		De <u>s</u> criptio	n	•	0.	.95		0	2628	0	0		
5	positi		Données		•		0		0	962	0	0		
6	positi		- Graphique		•		0		0	4574	0.03	0.41		- 11
7	negati		Pareto			0.	.99		0	4093	0	0		- 11
8	negati		Págrassio		-		0	P - 1 - 1 1	0	123	0	0		_
9	positiv		Regression			M. M	odele	lineaire ger	eralise	122	0	0		_
10	negati		Serie chro	nologique	•	<u><u></u>Ré</u>	égress	ion linéaire.		357	0	0		
11	negati		<u>M</u> odèles d	le tâches	•	ii Ré	égress	ion logi <u>s</u> tiq	ue		0	0		-
I	< → >I [dat	aset 🖉 A	nalyse de vari	ance non-	🖉 Ré	égr 🎧	SAS Add-	in 4.3 for	r Microso	ft Office		•	I I
Pré	êt 🔝					_		Appuyez s	ur F1 po	ur obten	ir de l'aide.			Ð .::

Comme précédemment, une boîte de dialogue permet de préciser l'ensemble de données utilisé et l'emplacement des résultats. Nous validons. La boîte de paramétrage apparaît.

Dans DONNEES, nous définissons le rôle des variables. OBJECTIVE est la variable dépendante, les autres correspondent aux variables quantitatives.

onnées odèle	Données			
Réponse Effets Sélection Options aphes	Source de données : D:\D add- Filtre de tâche : Néar	DataMining\Databa in\scoring datase	ases_for_mining\dataset_for_soft_dev_and_c at avec results.xls!dataset	omparison\logistic regression\sas
édictions	Variables à attribuer :		Fonctions de la tâche :	
ues opriétés	Nom / liabslunivnd liabsluni		Variable dépendante (Linite : 1) Variables quantitatives Variables	I gender 3 ^e unités de cha Unités Ecart-type Saisissez un ou plusieurs nombres (unités de change) séparés par des espaces. Pa exemple: 0.2 0.3 0.5 0.7
Aperçu du cod	le		Exécuter 🔻	Annuler Aide

Dans l'onglet MODELE / REPONSE, nous spécifions le type de modèle LOGIT, nous indiquons également la modalité positive de la variable cible.

odèle	Modèle > Réponse	
Effets Sélection	Type de réponse :	Binaire
Options Graphes Prédictions Fitres Propriétés	Type de modèle :	 logit probit log-log complémentaire glogit
	Niveaux de réponse pour objective :	negative positive
	Ajuster le modèle au nivear : Indiquer le type de réponse. votre variable de réponse. Si	Les types de réponses disponibles dépendent du nombre de niveaux dans cette demière ne contient que deux niveaux, le type de réponse est alors
	binaire. Si elle en contient plu	us, vous pouvez choisir une réponse de type classée ou non classée.

Dans MODELE / EFFETS, les variables explicatives quantitatives correspondent à l'effet PRINCIPAL. Notons qu'il est possible d'implémenter des expressions plus sophistiquées des variables (croisement, passage à la puissance, imbrication).

Régression logist	ue pour D:\DataMining\Databases_for_mining\dataset_for_soft_dev_and_comparison\logist
Sélection Options Graphes Prédictions Titres Propriétés	
Aperçu du code	Exécuter 🔻 Annuler Aide

Dans MODELE / SELECTION, nous indiquons la technique de sélection de variables : une sélection ascendante (FORWARD), basée sur le test des scores dans SAS, avec un risque critique $\alpha = 1\%$.

lodèle	Modèle > Sélection	
Fffets	Méthode de sélection du modèle :	Effets à forcer dans le modèle
Sélection	Sélection ascendante	▼ Si les éléments sont cochés dans la liste ci-dessous, ils deviendront
raphes	Niveaux de significativité	"sélectionnés" et seront transférés dans cette liste.
itres	Pour entrer dans le modèle : 0.01	éléments "sélectionnés" en les
ropriétés	Pour rester dans le modèle : 0.05	sélectionnant et en utilisant les boutons fléchés vers le haut et vers le bas.
		p01rcy
		p02rcy
		p04rcy
		totalspend
		p05spend
		p05trans 👻
	Indiquez le niveau de significativité à utiliser pou	ir saisir une variable quantitative (explicative) dans le modèle.

Enfin, dans l'onglet MODELE / OPTIONS, nous spécifions les options supplémentaires pour compléter les sorties de l'analyse. Nous demandons, entres autres, les intervalles de confiance des odds-ratio.

Donnees Modèle	Modèle > Options	
Réponse Effets Sélection Options Graphes	Détails sur les estimations Matrice de corrélation des paramètres estimés Matrice de covariance des estimations	Table de classification Image: Afficher la table de classification P-values (points de rupture) :
Prédictions Titres Propriétés	Evaluation de l'ajustement du modèle Statistiques d'influence Test d'adéquation de Hosmer et Lemeshow Tests d'ajustement de l'écart et de Pearson R ² généralisé	Saisissez un ou plusieurs nombres séparés par des espaces. Par exemple : 0.2 0.3 0.5 0.7
	Intervalle de confiance Paramètres Mald Vraisemblance du profil	Rapports de cotes conditionnels
	Niveau de confiance : 952 Calcule les intervalles de confiance pour le rapport de co	▼ tes.

Ici également, en cliquant sur le bouton APERCU DU CODE, nous pouvons visualiser les instructions en langage SAS.

Il ne nous reste plus qu'à lancer l'analyse en actionnant le bouton EXECUTER.

Une nouvelle feuille est insérée dans notre classeur. Voyons en le détail.

Un résumé indique les principales caractéristiques de l'étude. Nous constatons ainsi que notre échantillon est équilibré (50% de positifs et 50% de négatifs).

Informations sur le modèle					
Table	WORK.SORTTEMPTABLESORTED				
Variable de réponse	objective				
Nombre de niveaux de réponse	2				
Modèle	logit binaire				
Technique d'optimisation	Score de Fisher				
Nombre d'observations lues	2158				
Nombre d'observations utili	2158				

Profil de réponse				
Valeur		Fréquence		
ordonnée	objective	totale		
1	negative	1079		
2	positive	1079		

Ensuite, nous avons le détail de la sélection ascendante. Nous ne montrons que le résumé de la procédure dans ce tutoriel. Les valeurs de la statistique de test [test des scores] à chaque étape du processus sont strictement identiques à celles fournies par le composant FORWARD-LOGIT (onglet FEATURE SELECTION) de Tanagra.

11 brlanglic

12 p12rcy

	SAS						
	Récapit	ulatif sur la	sélection e	n avant			
Etape	Effet saisi	DDL	Nombre dans	Khi-2 du score	Pr > Khi-2		
1	gender3	1	1	397.8863	<.0001		
2	productcount	1	2	143.2981	<.0001		
3	bknfren	1	3	54.5739	<.0001		
4	tf37	1	4	48.6375	<.0001		
5	p05trans	1	5	18.715	<.0001		
6	ahh6ppers	1	6	13.8786	0.0002		
7	tf68	1	7	14.3437	0.0002		
8	amtfrench	1	8	10.0118	0.0016		
9	p09tenure	1	9	9.4223	0.0021		
10	tf128	1	10	9.4496	0.0021		

11

12

8.692

7.420

0.0032

0.0064

TANAGRA

N	Current Reg.	Moved	Sol.1
	AIC: 2993.62	gender3	gender3
1	CHI-2:0.00	Chi-2:397.887	Chi-2:397.887
	d.f. : 0	p:0.0000	p:0.0000
	p-value : 0.0000		
	AIC: 2576.00	productcount	productcount
2	CHI-2:419.63	Chi-2:143.299	Chi-2:143.299
2	d.f. : 1	p:0.0000	p:0.0000
	p-value : 0.0000		
	AIC: 2422.99	bknfren	bknfren
3	CHI-2:574.63	Chi-2:54.575	Chi-2 : 54.575
5	d.f. : 2	p:0.0000	p:0.0000
	p-value : 0.0000		
	AIC: 2361.99	tf37	tf37
	CHI-2:637.63	Chi-2:48.638	Chi-2:48.638
4	d.f.: 3	p:0.0000	p:0.0000
	p-value : 0.0000		
	AIC: 2313.22	p05trans	p05trans
5	CHI-2:688.40	Chi-2:18.716	Chi-2:18.716
5	d.f. : 4	p:0.0000	p:0.0000
	p-value : 0.0000		
	AIC: 2293.07	ahh6ppers	ahh6ppers
6	CHI-2:710.56	Chi-2:13.883	Chi-2:13.883
	d.f. : 5	p:0.0002	p:0.0002
	p-value : 0.0000		
	AIC: 2280.93	tf68	tf68
7	CHI-2:724.69	Chi-2:14.344	Chi-2 : 14.344
	d.f. : 6	p:0.0002	p:0.0002
	p-value : 0.0000		
	AIC: 2268.53	amtfrench	amtfrench
8	CHI-2:739.09	Chi-2:10.014	Chi-2:10.014
	d.f. : 7	p:0.0016	p:0.0016
	p-value : 0.0000		
	AIC: 2260.39	p09tenure	p09tenure
9	CHI-2:749.24	Chi-2 : 9.440	Chi-2:9.440
	d.f.:8	p:0.0021	p:0.0021
	p-value : 0.0000		
	AIC: 2250.76		tf128
10	CHI-2 : 760.86	Chi-Z : 9.480	Ch1-Z : 9.480
	d.t. : 9	p:0.0021	p:0.0021
	p-value : 0.0000	halaa alka	halaa alka
	AIC: 2243.02		
11	CHI-2:770.00	CIII-2 : 8.693	0.0022
		p : 0.0032	p : 0.0032
-	AIC · 2236 /0	n12rcy	n12rcy
	CHI-2 · 779 13	$\frac{P_1 L Cy}{Chi_2 \cdot 7 421}$	Chi-2 · 7 421
12	d f · 11	-10,0064	n : 0.0064
	n-value : 0.0000	P . 0.0004	P . 0.0001
	AIC : 2230 97		p02rcv
	CHI-2 : 786 70		Chi-2: 6.506
13	d.f. : 12		p: 0.0108
			"p" higher than
	p-value · 0 0000	-	1% not selected

12 variables prédictives sont sélectionnées en définitive.

SAS fournit les indicateurs de qualité globale du modèle : critère AIC (Akaike), BIC, test du rapport de vraisemblance, etc. Les sorties de SAS sont particulièrement exhaustives.

SAS					
Statistiques d'ajustement du modèle					
	Constante Constante				
uniquement					
Critère		covariables			
AIC	2993.623	2230.92			
sc	2999.3	2304.72			
-2 Log L	2991.623	2204.92			

R carré	0.3055	R carré remis à	0.4073
		l'échelle max.	

Test de l'hypothèse nulle globale : BETA=0					
Test	Khi-2	DDL	Pr > Khi-2		
Rapport de vrais	786.703	12	<.0001		
Score	659.1976	12	<.0001		
Wald	474.7472	12	<.0001		

Test du Khi-2 résiduel				
Khi-2 DDL Pr > Khi-2				
227.1726	187	0.0239		

TANAGRA

Adjustement quality					
Model	Fit Statistics				
Criterion	Intercept	Model			
AIC	2993.623	2230.92			
SC	2999.3	2304.72			
-2LL	2991.623	2204.92			
Model	Model Chi test (LR)				
Chi-2		786.703			
d.f.		12			
P(>Chi-2)		0			
R-like					
McFadden's R		0.263			
Cox and Snell's R		0.3055			
Nagelkerke's R		0.4073			

Nous disposons ensuite des **coefficients du modèle**. SAS les énumère dans l'ordre des variables initiales, Tanagra dans l'ordre de la sélection. Nous les avons triés selon le nom des variables pour les comparer. Les caractéristiques obtenues (coefficient estimé, écart-type, statistique de Wald, probabilité critique) sont bien les mêmes.

SAS							
Estimations par l'analyse du maximum de vraisemblance							
Valeur Erreur Khi-2							
Paramètre	DDL	estimée	type	de Wald	Pr > Khi-2		
Intercept	1	-1.9280	0.2419	63.5181	<.0001	C	
ahh6ppers	1	-5.9698	1.9885	9.0125	0.0027	ā	
amtfrench	1	2.7341	0.7459	13.4352	0.0002	ā	
bknfren	1	-8.0473	1.4203	32.1021	<.0001	ł	
brlanglic	1	2.2944	0.7998	8.2292	0.0041	ł	
gender3	1	-1.9310	0.1188	264.3180	<.0001	ŧ	
p05trans	1	-4.5013	1.2440	13.0927	0.0003	F	
p09tenure	1	26.8724	14.3487	3.5074	0.0611	I	
p12rcy	1	0.5115	0.1886	7.3549	0.0067	I	
productcount	1	0.1970	0.0202	95.1812	<.0001	I	
tf128	1	17.6755	5.9650	8.7805	0.003	t	
tf37	1	0.0443	0.0073	36.5450	<.0001	t	
tf68	1	0.0003	0.0001	10.3427	0.0013	t	

	Tanagra
Attributes in the equ	uation

Attribute	Coef.	Std-dev	Wald	Signif
constant	-1.9280	0.2419	63.5182	0.0000
ahh6ppers	-5.9698	1.9885	9.0125	0.0027
amtfrench	2.7341	0.7459	13.4352	0.0002
oknfren	-8.0473	1.4203	32.1021	0.0000
orlanglic	2.2944	0.7998	8.2292	0.0041
gender3	-1.9310	0.1188	264.3180	0.0000
o05trans	-4.5013	1.2440	13.0927	0.0003
o09tenure	26.8725	14.3488	3.5074	0.0611
o12rcy	0.5115	0.1886	7.3549	0.0067
productcount	0.1970	0.0202	95.1812	0.0000
f 128	17.6755	5.9650	8.7805	0.0030
tf37	0.0443	0.0073	36.5450	0.0000
tf68	0.0003	0.0001	10.3427	0.0013

SAS produit également les odds-ratio et leur intervalle de confiance à 95%.

SAS								
	confiance de Wald							
	Valeur Intervalle de							
Effet	Unité	estimée	confianc	e à 95 %				
ahh6ppers	1	0.003	<0.001	0.126				
amtfrench	1	15.396	3.568	66.429				
bknfren	1	< 0.001	<0.001	0.005				
brlanglic	1	9.918	2.068	47.56				
gender3	1	0.145	0.115	0.183				
p05trans	1	0.011	<0.001	0.127				
p09tenure	1	>999.999	0.286	>999.999				
p12rcy	1	1.668	1.152	2.414				
productcoun	1	1.218	1.171	1.267				
tf128	1	>999.999	397.123	>999.999				
tf37	1	1.045	1.03	1.06				
tf68	1	1	1	1				

TANAGRA						
Odds ratios and 95% confidence intervals						
Attribute	Coef.	Low	High			
ahh6ppers	0.003	0.000	0.126			
amtfrench	15.396	3.569	66.429			
bknfren	0.000	0.000	0.005			
brlanglic	9.918	2.068	47.560			
gender3	0.145	0.115	0.183			
p05trans	0.011	0.001	0.127			
p09tenure	4.684E+11	0.286	7.662E+23			
p12rcy	1.668	1.152	2.414			
productcount	1.218	1.171	1.267			
tf128	4.746E+07	397.124	5.673E+12			
tf37	1.045	1.030	1.060			
tf68	1.000	1.000	1.000			

Enfin, le test d'adéquation de Hosmer-Lemeshow teste la compatibilité du modèle avec les données.

SAS

TANAGRA

Partition pour les tests de Hosmer et de Lemeshow						
Groupe	Total	objective	= positive	objective = negative		
		Observé	Attendu	Observé	Attendu	
1	216	11	12.96	205	203.04	
2	216	31	29.38	185	186.62	
3	216	45	48.37	171	167.63	
4	216	78	78.07	138	137.93	
5	216	118	107.12	98	108.88	
6	216	129	126.66	87	89.34	
7	216	143	142.83	73	73.17	
8	216	148	159.51	68	56.49	
9	216	177	177.23	39	38.77	
10	214	199	196.86	15	17.14	

Hosmer Lemeshow Goodness-of-Fit Test						
		Positive		Nega		
Decile	Prob.	Observed Expected		Observed	Expected	Total
1	0.103	11	12.962	205	203.038	216
2	0.172	31	29.383	185	186.617	216
3	0.278	45	48.373	171	167.627	216
4	0.441	78	78.067	138	137.933	216
5	0.543	118	107.122	98	108.878	216
6	0.621	129	126.664	87	89.336	216
7	0.701	143	142.834	73	73.166	216
8	0.774	148	159.511	68	56.489	216
9	0.863	177	177.228	39	38.772	216
10	1	199	196.856	15	17.144	214

Test d'adéquation de HosmerKhi-2DDLPr > Khi-26.487580.5928

Hosmer Lemeshow Statistic					
	Chi-Square	d.f.	Significance		
Goodness-					
of-fit test	6.4875	8	0.5928		

Pour obtenir ces résultats, nous avons construit le diagramme de traitements suivant dans Tanagra.

TANAGRA 1.4.43 - [Hosm	er Lemeshow Test 1]	_					8
Tile Diagram Compo	nent Window Help					- 5	'×
🗅 📽 🔚							
	10	1.000	199.0	00 196.856			
⊡-∰ Dataset (scoring da	Hosmer Lemeshow Statistic						
🖻 🙀 Define status 2				Chi-Square	d.f.	Significance	
Forward-logit 1			Goodness-of- test	fit 6.4875	8	0.5928	
I Hosmer Lemeshow Test 1			•	III		4	Ŧ
	(Components					
Data visualization	Statistics	Nonparame	Nonparametric statistics		Instance selection		
Feature construction	Feature selection	Regression		Factorial analysis		ysis	
PLS	Clustering	Spv learning		Meta-spv learning		ning	
Spv learning assessment	Scoring	Asso	ciation				
Binary logistic regression			🎇 C-PLS			🕂 C-RT	
						.::	

4 Conclusion

Incorporer des fonctionnalités statistiques avancées dans Excel est un créneau que plusieurs éditeurs de logiciels ont investi depuis longtemps (XLSTAT, XLMINER, etc.). L'idée est suffisamment bonne pour que SAS vienne se positionner sur le créneau. Il apporte ses propres spécificités : une bibliothèque de calculs très riche (avec R, on disposerait d'autant, sinon plus, de méthodes statistiques) ; sa notoriété (est-ce vraiment important, nous avons montré qu'avec des logiciels tels que Tanagra - ou d'autres, R encore une fois, OpenStat, PSPP, etc. - nous obtenons les mêmes résultats) ; son aptitude à traiter les grandes bases (c'est son véritable atout, mais dans ce cas il ne paraît pas très judicieux de manipuler ses données dans Excel). Bref, l'add-in apparaît surtout comme une fonctionnalité bonus pour ceux qui ont déjà investi dans le logiciel. L'acquisition de SAS spécifiquement pour cet outil paraît moins pertinente en revanche.