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Abstract. Information usually spreads between people by the mean of
textual documents. During such propagation, a piece of information can
either remain the same or mutate. We propose to formulate information
spread with a set of time-ordered document chains along which some
information has likely been transmitted. This formulation is different
from the usual graph view of a transmission process as it integrates a
notion of lineage of the information. We also propose a way to construct
a candidate set of document chains for the information propagation in a
corpus of documents. We show that most of the chains have been judged
as plausible by human experts.
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1 Introduction

Internet came with a burst in document publication and accessibility. Nowadays,
one can get far more news articles, videos or audio podcasts than one can digest
on a daily basis. This has fostered new tool-assisted methods that take advan-
tage of computer fast processing capabilities. Most of these documents convey
information expressed in natural language. To analyze this information, the user
mostly use search tools with a preconceived idea of what he is searching through
a question or keywords. The user may need tools to understand how information
propagates without using these preconceptions.

There are research efforts to study why and how information propagates in a
corpus. Some works are interested on modeling the diffusion process between au-
thors of documents in order to recover the propagation network as [1, 2]. Whereas
these methods give us insights on the diffusion process between authors, they do



not express the diffusion between documents. The difficulty of uncovering the
diffusion over documents is pointed in [3, 4] where authors try to trace a piece of
information back to its primary source. Most of these models consider the diffu-
sion as an information exchange [5] with no modification. However, during the
information diffusion over documents, the specific context a piece of information
appears in, may slightly make its meaning mutate, even when the information
syntax does not evolve [6]. Moreover, those models expect pieces of information
to be explicitly defined beforehand, which makes it difficult to express muta-
tions. Furthermore, if two pieces of information share a similar context, as in
Figure 1a, knowing their diffusion history could give us insights on how and why
they differ. We propose to study how information propagates through textual
document streams. We consider that a succession of documents, that we call a
chain, is the basic structure for describing how information propagates. A set of
chains is represented in Figure 1b.

(a) There is a lineage from Study A and
Study B to Article 1, and a lineage from
Study B to Article 2 only.

(b) The colored symbols
stand for (up to now un-
known) pieces of information.

We never know how the propagation phenomenon unfolds precisely. How-
ever, we consider that if information flows from a document to another, there
should be some semantic similarity between these two documents. Given this
assumption, we propose an algorithm to construct chains of similar documents
as first candidates for propagation chains. Then, we present the results and our
methodology to evaluate these chains. We show that human experts reach a
consensus on what is a plausible chain of propagation and what is not, and that
our calculated chains match with this evaluation. We conclude in giving several
applications that can be built on top of this general chain propagation model.

2 Modeling Information Propagation With Chains

We do not formally define what one piece of information is. It can be expressible
facts, ideas, opinions, reasoning or even sensations, but it also may be some
complex discrete representation of information. We denote K the set of all pieces
of information, and D a corpus of documents. An interesting property of K



elements is that they may be more or less similar. Statements like “It may rain
today” and “It will rain today” are not exactly the same, still they share some
semantic. We set semK : K ×K → [0, 1] a semantic similarity metrics over K.

During propagation between the two documents di and dj , a piece of infor-
mation k0 of di may mutate, resulting in a possibly different k1 in dj . We note
such mutation as a pair (k0, k1). We can express the propagation event between
di and dj by enumerating all the mutations that occur between them, noted as
Mi,j . We define a propagation event e as a triplet e = (di, dj ,Mi,j) for di, dj ∈ D.
There exists a non-trivial threshold ε such that: if (di, dj ,Mi,j) is a propagation
event then (ki, kj) ∈Mi,j =⇒ semk(ki, kj) ≥ 1− ε.

This propagation model can express historical modifications of information.
Given two propagation events (d1, d2, {(k1, k1′)}) and (d2, d4, {(k1′ , k1′′)}), we
can flow back the origin of k1′′ in d2, as k1 in d1. Thus, information has propa-
gated along the path d1d2d4. Such path of documents is what we call a propaga-
tion chain. Given P a set of propagation events over documents, a chronologically
ordered sequence of documents c = d0d1 . . . dn is a propagation chain if:

∀i ∈ {1, 2, . . . , n},∃ ei, ei+1 ∈ P/


ei = (di−1, di,Mi−1,i),

ei+1 = (di, di+1,Mi,i+1)

∃(k, k′) ∈Mi−1,i ∧ ∃(k′, k′′) ∈Mi,i+1

We denote the set of propagation chains by T , which stands for trajectory. Con-
ceptually, each transition of a propagation chain must keep a common endpoint
(document di) and a common semantic endpoint (piece of information k′). Note
that T has the following property: if c = d0d1 . . . dn is a propagation chain of T ,
then ∀1 ≤ i < j ≤ n, c[i, j] = di . . . dj is also a propagation chain of T . Further-
more, we say that c[i, j] is a sub-chain of c.

3 An Approach To Propagation Chain Approximation

In this section, we assume known a corpus D. We denoted by TD the chains
only composed of documents from D. We do not explicitly know the informa-
tion pieces contained in documents. Instead, we have a similarity function sim
between documents. In order to compute a good approximation of TD, we con-
struct coherence metrics for propagation chains based on that similarity. Then,
we compute the chains that satisfy this metric up to a given threshold.

It seems reasonable that most of the propagation chains should be coherent
chains. We model the coherence using a metric, denoted by coh that assigns
a number between 0 and 1 to a chain. We say that a chain c is coherent if
coh(c) > 1− ε, with ε a given coherence threshold. In order to construct every
document chain satisfying our coherence criterion, we make use of the property
stipulating that if c is a propagation chain, then every sub-chain c is also a
propagation chain. Extending this proposition to coherent chains implies that
every sub-chain of c must satisfy our coherence criterion. This allows us to use a
dynamic programming approach. We define FinishIn(d) as the set of coherent



chains finishing by d. In order to finish in d, a document chain must be the con-
catenation (operator .) of a chain d′d and at most one chain from FinishIn(d′).
We can then construct the Candidates for d and the coherent chains Tcoh :

Candidates(d) =
⋃

d′/coh(d′d)>1−ε

{c.d/c ∈ FinishIn(d′) ∪ {d′}}

FinishIn(d) = {c ∈ Candidates(d)/coh(c) > 1− ε}

Tcoh =
⋃
d∈D

FinishIn(d)

We can solve this problem using a bottom-up strategy, starting from oldest
to newer documents, since a chain always respects the publication chronology.
This approach has some complexity issues due to the potentially exponential
number of coherent chains. For that purpose, we introduce a constant safeguard
threshold on the maximal number of coherent chains finishing in every document.
This ensures a linear memory complexity.

4 Experiments

We sampled two datasets of 150 documents. The first one comes from the Cita-
tion Network Dataset V1 AMINER5 constructed by [7]. This is mostly abstracts
from scientific papers extracted from ACM and DBLP. Our second dataset is
sampled from the full set of news articles posted on the US version of the Huff-
ington Post from 1st July to 30th November 2016. For document similarity, we
used a TFIDF cosinus similarity where we enriched the bag of words with n-
grams of size 2 to 4. For chain coherence, we used the minimal similarity and
the arithmetic mean of similarity between document pairs inside the chain. Three
different coherence thresholds are considered: 10%, 20% and 50%. It yields six
coherent chain sets for each dataset (81 and 149 chains to evaluate, respectively).

For the sake of annotation, we gathered experts who have a professional level
in English and a good knowledge of reading scientific papers. We spread chains
between experts such that every chain is at least evaluated twice and two experts
are not exposed to the same succession of chains. For each document chain, an
expert evaluates links between two successive documents (determining if there is
a strong, weak or no semantic link). Then, he evaluates sub-chains from the first
document to every other determining if it is strongly, weakly or not plausible
that some information propagated.

Agreement ratio is computed as the proportion of paired evaluations with
the same conclusion over the total number of paired evaluations. We speak of
presence if the chain or the link is annotated as strongly or weakly plausible.
Experts agreed on more than 70% cases on the semantic link presence for both
datasets and it exceeds 80% for the presence of a plausible chain. This result
reinforces the intuition that it is easier to reach a consensus when we have more
5 The full dataset can be obtained at: https://aminer.org/citation



context. This shows that experts can have an intuition of chain plausibility with
consistency, which means that detecting coherence in a chain is a feasible task.

Now, we label the annotation for each chain with five categories for both the
semantic link task and the chain plausibility task. Each category represents the
majority of annotations. Category 1 stands for strong intensity. Category
2 is for weak intensity. Category 3 stands for presence but with no intensity
agreement. Category 4 is for absence. Category 5 is finally for the case where
there is no majority agreement. Results on AMINER are good with nearly 70%
of plausible chains (Cat. 1, 2 and 3) and 75% of linked chains. On the other
hand, Huffpost results are much weaker. 64% of evaluated links are judged non-
existent and 75% of chains are judged non plausible. We will show that these
non relevant chains come from a low coherence threshold.

Annotated chains serve as a ground truth allowing us to compare different
coherence criterion. Studied similarity metrics are: TFIDF with a cosine sim-
ilarity; Doc2Vec with a cosine similarity, with vectors of size 20 learnt on the
dataset; RWR: a random-walk-based approach [8], parametrized with a 99%
restart probability. For the coherence, we use the arithmetic mean coherence
which is computed as the mean similarity between document pairs from the
same chain. We consider the coherence as a good discrimination function if there
is a small or even null intersection over coherence range (defined as the mean
plus or minus the standard deviation) for strongly plausible and non-plausible
chain categories. These intervals are presented in Fig. 2. On both datasets, the
Doc2Vec-based coherence is the most discriminating metric. Generally, strongly
and weakly plausible chains have higher coherence than non-plausible ones. For
Huffpost, the results explain the proportion of bad chains observed. A typical
HuffPost bad chain has a TFIDF based coherence under 0.2. It means that those
chains mostly come from the trajectory computed with a 0.1 coherence threshold.
These coherence metrics prove that capturing human judgment over document
chains is partly possible by using well-known similarities.

(a) TFIDF - Aminer (b) Doc2Vec - Aminer (c) RWR - Aminer

(d) TFIDF - HuffPost (e) Doc2Vec - HuffPost (f) RWR - HuffPost

Fig. 2: Mean and standard deviation for different document similarities by an-
notation category. A vertical line marks the absence category (Cat 4) overlap.



5 Conclusion

Considering the information propagation through trajectories over a textual doc-
ument network is a novel idea. An important advantage over other methods based
on the propagation graph lies in a better understanding of the history of infor-
mation propagation. We proposed an approximation of trajectory by coherent
chains that can be solved through dynamic programming. To qualify the com-
puted chains, we realised a human evaluation campaign. This campaign had two
benefits. First, we saw that human evaluations were consistent between them-
selves, which suggests that recognizing a plausible propagation chain is feasible.
Second, we used evaluations as a ground truth for testing different coherence cri-
terion. We saw that criterion based on well-known metrics succeed in capturing
human judgment. We consider this result as a first proof that this task may be
solved using an automatic process.

For future work, we plan to overcome the necessity of guessing a correct
coherence threshold. We also plan to automatically identify the pieces of infor-
mation that propagate along the chains. We foresight multiple use cases for a
good trajectory approximation. One use case is to easily navigate in the docu-
ment space for an analyst user by following an interesting subject flow, or to give
him a good understanding of the information flow by summing up chains into a
metromap of information. It may also be an interesting framework to study how
information pieces interact with each other along the chains.
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