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Abstract. Linguistic Networks are structures that allow us to model
the characteristics of human language through a graph-like schema. This
kind of modelization has proven to be useful while dealing with natural
language processing tasks. In this paper, we first present and discuss the
state of the art of recent semantic relatedness methods from a network-
centric point of view. That is, we are interested in the types of networks
used to solve practical semantic tasks. In order to address some of the
short-comings in the studied approaches, we propose a hybrid linguistic
structure that takes into account lexical and syntactical language infor-
mation. We show our model’s practicality with a proof of concept: we set
to solve word sense disambiguation and induction while using the pre-
sented network schema. Our modelization aims to shed light into ways
of combining distinct types of linguistic information in order to take
advantage of each of its components’ unique characteristics.

1 Introduction

Today, thanks to the global pervasiveness of the Web, we have access to large
quantities of open and collaborative sources of textual data. Nonetheless, all
this information, in the form of language units and related linguistic attributes,
requires a proper method for representation, querying and analysis while taking
into account the attribute of each unit within its local and global context. With
these requirements in mind, researchers have used language networks1 since a
long time [1] to model linguistic complex data. Indeed, a complex network allows
us to have a look at the information from both local and global perspectives.
However, it is not until recently, with the growth of computational power, that
we are able to exploit linguistic networks at a larger level. In short, in order
to extract useful knowledge from a linguistic network we need a representation
that can combine diverse kinds of language attributes (and the relations among
them), as well as facilitate the application of graph analytic algorithms.

1 In general, we use the term network and graph interchangeably. However, in some
cases we consider a network as being represented by a graph structure, among other
properties.



The characteristics of a linguistic network varies according to the necessities
of the natural language processing (NLP) task we are trying to solve. Still, we can
identify two general aspects: the type of network used to hold the information
and the algorithms applied on it to extract new insights. In this context, the
work presented in this article has two goals: (1) review recent linguistic network
models used to resolve semantic NLP tasks, and (2), propose a novel linguistic
network that addresses some of the structural limitations of the works studied.

Accordingly, we first provide a simplified and organized state of the art of
linguistic networks in the domain of Word Sense Disambiguation and Induction
(WSD and WSI). As we will find out, relatively few approaches go beyond using
classic lexical co-occurrence information as a source to discriminate contexts and
different senses of a word. It is our intuition that by leveraging different types
of linguistic relations we can obtain more pertinent results on a given semantic
task. In this sense, we propose a network model that is able to hold diverse
kinds of language information and allow for a simple manipulation of the data
contained in it. Using this schema, we perform a proof of concept to illustrate
the advantages of using such structures for the word sense disambiguation and
word sense induction tasks. In that respect, it is not our goal to compete against
the best systems for WSD and WSI described in the literature and which re-
quire tuning parameters most of the time. Our aim is rather to show that using
linguistic networks enables us to encode more fine-grained language information
that we could leverage to better address NLP tasks in comparison to basic lexical
co-occurrences information.

We organize the paper as follows, in Section 2 we introduce basic concepts
and in Section 3 we review network-based approaches to semantic-similarity
tasks specifically from a graph-centric view. In Section 4 we propose a linguis-
tic network based on hypergraphs. Next, we show the potential utility of such
network in Section 5. Finally, we present our conclusion and future research in
Section 6.

2 Background

Below we will delineate the preliminary concepts used throughout the rest of our
paper. We introduce the concept of linguistic network (or language network) as
well as the semantic tasks we are interested in.

Linguistic Network We define a Linguistic Network (LN) as a modelization of
the human language in terms of a graph structure. Usually, textual entities (e.g.,
letters, words, phrases) are linked together by means of grammatical or semantic
relations [2]. A network structure allows us to study the characteristics of said
relations in order to extract useful knowledge from them.

In this work we focus on two aspects of a linguistic network: the type of
LN, with regards to its contents, as well as the graph algorithms used over
the network to solve a given NLP task. In this work we concentrate on word-
semantics related tasks. Among these tasks, two that are highly popular are
word sense disambiguation and word sense induction and.



Word Sense Disambiguation (WSD) Given a target word tw, a context ct, and
a set mn containing possible meanings for tw, the goal of WSD is to determine
which signification corresponds to tw from the set mn according to the context ct.
This task is usually solved leveraging a dictionary or thesaurus that establishes
semantic links between word senses. This type of resource is also known as
Lexical Knowledge Base (LKB)2. A LKB can be defined as an ontology that
relates words according to their semantic relation. Two quintessential examples
of a LKB are the Wordnet semantic dictionary [3] and BabelNet [4].

Word Sense Induction (WSI) The methods employed to solve WSD are gen-
erally unsupervised, that is, they do not require an annotated corpus to infer
the appropriate sense for a given word. Nonetheless, a certain level of supervi-
sion can be distinguished on these approaches. Indeed, LKBs are, most of the
time, built using human supervision. In order to circumvent this constraint, re-
searchers have devised fully unsupervised techniques to automatically find the
senses mn of a word tw by leveraging a background corpus. Once the senses have
been induced, these approaches perform WSD. This task is named Word Sense
Induction (WSI).

3 State of the Art

According to their objectives, we can consider two types of contributions in the
linguistic-network literature [2]: on the one hand, there are those approaches that
investigate the nature of language via a graph representation, and on the other
hand, we find those that propose a practical solution to a given NLP problem.
In that regard we can cite the following survey papers [5,6,7,8].

This article focuses on the latter type of approaches. Moreover, we pay par-
ticular attention to two aspects of a given network-based technique: (1) the
characteristics of the linguistic data within the network, and (2), the algorithms
used to extract knowledge from it.

Once the LN modelization concept and the concerned tasks are introduced,
we move on to the content of our literature review. As we defined before, a LN
comprises two main characteristics: the type of language network and the nature
of the algorithms used in each network.

3.1 Types of Linguistic Networks

In the following paragraphs we introduce the general categories of LNs according
to their type of content and relations. We will introduce these categories as well
as the approaches that make use of them.

In [8] they define four types of LNs: co-occurrence network, dependencies net-
work, semantic network and similarity network. Meanwhile, from a deeper lin-
guistic point of view, [2] defines broader categories, each having several sub-types.

2 We note that in our context, a LKB has the same characteristics of a semantic
linguistic network. Thus, we employ both terms interchangeably.



The main difference (in our context) between both definitions lies in the separa-
tion of categories. In [2], they conflate syntactic-dependency and co-occurrence
networks into the same category: word co-occurrence networks. Similarly, they
join semantic and similarity networks together and place them inside a broader
category of lexical networks. The third family defined concerns phonological
networks which is out of the scope of this paper. In this work we will explore
five categories of linguistic networks: semantic, lexical co-occurrence, syntactic
co-occurrence and heterogeneous networks. The following sections will elucidate
what each kind of network represent, we will mention works that employ this
kind of networks and also list the main methodology differences that variate
from one approach to another.

Semantic Networks A Semantic Network (SN) relates words, or concepts, accord-
ing to their meaning. The classical example of a SN is the renowned knowledge
base Wordnet. This network, which serves also as an ontology, contains sets
of synonyms (called synsets) as vertices and semantic relations as their edges.
Typical semantic relationships include synonym-antonym, hypernym-hyponym,
holonym-meronym. However, other semantic similarities can be defined. The
edges are usually not weighted, although in some cases certain graph similarity
measures may be used.

Word sense disambiguation is indeed a task usually solved using semantic net-
works, specially Wordnet (and to lesser extent, BabelNet) [9,10,11,12,13] Given
an input text with a set of ambiguous target words to process, these approaches
follow a two-step algorithm:

1. Link target words (usually nouns, without stop-words and functional words)
with their corresponding sense (or synset in the case of Wordnet-like dictio-
naries) and extract their vertices and edges into a new, smaller, SN.

2. Apply a node ranking technique, usually a random walk based method, and
select, for each ambiguous word in the input text, its top ranking synset
node as the correct sense.

Lexical Co-occurrence Networks Most co-occurrence based intuitions in NLP
have their origin in the distributional hypothesis [14]. The idea is resumed by the
well know phrase ”a word is characterized by the company it keeps” [15]. That is
to say, words with similar neighbor words (or contexts) tend to be semantically
similar.

This intuition has been exploited deeply in NLP. One of the most effective
ways of representing word co-occurrences is by means of a graph structure. In-
deed, this kind of graphs are the central column of a Lexical Co-occurrence
Network (LCN). In these structures, nodes represent words and edges indicate
co-occurrence between them, i.e., two words appear together in the same con-
text. A context can vary from a couple of words (before or after a given word)
to a full document, although it is usually defined at sentence level. The edges’
weight represent the strength of a link and is generally a frequency based metric
that takes into account the number of apparitions of each word independently
and together.



To solve a task in a completely unsupervised way, researchers generally use
this kind of networks instead of LKBs. It is then natural that word sense dis-
ambiguation approaches leverage lexical co-occurrence networks, and in return,
the distributional hypothesis, to automatically discover senses for a given target
word. That is why WSI methods [16,17,18] are tightly related to LCNs. The
cited works use a LCN as described before while other works such as [12,19]
represent the co-occurrence by means of a hypergraph schema. In short, a hy-
pergraph structure is a graph generalization where an edge (called hyperedge)
can link multiple vertices per edge and thus it is able to provide a more complete
description of the interactions between several nodes [20].

WSI systems generally perform four steps. Given an input text with a set
of target words and their contexts (target words must have several instances
throughout the document to cluster them), the steps are the following:

1. Build a LCN, assigning tokens as nodes and establishing edges between them
if they co-occur in a given context (usually if they both appear in the same
sentence).

2. Determine the weights for each edge according to a frequency metric.
3. Apply a graph clustering algorithm. Each cluster found will represent a sense

of the polysemous word.
4. Match target word instances with the clusters found by leveraging each target

word context. Specifically, assign a cluster (a sense) to each instance by
looking at the tokens in the context.

Syntactic Co-occurrence Networks A Syntactic Co-occurrence Network (SCN) is
very similar to a LCN in the sense that both exploit the distributional hypothesis.
Nonetheless, SCNs go further by leveraging syntactic information extracted from
the text. There are two main types of syntactic information both represented
as tree structures: constituency-based parse trees and dependency-based parse
trees. Briefly, the former structure splits a phrase into several sub-phrases. In this
way we can get a glimpse of the role of each word inside a phrase. The latter tells
us about the relationships existing between words in the phrase. SCNs employ,
most of the time, dependency trees to create a graph that relates words according
to their syntactic relations. In the case of [21], a graph is built using syntactic
dependencies. It is used to perform WSI using a very similar approach as those
systems using LCNs. We note that approaches based on SCNs are scarcely used
in WSD or WSI systems, and therefore they are an interesting research avenue
to explore.

4 Heterogeneous Linguistic Network: Our Proposal

In the previous section we have mentioned two disadvantages found in the lan-
guage networks covered in Section 3. Namely, the lack of syntactic information
and the homogeneous nature of the networks. In this section we propose a lan-
guage network that, at this point of our research, addresses both of these con-
cerns. Building upon previous linguistic representations [17,22,19], our model



is based on the use of a hypergraph. Hypergraphs have been employed in the
literature to model complex systems. Their single most important difference,
being able to relate more than two vertices at the same type, allows for a better
characterization of interactions within a set of individual elements (in our case,
words) [23].

Indeed, our hypergraph modelization integrates four types of relations be-
tween tokens: sentence co-occurrence, part-of-speech tags, words’ constituents
data and dependency relations in a single linguistic structure. We group words
together according to the these features.

Formally, a hypergraph is a generalization of a graph defined as a tuple
G = (V,E), where the vertices V = {v1, v2, ..., vn} represent the set of nodes
and E = {e1, e2, ..., em} the set of hyperedges which contain links between one
or more vertices [24].

In our case, the set of tokens in the corpus are the set of nodes V , and the
set of hyperedges E represent the relations between nodes according to different
linguistic aspects. Each hyperedge may be one of three types: noun phrase3

constituents (CONST ), dependency relations (dep), or sentence context (SEN ).
We consider that a token v belongs to a hyperedge of type NP or SEN if the token
appears in the same noun phrase or in the same sentence. A token v belongs
to a hyperedge of type DEP if it is the dependent of a certain dependency
relation coupled with its corresponding head (or governor). The hypergraph can
be represented as a n ×m incidence H matrix with entries h(i, j) = N(vi, ej)
where N(vi, ej) is the number of times vi ∈ ej occurs in the corpus.

We illustrate our hypergraph incidence matrix with the following example
phrase: The report contains copies of the minutes of these meetings.. We tokenize
the phrase, keeping all the words, and we lemmatize and parse it to obtain both
constituency and dependency trees.

The constituency tree of the example phrase is shown in Figure 1. The sen-
tence, as well as each noun phrase (NP) node is identified by a number. We
can observe that this phrase is composed by five noun phrases (NP) and one
verb phrase. Meanwhile, some of the NPs are formed by other kind of phrases,
depending on the grammar production rule used to build each one of them. As
is usual in this kind of structures, there is a one to one relation between the
number of tokens in the sentence and the number of leaves in the tree.

The dependencies of the example phrase are shown in Table 1. They indicate
the syntactic relation between the governor of a phrase and a dependent. In
these relations’ examples, the head is the first token to appear followed by the
dependent word.

From both of these types of information we can build a hypergraph repre-
sentation as stated before. The incidence matrix is illustrated in Table 2. For
brevity, we only show nouns as well as only the first three noun phrases and the
nominal subject (nsubj ) and direct object (dobj ) dependency relations. Looking
at the table, we can therefore infer that the word copies appears in two hyper-

3 In this work we consider only noun phrases (NPs). Still, we can easily add other
type of phrase chunks.
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Fig. 1. Constituency-based tree of the phrase The report contains copies of the
minutes of these meetings.

Table 1. Dependency relations of the example phrase.

root(root, contains) det(minutes, the)
det(report, The) nmod(copies, minutes)
nsubj(contains, report) case(meetings, of)
dobj(contains, copies) det(meetings, these)
case(minutes, of) nmod(minutes, meetings)

edges of type CONST: NP2, which is built from a NP, and two prepositional
phrases (PP). Also, we see that it is part of NP3, which indicates a plural noun
(NNS). Regarding the syntactic dependency hyperedges, the word copies appear
in the dobj contains column which indicates the copies was indeed the direct ob-
ject of the verb contains, Finally, we can know that copies appeared in the same
sentence S1 as the other four noun words.

Table 2. Incidence matrix of the example phrase hypergraph modelization.

CONST DEP SEN

NP1

DT:NN
NP2

NP:PP:PP
NP3

NNS
nsubj

contains
dobj

contains
S1

NN

report 1 1 1
contains 1
copies 1 1 1 1
minutes 1 1
meetings 1 1



5 Proof of concept: Word Sense Induction and
Disambiguation

In this section we carry out a proof of concept experiment to verify the potential
of our proposed network modelization. We use the task of word sense induc-
tion and disambiguation as an application context for our procedure. As stated
before, we do not aim to create a system able to beat the reviewed WSD or
WSI techniques. Instead, our goal is to show that using other kinds of language
information we can improve the results of those obtained while using classic
lexical co-occurrence, and thus emphasize the utility of using diverse linguistic
information, in our case through a language hypergraph structure.

5.1 Methodology

The task is the following: we are given a document d with several target words
tw and multiple paragraph instances for each tw. We consider each of these
paragraphs as the context ct of a target word tw. The goal is to first automatically
determine a set of senses for a given tw (WSI), and then assign one meaning to
each of its instances (WSD).

As described before, WSI (including WSD) is usually solved following four
steps: (1) creation of a linguistic network, (2) determine the level of similarity
between nodes within the network, (3) cluster nodes together, thus creating
individual senses, and (4) assign a cluster (sense) to each instance of a target
word in the input document.

In our process, we follow a similar approach to those used in [16,17]. In short,
these methods build a network of lexical co-occurrence with a background corpus
and then exploit the real-world characteristics of said networks by theorizing
that there are certain important nodes (called hubs) that carry a significant role
among the words contained in the network and therefore may represent, coupled
with their neighbors, a sense for a given target word.

In our approach, we generate a network for each tw and the high-degree
nodes found inside this network ideally represent a tw sense. As presented in the
previous sections, we use a hypergraph structure, similar to the one used in [17]

Creation of the linguistic network In the previous sections we worked with the
English Wikipedia as background corpus to build and model our proposed lin-
guistic network. Given the large size of Wikipedia, and to iterate faster our exper-
iments, we decided to change the corpus to one with a more manageable size. We
use the Open American National Corpus (OANC) [25] as background document
collection to build a hypergraph network GH following our proposed model. The
OANC includes texts from several domains and encompasses 11,406,155 words.
We split the documents in the corpus in sentences, then we tokenize and parse
them with Stanford’s CoreNLP [26]. As described before, the dependency and
constituency tree are used to build the hypergraph: words are depicted by nodes,
and they may exist inside any of the three different types of hyperedges defined:
sentence, noun phrase or dependency contexts. If any hyperedge is repeated



through the corpus, we increment a counter and keep the number of apparitions
instead of adding redundant columns to the hypergraph incidence matrix.

At each step, that is, for each tw in the input document, we extract a sub-
graph Gtw from GH that contains all the words that appear together with tw
(line 2), whether by lexical or syntactic co-occurrence. The tw is removed from
Gtw. In this approach we focus specifically on dependency relations and lexical
co-occurrence.

Computing similarity between nodes In order to computationally treat Gtw, we
first induce a bipartite graph Btw = (U,W,E) from Gtw (line 3). The set of left
nodes U represent words and the set of right nodes W depicts the membership
to a given hyperedge. Thus, we have as many nodes in W as we had hyperedges
in GH .

We compute the Jaccard index between each node ni, nj ∈ U as Jaccard(i, j) =
|N(i)∩N(j)|
|N(i)∪N(j)| , N(j) being the neighbors of nj . We use this metric in order to build

a |U | × |U | similarity matrix Stw (line 4). We induce from Stw a new filtered
hypergraph incidence matrix Ftw (line 5), which contains word nodes as rows
and columns as hyperedges. Each of these hyperedges represent a set of words
that are deemed similar between them according to their Jaccard index value,
which must be equal or higher than an assigned threshold th1 .

Clustering words together Once the incidence matrix Ftw is built we can proceed
to induce senses for a target word by clustering words (vertices) together. First,
we calculate the degree of each node ni ∈ Ftw. The degree of a node is simply
the number of hyperedges it is incident in. Nodes are sorted in descending order
and evaluated one by one. Each node is considered as a candidate sense hub
(line 6). We accept or reject a node n ∈ Ftw as a sense carrying word according
to two thresholds: th2 and th3. The former (line 9) is the minimum degree a
node must have, which is automatically determined by taking into account a
node if it is degree is superior to the 85th percentile among all the calculated
degrees. The latter (from line 11 to 17) sets a minimum limit to the average of the
Jaccard similarities between each pair of neighbors of node n ∈ Ftw, within each
hyperedge n belongs to. Formally, for a node n, we define the average Jaccard
measure as:

AvgJaccard(n) =
1

|hedges(n)|
∑

h∈hedges(n)

∑
i∈h

j∈h;i 6=j
Jaccard(i, j)

|h|

where hedeges(n) is the set of hyperedges n is incident in and its cardinality is
defined as |hedges(n)|. |h| is the number of nodes in hyperedge h.

If node n satisfies both thresholds th2 and th3, it is deemed as a sense pur-
veyor and all its neighbors (words that appear in the same hyperedges as n) are
conflated into a single set representing a tw sense. This new sense is added to
SoStw (line 17). The sense set is then removed from Ftw.



The process is repeated until no more nodes satisfy both boundaries. When
the process is complete, we obtain a set of senses SoStw where each set contains
words that ideally represent a unique meaning for each target word.

Sense assignation The assignation of a sense consists in looking at each tw
instance represented by a context ct and simply determining which sense s in
SoStw shares the highest amount of words with ct. The sense s is thus assigned
to that instance. If two senses in SoStw share the same amount of words with
ct, one of them is randomly chosen. This operation is repeated for each instance
of each target word.

Algorithm 1: Pseudo-code of our WSD/WSI network-based approach

Input: A set tw set = {tw1, tw2, ..., twn} of target words. A background
linguistic network GH . Filtering thresholds th1, th2, th3

Output: A set SoStw of senses for each target word
1 foreach target word tw in tw set do
2 Gtw = extract subgraph(GH , tw);
3 Btw = induce bipartite graph(Gtw);
4 Stw = sim matrix(Btw);
5 Ftw = induce hypergraph(Stw, th1 );
6 candidate hubs = sort(degree(Ftw));
7 SoStw = [ ];
8 foreach candidate hub in candidate hubs do
9 if degree(candidate hub) < th2 then

10 continue;
11 candidate hyperedges = get hyperedges(candidate hub, Ftw);
12 candidate avgjaccard = 0;
13 foreach hyperedge in candidate hyperedges do
14 candidate avg jaccard += get avg jaccard(hyperedge);
15 end
16 if candidate jaccard > th3 then
17 SoStw.add(get words(candidate hyperedges));
18 Ftw = Ftw \ candidate hyperedges;

19 end
20 return SoStw

21 end

5.2 Experiments and Results

The objective of this proof of concept is to show the advantages of using syntactic
co-occurrence information compared to simple lexical co-occurrence. To this end,
we solve the word sense induction and disambiguation tasks using the method
described in the previous subsection. We create two independent systems: lex,
which uses lexical co-occurrence hyperedges, and dep, which employs syntactic
dependency hyperedges.



As evaluation dataset, we employ the data provided for Task 02 of Semeval-
2007 [27] which evaluated word sense induction systems. The data consists on
100 target words4 (65 verbs and 35 nouns), each target word having a set of
paragraph contexts where it appears. From the available performance assessing
techniques, supervised and unsupervised, we are interested in the unsupervised
evaluation, which is rated using the F-score produced by an evaluation script.
We also modify it to obtain also the precision and recall measures to build a
precision-recall curve.

Each type of language information has its own characteristics. The sub-
network formed by sentence hyperedges tends to have a much smaller number
of nodes (words) than those of the dependency type. This make sense as sen-
tences usually contain a few words, meanwhile a dependency hyperedge may
incorporate upwards to hundreds of words that are related to a word by the
same dependency relation. These characteristics affect the similarity between
vertices and thus drove us to set the threshold (th1 and th2 ) values for lex and
for dep in function of the percentile of the node’s degree and similarity values
distributions, respectively.

This leaves only one threshold left, th3. We experiment with two different
ranges of values, one for each system. For dep we set the range [0.3, 0.65] with
a step of 0.05. For lex we set [0.01, 0.08] with a step of 0.01. These ranges were
chosen experimentally with two constraints in mind: (1) lower threshold values
usually gave the same results5 as those already included in our ranges, and
(2) higher threshold values forced the system to either give only one sense per
word (resulting in the most frequent baseline), or even worse, not accepting any
sense, thus having a null solution. Again, we evaluate our systems by means of
the (unsupervised) F-score and a precision-recall curve which provides a deeper
analysis of the performance of each system while considering the variation of
threshold th3.

The F-score of both systems, and the average number of clusters (senses)
produced, is shown in Figure 2. Indeed, in our experiment, the dependency
based model dep preformed better than lex using classic lexical co-occurrence.
We include the result of the uoy system [17] as a similar-method benchmark.
In uoy, two background corpora are also used to build a linguistic network of
lexical co-occurrences. One of the corpus is the same as the one we used to
evaluate. This allows their system to induce the exact senses used in each target
word instance. While this is a practical idea, we, by using a large, multiple-
domain corpus, are able to induce word senses that may not even be used in the
Semeval dataset. Concerning the thresholds, we use percentiles to automatically
adapt to the characteristics of the hyperedges, as the lexical and dependency
co-occurrences hyperedges behave differently within the linguistic network.

In Figure 3 we appreciate that even while using different threshold values, we
achieve, in general, better recall and precision by using syntactic dependencies.

4 We note that for this experiment we worked solely with nouns.
5 Still, some of the values used produced equal results and thus are not visible in

Figure 3.



System
Nouns
FSc.

Nb.
Clusters

dep 80.6 1.200
lex 79.5 1.257
uoy 65.8 11.28

Fig. 2. Best F-scores obtained for both
our methods on Task 02 of Semeval-
2007, using lexical (lex) and syntactic
dependency (dep) co-occurrences.
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Fig. 3. Precision-Recall curve for lex
and dep systems. To improve visibil-
ity, we focused the scale on the curves.

It must be noted that this particular Semeval task was dominated by the most
frequent sense with an F-score of 80.7, assigning an average of one sense per
target word. Our solutions assign an average of 1.257 and 1.200 for lex and dep
respectively.

Based on our proof of concept experiment, we confirm that using syntactic
dependencies in order to disambiguate word senses improves can improve the
results when compared with regular lexical co-occurrence approaches.

6 Conclusion and future work

In this paper we analyzed the state of the art of linguistic network-based ap-
proaches to semantic similarity task from a graph-centric point of view. We re-
viewed the techniques in terms of its graph characteristics, from their structure
to the algorithms employed. Among the literature covered, certain non-explored
research paths were identified, namely the lack of syntactic data on the net-
works employed, and therefore, a homogeneous network nature that only allows
for relations of a unique type.

We addressed with the proposition of a hypergraph linguistic model that is
able to hold heterogeneous language information. We believe that this structure
allows the integration multiple kinds of information and has vast potential in
terms of which algorithms it can be used with. Our model was tested in a word
sense induction proof of concept experiment and found interesting and encour-
aging results. Again, we note that the approach proposed to solve word sense
disambiguation and induction is a proof of concept and as encouraging as the
results are, we still need to improve the system in order to compete with the
best solutions in the state of the art.

As future work, we are currently extending our algorithm to properly combine
the different types of information within our model. We would like to test other



kind of graph inductions (instead of transforming the hypergraph into a bipartite
graph), or even better, use the incidence matrix of the hypergraph to calculate
custom similarity metrics. In this same context, we believe that a deep analysis
on the semantic meaning of different types of similarities (and their magnitudes)
between words is needed to better determine which metric to use in a specific
context. Finally, we also plan to address other NLP domains with our hypergraph
model, notably information extraction problems.
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