
1

Chapter 2

Web multiform data structuring for warehousing

J. Darmont, O. Boussaid, F. Bentayeb, S. Rabaseda, and Y. Zellouf
ERIC, Université Lumière Lyon 2, France

Abstract: In a data warehousing process, the data preparation phase is crucial. Mastering
this phase allows multidimensional analysis or the use of data mining
algorithms, as well as substantial gains in terms of time and performance when
performing such analyses. Furthermore, a data warehouse can require external
data. The web is a prevalent data source in this context, though the data
broadcasted on this medium are very heterogeneous.

In this chapter, we propose a modeling process for integrating all these
diverse, heterogeneous data into a unified format. Furthermore, the very
schema definition provides first-rate metadata in our data warehousing
context. At the conceptual level, a complex object is represented in UML as a
superclass of any useful data source (databases, plain or tagged texts, images,
sounds, video clips, etc.). Our logical model is an XML schema that can be
described with a DTD or the XML-Schema language. Eventually, we have
designed a Java prototype that transforms our multiform input data into XML
documents representing our physical model.

Then, the XML documents we obtain are mapped into a relational database.
We view this database as an ODS (Operational Data Storage), whose data will
have to be re-modeled in a multidimensional way to allow their storage in a
warehouse and, later, their analysis.

Key words: Web farming, Multiform data, Integration, Modeling process, UML, XML,
Mapping, Data warehousing, Data analysis

2 Chapter 2

1. INTRODUCTION

In the context of e-commerce, analyzing the behavior of a customer, a
product, or a company consists in monitoring one or several activities
(commercial or medical pursuits, patent deposits, etc.). The objective of
multidimensional analysis, particularly OLAP (On-Line Analytical
Processing), is to analyze such activities under the form of numerical data.
The information is summarized and can be presented as relevant information
(i.e., knowledge) allowing to couple OLAP with other analysis tools such as
KDD (Knowledge Discovery in Databases) techniques (namely, data
mining), whose objectives include understanding and predicting the behavior
of one or several activities. Hence, the scope of analysis can be extended.

To be efficient in terms of quality and response time, analysis tools need
their input data to be properly structured, acquired, and prepared in a
previous step. These data are typically stored in databases aimed at decision
support (such as data warehouses) that we call Decision Support Databases
(DSDBs). These databases often necessitate external data sources. For
instance, a company willing to support competitive monitoring cannot
merely analyze only data from its own production databases. In this context,
the web may be considered as a farming system (Hackathorn, 2000)
providing input to a data warehouse. However, the data broadcasted on this
medium are very heterogeneous and are not in a form suitable for data
warehousing. A process of refining must be performed on such data before
they can be loaded into a data warehouse. This renders their
conceptualization in a data warehousing framework difficult. Nonetheless,
the concepts of data warehousing (Kimball, 1996; Inmon, 1996; Chaudhuri
and Dayal, 1997) remain valid in this approach (Thuraisingham, 2001).
Measures, though not necessarily numerical, remain the indicators for
analysis, and analysis is still performed following different perspectives
represented by dimensions. Large data volumes and their dating are other
arguments in favor of this approach (Kimball and Mertz, 2000).

The web then becomes a full data source. Data from the web may be used
to consolidate the description of facts already warehoused by adding new
values to a dimension, or by creating new dimensions or new fact tables to
broaden the scope of analysis. Multiform data may also be loaded into the
warehouse to be later analyzed with either OLAP or data mining techniques.
This raises several issues:
– structuring multiform data from the web — databases, plain texts,

multimedia data (images, sounds, video clips...), semi-structured data
(HTML, XML, or SGML documents) — into a database;

– integrating these data into the particular architecture of a data warehouse
(fact tables, dimension tables, data marts, data cubes);

2. Erreur ! Style non défini. 3

– devising evolution strategies for the warehouse when new data pop up;
– physically reorganizing data depending on usage to improve query

performance.
The aim of this chapter is to address the first issue and to expand the

preliminary results presented in Miniaoui, Darmont, and Boussaid, 2001. We
propose a modeling process for integrating the multiform data we need to
store in a DSDB. We first designed a unified UML (OMG, 1999) conceptual
model for a complex object representing a superclass of these data. Note that
our objective is not only to store data, but also to truly prepare them for
analysis. This is not a mere ETL (Extracting, Transforming, and Loading)
task, which would only render data names and domains consistent. Then, we
translated our UML conceptual model into an XML (Bray et al., 2000)
schema definition that represents our logical model. Eventually, this logical
model is instantiated into a physical model that is an XML document. The
XML documents we obtain with the help of a Java prototype are mapped
into a (MySQL) relational database with a PHP script. This database
represents an ODS (Operational Data Storage), which is a temporary data
repository that is typically used in an ETL process before the data warehouse
proper is constituted.

The reasons why we selected XML as a pivot formalism are numerous.
First, XML encapsulates both data and their schema, either implicitly or in a
schema definition. This representation is also found in data warehouses,
which store both data and metadata that describe the data. Hence, XML is
particularly adapted for our purpose. Moreover, we benefit from the
flexibility, the extensibility and the richness of the semi-structured data
model. And since XML documents can easily be mapped into a conventional
(e.g., relational) database (Anderson et al., 2000; Kappel, Kapsammer, and
Retschitzegger, 2000), we also take advantage of well-structured data and
query processing efficiency. Furthermore, XML-based databases like Lore
(McHugh et al., 1997) are quickly expanding, and we could easily switch to
such systems if needed. Hence, we get the best of both worlds (the structured
and the semi-structured) by adopting the XML format.

The remainder of this chapter is organized as follows. Section 2
establishes a state of the art in the fields we studied before proposing our
solution: federated, multimedia, and text databases (from an integration
perspective), web collections, XML mapping, and XML querying. Section 3
presents our unified conceptual model for multiform data. Section 4 outlines
how this conceptual model is translated into a logical, XML schema
definition. Section 5 details how our input data are transformed into an XML
document representing our physical model and presents examples of how
our Java prototype transforms the data. The issue of mapping the obtained

4 Chapter 2

XML documents in a relational database is also addressed. We finally
conclude the chapter and discuss future research issues in Section 6.

2. RELATED WORK

2.1 Data integration

We identified three main ways to integrate heterogeneous data into a data
warehouse. The first approach relates to federated databases (Hsiao, 1992a;
Hsiao, 1992b; Busse et al., 1999; Bertino, Catania, and Zarri, 2001).
Federated databases are distributed and heterogeneous databases constituted
from data sources of various natures: different kinds of databases (object,
relational, object-relational...), HTML or XML documents, and so on.
However, they must provide users with an integrated view of the data. The
casual architecture for a federated database is layered in three levels:
– presentation: components allowing to formulate queries in the federated

database language;
– mediation: mediators in charge of collecting queries issued by users in

the presentation components and translating them in the proper language
of each data source;

– adaptation: components allowing communication between data sources
and mediators.
The second approach consists in capturing the common characteristics of

the different data types we need to integrate. In order to propose a unified
data model, we took interest in how data is structured, stored, and indexed in
textual and multimedia databases. Indexing strategies in textual databases
include reversed lists of significant terms with their frequency of appearance
in each document, signatures obtained by hashing keywords, and relative
frequency matrix of words present in a set of documents (Rakow, Neuhold,
and Löhr, 1995). Multimedia databases may adopt the following
characteristics to index images: signatures derived from (manually captured)
visual descriptors describ ing the image, color, texture or brightness
distributions, etc. Eventually, video and audio data are handled in a similar
way. They are typically described by texts and metadata regarding the
content of the frames constituting the continuous document. They may also
be described by sample frames (Thuraisingham, 2001).

The last approach concerns metadata and relates to web collections
(Hopmann, Berkun, and Hatoun, 1997). Web collections are an XML
application that describes the properties of objects in a common metadata
format and provides a hierarchical structure for the data to describe.

2. Erreur ! Style non défini. 5

Therefore, each collection corresponds to a set of metadata. The mainspring
of web collections is a good basis for the development of a core set of
metadata. The main goal for defining such a common metadata set is the
multiplicity of possibilities for fielded searches as well as for sorting and
filtering results from a database. To each collection corresponds a specific
profile that specifies an identifier for the collection (e.g., a WebPage profile
would state that a collection is a web page) and properties such as the page
title and the author name. In short, a collection is simply an association of
field names to values. This description may be in a separate document or
enclosed inside the original HTML document (a block of XML code may
appear anywhere inside the HTML document enclosed between <XML>
</XML> tags).

2.2 XML Mapping

Semi-structured data such as XML documents are characterized by the
lack of any fixed schema, although the data have some implicit structure.
The main problem is to uncover this structure. Semi-structured data are
typically stored in file systems that provide limited support for organizing,
searching, and operating them. Current database systems are inappropriate
for semi-structured information because they require the data to be translated
into their data model.

On the other hand, XML provides many database functions: storage,
schemas, query languages, programming interfaces, etc. However, it lacks
many of other important tools found in true databases: efficient storage,
indices, security, transactions and data integrity, multi-user access, triggers,
queries across multiple documents, etc.

There are three possible approaches to store semi-structured data:
– build a special-purpose database system such as the research prototypes

Rufus (Shoens et al., 1993), Lore (McHugh et al., 1997), and Strudel
(Fernandez et al., 1998); or the commercial product Lotus Notes1;

– exploit the rich data modeling capabilities of object-oriented database
system (Christophides et al., 1994; Zwol, Apers, and Wilschut, 1997);

– map XML data into relational tables (Anderson et al., 2000; Kappel,
Kapsammer, and Retschitzegger, 2000).
In theory, special purpose-systems should work best, but in practice, they

are not mature yet. Current object-oriented systems perform poorly when
evaluating queries on very large databases. Relational database systems are
mature and scale very well. Moreover, in a relational database, XML data
and traditiona l structured data can co-exist. However, the requirements for

1 Lotus Notes homepage: http://www.lotusnotes.com

6 Chapter 2

processing XML data are different from the requirements for processing
traditional data. Recent work has concentrated on models and algorithms to
extract schemas from XML documents (Nestorov, Abiteboul, and Motwani,
1998).

2.3 XML query languages

The role of an XML query language is to allow an application to extract
precisely the information it needs from one or several XML data sources
through structural and content-based queries (Deutsch et al., 1999b). XML
data are fundamentally different from relational and object-oriented data.
Hence, neither SQL nor OQL is appropriate for XML querying. In database
models, every data instance has a schema that is separate and independent.
In XML, the schema coexists with the data as tag names. XML is self-
describing and can naturally model irregularities that cannot be modeled by
relational or object-oriented data (Deutsch et al., 1999a).

Two approaches are drawn: (1) consider a repository of XML data, where
XML documents constitute a database; or (2) store XML documents in a
relational database, where XML data are shredded into rows in relational
tables. Semi-structured query languages help querying the data stored in
XML documents. They include X-Query (Fernandez, Marsh, and Nagy,
2001), XML-QL (Deutsch et al., 1999a; Deutsch et al., 1999b), Lorel
(Abiteboul et al., 1997), which is an extension of OQL, XQL (Robie, Lapp,
and Schah, 1998), proposed by the W3C, which uses path expressions for
navigating in the XML nested structure, XML-GL (Ceri et al., 1999), which
is a graphical query language, and WEBL, which is a scripting language for
HTML and XML documents with a markup algebra.

On the other hand, to query XML documents mapped into a relational
database, semi-structured queries (specified in a semi-structured query
language) over XML document must be translated into SQL queries over the
corresponding relational tables, and the results must be converted back to
XML (Florescu and Kossmann, 1999; Shanmugasundaram, 1999;
Shanmugasundaram, 2001). For example, the STORED approach uses a
combination of relational and semi-structured techniques (Deutsch,
Fernandez, and Suciu, 1999).

3. UML CONCEPTUAL MODEL

The data types we consider (text, multimedia documents, relational views
from databases) for integration in a data warehouse all bear characteristics
that can be used for indexing. The UML class diagram shown in Figure 1

2. Erreur ! Style non défini. 7

represents a complex object generalizing all these data types. Note that our
goal here is to propose a general data structure: the list of attributes for each
class in this diagram is willingly not exhaustive.

PLAIN TEXT
SOUND VIDEO

COMPLEX OBJECT
Name
Date
Source

LANGUAGE
Name

KEYWORD
Term

*

*

*

*SUBDOCUMENT
Name
Type
Size
Location

*

*

*

*

0..1

*

0..1

*

** **

IMAGE
Format
Compression
Width
Length
Resolution

ATOMIC VALUE
Value

TUPLE

RELATIONAL VIEW
Query

*

*

*

*
ATTRIBUTE

Name
Domain** **

*

*

*

*

TEXT
Nb_char
Nb_lines

TAGGED TEXT
Content

LINK
URL

*

*

*

*

CONTINUOUS
Duration
Speed

Figure 1. Multiform conceptual model

A complex object is characterized by its name and its source. The date
attribute introduces the notion of successive versions and dating that is
crucial in data warehouses. Each complex object is composed of several
subdocuments. Each subdocument is identified by its name, its type, its size,
and its location (i.e., its physical address). The document type (text, image,
etc.) will be helpful later, when selecting an appropriate analysis tool (text
mining tools are different from standard data mining tools, for instance). The
language class is important for text mining and information retrieval
purposes, since it characterizes both documents and keywords.

Eventually, keywords represent a semantic representation of a document.
They are metadata describing the object to integrate (medical image, press
article...) or its content. Keywords are essential in the indexing process that
helps guaranteeing good performances at data retrieval time. Note that we
consider only logical indexing here, and not physical issues arisen by very

8 Chapter 2

large amounts of data, which are still quite open as far as we know.
Keywords are typically manually captured, but it would be very interesting
to mine them automatically with text mining (Tan, 1999), image mining
(Zhang, Hsu, and Lee, 2001), or XML mining (Edmonds, 2001) techniques,
for instance.

All the following classes are subclasses of the subdocument class. They
represent the basic data types and/or documents we want to integrate. Text
documents are subdivided into plain texts and tagged texts (namely HTML,
XML, or SGML documents). Tagged text are further associated to a certain
number of links. Since a web page may point to external data (other pages,
images, multimedia data, files...), those links help relating these data to their
referring page.

Relational views are actually extractions from any type of database
(relational, object, object-relational — we suppose a view can be extracted
whatever the data model) that will be materialized in the data warehouse. A
relational view is a set of attributes (columns, classically characterized by
their name and their domain) and a set of tuples (rows). At the intersection of
tuples and attributes is a data value. In our model, these values appear as
ordinal, but in practice they can be texts or BLOBs containing multimedia
data. The query that helped building the view is also stored. Depending on
the context, all the data can be stored, only the query and the intention
(attribute definitions), or everything. For instance, it might be inadequate to
duplicate huge amounts of data, especially if the data source is not regularly
updated. On the other hand, if successive snapshots of an evolving view are
needed, data will have to be stored.

Images may bear two types of attributes: some that are usually found in
the image file header (format, compression rate, size in pixels, resolution),
and some that need to be extracted by program, such as color or texture
distributions.

Eventually, sounds and video clips are part of a same class because they
share continuous attributes that are absent from the other (still) types of data
we consider. As far as we know, these types of data are not currently
analyzed by mining algorithms, but they do contain knowledge. This is why
we take them into account here (though in little detail), anticipating advances
in multimedia mining techniques (Thuraisingham, 2001).

4. XML LOGICAL MODEL

In a data warehouse, data come with metadata that describe their origin,
the rules for transformations they may have undergone, and information
regarding their usage (Wu and Buchmann, 1997). Identically, multiform data

2. Erreur ! Style non défini. 9

modeled as complex objects may be viewed as documents. It is then
necessary to consider two kinds of data: data themselves and sets of
information pieces, such as descriptive data that allow their identification, or
status data describing their semantics.

The use of XML as an implementation tool for multiform data (i.e.,
complex objects) viewed as documents seems natural. This language indeed
helps representing both the description and the content of any document.
Within a modeling process, the translation of UML classes representing
multiform data into XML constitutes a logical formalization phase. The
obtained logical model can be as well mapped in a relational or object-
relational database as stored in a native-XML database.

When integrating multiform data, we adopt a classical information
system modeling process: first devise a conceptual model, and then translate
it into a logical model. The UML class diagram from Section 3 is our
conceptual model. We consider XML as a fine candidate for logical
modeling.

The UML model can indeed be directly translated into an XML schema,
whether it is expressed as a DTD (Document Definition Type) or in the
XML-Schema language (Fallside, 2001). We considered using XMI (Cover,
2001) to assist us in the translation process, but given the relative simplicity
of our models, we proceeded directly.

The schema we obtained, expressed as a DTD, is shown in Figure 2. We
applied minor shortcuts not to overload it. Since the LANGUAGE,
KEYWORD, LINK, and VALUE classes only bear one attribute each, we
mapped them to single XML elements, rather than having them be composed
of another, single element. For instance, the LANGUAGE class became the
LANGUAGE element, but this element is not further composed of the Name
element. Eventually, since the ATTRIBUTE and the TUPLE elements share
the same sub-element "attribute name", we labeled it ATT_NAME in the
ATTRIBUTE element and ATT_NAME_REF (reference to an attribute name)
in the TUPLE element to avoid any confusion or processing problem.

<!ELEMENT COMPLEX_OBJECT (OBJ_NAME, DATE, SOURCE, SUBDOCUMENT+)>
 <!ELEMENT OBJ_NAME (#PCDATA)>
 <!ELEMENT DATE (#PCDATA)>
 <!ELEMENT SOURCE (#PCDATA)>
 <!ELEMENT SUBDOCUMENT (DOC_NAME, TYPE, SIZE, LOCATION, LANGUAGE?,
 KEYWORD*, (TEXT | RELATIONAL_VIEW | IMAGE | CONTINUOUS))>
 <!ELEMENT DOC_NAME (#PCDATA)>
 <!ELEMENT TYPE (#PCDATA)>
 <!ELEMENT SIZE (#PCDATA)>
 <!ELEMENT LOCATION (#PCDATA)>
 <!ELEMENT LANGUAGE (#PCDATA)>
 <!ELEMENT KEYWORD (#PCDATA)>
 <!ELEMENT TEXT (NB_CHAR, NB_LINES, (PLAIN_TEXT | TAGGED_TEXT))>
 <!ELEMENT NB_CHAR (#PCDATA)>

10 Chapter 2

 <!ELEMENT NB_LINES (#PCDATA)>
 <!ELEMENT PLAIN_TEXT (#PCDATA)>
 <!ELEMENT TAGGED_TEXT (CONTENT, LINK*)>
 <!ELEMENT CONTENT (#PCDATA)>
 <!ELEMENT LINK (#PCDATA)>
 <!ELEMENT RELATIONAL_VIEW (QUERY?, ATTRIBUTE+, TUPLE*)>
 <!ELEMENT QUERY (#PCDATA)>
 <!ELEMENT ATTRIBUTE (ATT_NAME, DOMAIN)>
 <!ELEMENT ATT_NAME (#PCDATA)>
 <!ELEMENT DOMAIN (#PCDATA)>
 <!ELEMENT TUPLE (ATT_NAME_REF, VALUE)+>
 <!ELEMENT ATT_NAME_REF (#PCDATA)>
 <!ELEMENT VALUE (#PCDATA)>
 <!ELEMENT IMAGE (COMPRESSION, FORMAT, RESOLUTION, LENGTH,
 WIDTH)>
 <!ELEMENT COMPRESSION (#PCDATA)>
 <!ELEMENT FORMAT (#PCDATA)>
 <!ELEMENT RESOLUTION (#PCDATA)>
 <!ELEMENT LENGTH (#PCDATA)>
 <!ELEMENT WIDTH (#PCDATA)>
 <!ELEMENT CONTINUOUS (DURATION, SPEED, (SOUND | VIDEO))>
 <!ELEMENT DURATION (#PCDATA)>
 <!ELEMENT SPEED (#PCDATA)>
 <!ELEMENT SOUND (#PCDATA)>
 <!ELEMENT VIDEO (#PCDATA)>

Figure 2. Logical model (DTD)

5. XML PHYSICAL MODEL

We have developed a prototype capable of taking as input any data
source from the web, fitting it in our model, and producing an XML
document. We view the XML documents we generate as the final physical
models in our process.

5.1 Transformation algorithm

The general algorithm for integrating multiform data into our unified
model is provided in Figure 3. Its principle is to parse the schema introduced
in Figure 2 recursively, fetching the elements it describes, and to write them
into the output XML document, along with the associated values extracted
from the original data, on the fly. Note that, when reading a DTD line, the
current element we refer to is the one which is being described, e.g., TEXT in
the <!ELEMENT TEXT (NB_CHAR, NB_LINES, (PLAIN_TEXT |
TAGGED_TEXT))> DTD line. We also suppose that sub-elements are defined
in the same order they are declared in their parent element. Missing values

2. Erreur ! Style non défini. 11

are currently treated by inserting an empty element, but strategies could be
devised to solve this problem, either by prompting the user or automatically.

// Initialization
Write XML document prologue
Read DTD line
Push root element
// Main loop
While stack not empty do
 Pop element
 // Positioning on the current element description
 While element not found in the DTD and not EOF(DTD) do
 Read DTD line
 End while
 If element was found then
 For each value of the element do
 // For elements with + or * cardinality}
 If element is atomic then
 Write elementBeginTag, elementValue, elementEndTag
 Else // Composite element
 Write elementBeginTag
 Push element // Necessary to later write end tag
 For each sub-element (in reverse order) do
 If sub-element does not belong to a selection then
 // If element not in a list
 // of the form (PLAIN_TEXT | TAGGED_TEXT)
 Push sub-element
 Else
 If sub-element was selected then
 // If the DTD document type matches
 // the actual document type
 Push sub-element
 End if
 End if
 End for
 End if
 End for
 Else
 Write elementEndTag // Close composite elements
 End if
End while

Figure 3. Multiform data integration algorithm

5.2 Implementation

Our prototype for data transformation, web2xml, has been coded in Java,
for portability purposes. Its full code is freely available on-line2.

2 web2xml Java prototype download URL: http://bdd.univ-lyon2.fr/download/web2xml.zip

12 Chapter 2

5.2.1 Architecture

The architecture, i.e., the classes in our application, is displayed on
Figure 4. The lower part of the class diagram represents our internal data
structure and reuses the classes introduced in Figure 1. The interface of the
application appears in the upper part of the diagram. APPLICATION2 is the
main class of the Java program, the one that is started up by the user. All the
*_INTERFACE classes correspond to graphical user interfaces for the
specification of complex objects (name, source), subdocuments (name, type,
language, and keywords), relational views (query and JDBC Data Source
Name, which was not present in the conceptual model, but is necessary at the
physical level), images (compression rate and resolution), and continuous
documents (duration and speed), respectively. Other classes and/or
attributes, such as texts and hyperlinks in web pages, are treated
automatically.

SUBDOCUMENT

TEXT CONTINUOUSIMAGE

PLAIN TEXT TAGGED TEXT VIDEO SOUND ATTRIBUTE

RELATIONAL VIEW

TUPLE

LANGUAGE

KEYWORD

COMPLEX OBJECT

OBJ_INTERFACE

SUBDOC_INTERFACE

VIEW_INTERFACE IMG_INTERFACE

APPLICATION2 CONT_INTERFACE

Graphical
interface

Internal
data structure

Figure 4. Java prototype architecture

5.2.2 Attribute extraction

The first step of our approach consists in extracting the attributes of the
complex object that has been selected by the user. A particular treatment is
applied depending on the subdocument class (image, sound, etc.), since each

2. Erreur ! Style non défini. 13

subdocument class bears different attributes. We used three ways to extract
the actual data:
– manual capture by the user, through graphical interfaces;
– use of standard Java methods and packages;
– use of ad-hoc automatic extraction algorithms.

Table 1 recapitulates how each attribute of each class in our conceptual
model is captured. Our objective is to progressively reduce the number of
manually-captured attributes and to add new attributes that would be useful
for later analysis and that could be obtained with data mining techniques.

Note that, when processing the content of texts, only texts shorter than N
lines are stored directly into the XML document, where N is a user-defined
parameter. In the case of longer texts, only a reference to the file is stored.

Class Attribute Capture Class Attribute Capture
COMPLEX Name Manual RELATIONAL Query Manual
OBJECT Date Java VIEW JDBC DSN Manual
 Source Manual ATTRIBUTE Name Java
SUB- Name Manual Domain Java
DOCUMENT Type Manual ATOMIC Value Java
 Size Java VALUE
 Location Java IMAGE Format Ad-hoc
LANGUAGE Name Manual Compress Manual
KEYWORD Term Manual Width Java
TEXT Nb_char Ad-hoc Length Java
 Nb_lines Ad-hoc Resolution Manual
 Content Ad-hoc CONTINUOUS Duration Manual
LINK URL Ad-hoc Speed Manual

Table 1. XML document generation

5.2.3 XML document generation

The second and last step when producing our physical model consists in
generating an XML document. This generation process strictly follows the
algorithm provided in Figure 3. However, our internal data structure lies
mainly on vectors. Hence, access to some attributes is indexed. It is thus
necessary, when generating the XML document, to know which element is
being processed to be able to fetch the corresponding information. Hence,
the stack was modified to include the index of each pushed element.

14 Chapter 2

5.3 Output

At this point, our prototype is able to process all the data classes we
identified in Figure 1. Figure 5 and Figure 6 first illustrate how single
documents (namely, an SGML tagged text and an image) are transformed
using our approach. Then, Figure 7 shows the output of our prototype when
applied to a composite, synthetic document. We designed this document
specifically for demonstration purposes. It is actually a web page which
content includes XML data, data from a relational database, and an audio
file. After processing, all these data are finally described in a single XML
document. Note that all the keywords are still manually captured.

SGML document XML model
<!DOCTYPE lewis SYSTEM
"lewis.dtd">
<REUTERS TOPICS="YES"
LEWISSPLIT="TRAIN"
CGISPLIT="TRAINING-SET"
OLDID="12509" NEWID="326">
<DATE>2-MAR-1987 06:41:06</DATE>
<PLACES><D>france</D></PLACES>
<COMPANIES>SNCF</COMPANIES>
<TEXT>
<TITLE>SNCF ISSUING THREE BILLION
FRANC DOMESTIC BOND</TITLE>
<DATELINE>March 2</DATELINE>
<BODY>The French state railway
company, the Ste Nationale des
Chemins de Fer Francaise (SNCF),
is issuing a three billion French
franc domestic bond in two
tranches, the bond issuing
committee said. Details of the
issue will be announced later and
it will be listed in the Official
Bulletin (BALO) of March 9.
REUTER </BODY> </TEXT>
</REUTERS>

<?XML version=1.0?>
<!DOCTYPE MlfDt SYSTEM "mlfd.dtd">
<COMPLEX_OBJECT>
 <OBJ_NAME>PressRelease</OBJ_NAME>
 <DATE>2001-05-15</DATE>
 <SOURCE>Reuters</SOURCE>
 <SUBDOCUMENT>
 <DOC_NAME>SGMLdoc</DOC_NAME>
 <TYPE>Tagged text</TYPE>
 <SIZE>820</SIZE>
 <LOCATION>reuter.sgml</LOCATION>
 <LANGUAGE>English</LANGUAGE>
 <KEYWORD>France</KEYWORD>
 <KEYWORD>SNCF</KEYWORD>
 <TEXT>
 <NB_CHAR>790</NB_CHAR>
 <NB_LINES>12</NB_LINES>
 <TAGGED_TEXT>
 <CONTENT>The document could
be reproduced here as CDATA
 </CONTENT>
 </TAGGED_TEXT>
 </TEXT>
 </SUBDOCUMENT>
</COMPLEX_OBJECT>

Figure 5. Sample physical model for a tagged text

2. Erreur ! Style non défini. 15

Image XML model

User-prompted keywords:
– scissors
– black
– white

<?XML version=1.0?>
<!DOCTYPE MlfDt SYSTEM "mlfd.dtd">
<COMPLEX_OBJECT>
 <OBJ_NAME>Sample image</OBJ_NAME>
 <DATE>2001-06-15</DATE>
 <SOURCE>Local</SOURCE>
 <SUBDOCUMENT>
 <DOC_NAME>Scissors</DOC_NAME>
 <TYPE>Image</TYPE>
 <SIZE>24694</SIZE>
 <LOCATION>sciss.bmp</LOCATION>
 <KEYWORD>scissors</KEYWORD>
 <KEYWORD>black</KEYWORD>
 <KEYWORD>white</KEYWORD>
 <IMAGE>
 <FORMAT>Bitmap</FORMAT>
 <COMPRESSION/>
 <WIDTH>256</WIDTH>
 <LENGTH>192</LENGTH>
 <RESA>100dpi</RESA>
 </IMAGE>
 </SUBDOCUMENT>
</COMPLEX_OBJECT>

Figure 6. Sample physical model for an image

<?XML version=1.0?>
<!DOCTYPE MultiformData SYSTEM "mlfd.dtd">
<COMPLEX_OBJECT>
 <OBJ_NAME>Sample composite document</OBJ_NAME>
 <DATE>2002-01-15</DATE>
 <SOURCE>Local</SOURCE>
 <SUBDOCUMENT>
 <DOC_NAME>XML Data</DOC_NAME>
 <TYPE>Tagged text</TYPE>
 <SIZE>675</SIZE>
 <LOCATION>tagdoc.xml</LOCATION>
 <KEYWORD>Tag</KEYWORD>
 <KEYWORD>Document</KEYWORD>
 <TEXT>
 <NB_CHAR>675</NB_CHAR>
 <NB_LINES>22</NB_LINES>
 <TAGGED_TEXT>
 <CONTENT>tagdoc.xml</CONTENT> <!-– Too large to store –->
 </TAGGED_TEXT>
 </TEXT>
 </SUBDOCUMENT>
 <SUBDOCUMENT>
 <DOC_NAME>DB Data</DOC_NAME>
 <TYPE>Relational View</TYPE>
 <SIZE>184320</SIZE>
 <LOCATION>bd1.mdb</LOCATION>
 <KEYWORD>Courses</KEYWORD>

16 Chapter 2

 <RELATIONAL_VIEW>
 <QUERY>select * from course</QUERY>
 <ATTRIBUTE>
 <ATT_NAME>Course</ATT_NAME>
 <DOMAIN>VARCHAR</DOMAIN>
 </ATTRIBUTE>
 <ATTRIBUTE>
 <ATT_NAME>Teacher</ATT_NAME>
 <DOMAIN>VARCHAR</DOMAIN>
 </ATTRIBUTE>
 <TUPLE>
 <ATT_NAME_REF>Course</ATT_NAME_REF>
 <VALUE>Maths</VALUE>
 <ATT_NAME_REF>Teacher</ATT_NAME_REF>
 <VALUE>Smith</VALUE>
 </TUPLE>
 <TUPLE>
 <ATT_NAME_REF>Course</ATT_NAME_REF>
 <VALUE>Computer Science</VALUE>
 <ATT_NAME_REF>Teacher</ATT_NAME_REF>
 <VALUE>Wesson</VALUE>
 </TUPLE>
 </RELATIONAL_VIEW>
 </SUBDOCUMENT>
 <SUBDOCUMENT>
 <DOC_NAME>Sound sample</DOC_NAME>
 <TYPE>Sound</TYPE>
 <SIZE>31773</SIZE>
 <LOCATION>jazzsong.wav</LOCATION>
 <LANGUAGE>English</LANGUAGE>
 <KEYWORD>Music</KEYWORD>
 <KEYWORD>Jazz</KEYWORD>
 <CONTINUOUS>
 <DURATION>20</DURATION>
 <SPEED/>
 </CONTINUOUS>
 </SUBDOCUMENT>
</COMPLEX_OBJECT>

Figure 7. Sample physical model for a composite document

5.4 Mapping into a relational database

The mapping of XML documents into a (MySQL) relational database is
achieved with a prototype baptized xml2rdb3. This PHP script operates in
two steps. First, a DTD parser exploits our logical model (Figure 2) to build
a relational schema, i.e., a set of tables in which any valid XML document
(regarding our DTD) can be mapped. To achieve this goal, we mainly used

3 xml2rdb PHP prototype URL: http://bdd.univ-lyon2.fr/xml2rdb

2. Erreur ! Style non défini. 17

the techniques presented in Anderson et al., 2000, and Kappel, Kapsammer,
and Retschitzegger, 2000. Note that our DTD parser is a generic tool: it can
operate on any DTD. It takes into account all the XML element types we
need, e.g., elements with +, *, or ? multiplicity, elements lists, selections,
etc. The last and easiest step consists in loading a valid XML document into
the previously build relational structure.

6. CONCLUSION AND FUTURE ISSUES

We presented in this chapter a modeling process for integrating
multiform data into a Decision Support Database such as a data warehouse.
Our conceptual UML model represents a complex object that generalizes the
different multiform data that can be found on the web and that are interesting
to integrate in a data warehouse as external data sources. Our model allows
the unification of these different data into a single framework, for purposes
of storage and, maybe more importantly, preparation for analysis. Data must
indeed be properly "formatted" before OLAP or data mining techniques can
apply to them.

Our UML conceptual model is then directly translated into an XML
schema (DTD or XML-Schema), which we view as a logical model. The last
step in our (classical) modeling process is the production of a physical model
in the form of an XML document. XML is the format of choice for both
storing and describing the data. The schema indeed represents the metadata.
XML is also very interesting because of its flexibility and extensibility,
while allowing straight mapping into a more conventional database if strong
structuring and retrieval efficiency are needed for analysis purposes.

The perspectives opened by this work are numerous. First, in our next
step, we will have to integrate the documents produced by our application
into a data warehouse. Now that the XML documents we produce are
mapped into an ODS, we have to integrate them in the particular architecture
of a multimedia data warehouse (Thuraisingham, 2001).

Our XML modeling could also be improved by taking advantage of the
features proposed in XML-Schema (Fallside, 2001) that are not supported by
DTDs, such as typing and inheritance, which we have not taken into account
yet. In other respects, our XML formalization may also be considered as
first-level logical modeling. A multidimensional representation with
dimensions and measures would make up the second level and allow the
warehousing and analysis of multiform data. This second modeling level has
not been discussed in this chapter, but it is one of our main goals for the
integration of web data in a data warehouse. Note that it is difficult to devise
dimensions and measures from multimedia documents without some

18 Chapter 2

knowledge of their content. As far as we know, extracting the semantics of a
multimedia document is still largely an open problem and lots of research
focus on this issue. The results of this research shall help us a lot in our
modeling task.

Next, we do not envisage data mining as a front-end tool only. We
believe integrating multiform data in a data warehouse requires more than a
simple ETL: it requires intelligence. Using data mining techniques may be
envisaged along three axes.

First, data mining can help building a multimedia data warehouse. For
instance, it can outline the relevance of indices or materialized views. The
physical reorganization of warehoused multiform data can also be
automatically triggered if their frequent usage is monitored. For instance,
new disk clusters could be devised to improve the performance of
multidimensional queries. Eventually, mining some multimedia data may
help building indicators (measures) to be analyzed along certain axes
(dimensions). Viewed as a pre-processing phase, this task could also save
time for ulterior analysis.

Second, the diversity of multiform data necessitates operators that are
adapted to their nature. One key question is: how to aggregate non-additive
data such as multimedia data? OLAP operators could be extended to include
data mining tasks able to achieve such aggregation. Clustering techniques
could be used, for example.

Lastly, the analysis of multiform data with data mining techniques could
be reinforced by enhancing the navigation into these data (in a
multidimensional context) with the help of OLAP-like operators.

REFERENCES

Abiteboul, S., et al. (1997). The Lorel query language for semistructured
data. International Journal on Digital Libraries 1(1), 68–88.

Anderson, R., et al. (2000). Professional XML Databases. Wrox Press.
Bertino, E., Catania, B., and Zarri, G.P. (2001). Intelligent Database

Systems. Addison Wesley.
Bray, T., et al., Eds. (2000). Extensible Markup Language (XML) 1.0

(Second Edition). http://www.w3.org/TR/2000/REC-xml-20001006.
Busse, S., et al. (1999). Federated Information systems: Concepts,

Terminology and Architectures. Forschungsberichte des Fachbereichs
Informatik 99(9).

Ceri, S., et al. (1999). XML-GL: a graphical language for querying and
restructuring XML documents. International World Wide Web Conference,
Canada.

2. Erreur ! Style non défini. 19

Chaudhuri, S., and Dayal, U. (1997). Data Warehousing and OLAP for
Decision Support. ACM SIGMOD International Conference on Management
of Data (SIGMOD 97), Tucson, USA, 507–508.

Christophides, V., et al. (1994). From Structured Documents to Novel
Query Facilities. ACM SIGMOD International Conference on Management
of Data , Minneapolis, USA, 313–324.

Cover, R. (2001). XML Metadata Interchange (XMI).
http://xml.coverpages.org/xmi.html.

Deutsch, A., Fernandez, M., and Suciu, D. (1999). Storing semistructured
Data with STORED. ACM SIGMOD International Conference on
Management of Data, Philadelphia, USA, 431–442.

Deutsch, A., et al. (1999). XML-QL: A Query Language for XML.
International World Wide Web Conference, Canada.

Deutsch, A., et al. (1999). Querying XML Data. IEEE Data Engineering
Bulletin 22(3), 10–18.

Edmonds, A. (2001). A General Background to Supervised Learning in
Combination with XML. Technical paper, Scientio Inc.
http://www.metadatamining.com.

Fallside, D.C., ed. (2001). XML Schema.
http://www.w3.org/TR/xmlschema-0/.

Fernandez, M., et al. (1998). Catching the Boat with Strudel: Experiences
with a Web-Site Management System. ACM SIGMOD International
Conference on Management of Data , Seattle, USA, 414–425.

Fernandez, M., Marsh, J., and Nagy, M., Eds. (2001). XQuery 1.0 and
XPath 2.0 Data Model. http://www.w3.org/TR/query-datamodel/.

Florescu, D., and Kossmann, D. (1999). Storing and Querying XML Data
using an RDMBS. IEEE Data Engineering Bulletin 22(3), 27–34.

Hackathorn, R. (2000). Web farming for the data warehouse. Morgan
Kaufmann.

Hopmann, A., Berkun, S., Hatoun, G. (1997). Web collections using
XML. http://www.w3.org/TR/NOTE-XMLsubmit.html.

Hsiao, D. (1992). Federated Databases and Systems: Part I – A Tutorial
on Their DataSharing. VLDB Journal 1(1), 127–179.

Hsiao, D. (1992). Federated Databases and Systems: Part II – A Tutorial
on Their Resource Consolidation. VLDB Journal 1(2), 285–310.

Inmon, W.H. (1996). Building the Data Warehouse. John Wiley & Sons.
Kappel, G., Kapsammer, E., and Retschitzegger, W. (2000). X-Ray –

Towards Integrating XML and Relational Database Systems. 19th
International Conference on Conceptual Modeling, 339–353.

Kimball, R. (1996). The data warehouse toolkit. John Wiley & Sons.
Kimball, R., and Mertz, R. (2000). The Data Webhouse: Building the

Web-enabled Data Warehouse. John Wiley & Sons.

20 Chapter 2

McHugh, J., et al. (1997). Lore: A Database Management System for
Semi-structured Data. SIGMOD Record 26(3), 54–66.

Miniaoui, S., Darmont, J., and Boussaid, O. (2001). Web data modeling
for integration in data warehouses. First International Workshop on
Multimedia Data and Document Engineering (MDDE 01), Lyon, France,
88–97.

Nestorov, S., Abiteboul, S., and Motwani, R. (1998). Extracting Schema
from Semistructured Data. ACM SIGMOD International Conference

on Management of Data , Seattle, USA, 295–306.
OMG. (1999). Unified Modeling Language Specification, Version 1.3.

Object Management Group, Inc.
Rakow, T.C., Neuhold, E.J., and Löhr, M. (1995). Multimedia Database

Systems – The Notions and the Issues. Datenbanksysteme in Büro, Technik
und Wissenschaft BTW, GI-Fachtagung, Dresden, 1–29.

Robie, J., Lapp, J., and Schach, D. (1998). XML Query Language
(XQL). http://www.w3.org/TandS/QL/QL98/pp/xql.html.

Shanmugasundaram, J., et al. (1999). Relational Databases for Querying
XML Documents: Limitations and Opportunities. 25th International
Conference on Very Large Data Bases (VLDB 99), Edinburgh, Scotland,
302–314.

Shanmugasundaram, J., et al. (2001). A General Technique for Querying
XML Documents using a Relational Database System. SIGMOD record
30(3), 302–314.

Shoens, K., et al. (1993). The Rufus System: Information Organization
for Semi-Structured Data. 19th International Conference on Very Large Data
Bases, Dublin, Ireland, 97–107.

Tan, A.H. (1999). Text Mining: The state of the art and the challenges.
PAKDD 99 Workshop on Knowledge discovery from Advanced Databases
(KDAD 99), Beijing, China, 71–76.

Thuraisingham, B. (2001). Managing and Mining Multimedia Databases.
CRC Press.

Wu, M.C., and Buchmann, A.P. (1997). Research Issues in Data
Warehousing. BTW '97, Ulm.

Zhang, J., Hsu, W., and Lee, M.L. (2001). An Information-Driven
Framework for Image Mining. 12th International Conference on Database
and Expert Systems Applications (DEXA 2001), Munich, Germany; LNCS
(2113), 232–242.

Zwol, R., Apers, P., and Wilschut, A. (1999). Modelling and querying
semistructured data with MOA. Workshop on Query processing for
semistructured data and non-standard data formats.

