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Abstract. In this paper we explore the use of well-known multimodal fusion
techniques to solve two prominent Natural Language Processing tasks. Specifi-
cally, we focus on solving Named Entity Recognition and Word Sense Induction
and Disambiguation by applying feature-combination methods that have already
shown their efficiency in the multimedia analysis domain. We present a series of
experiments employing fusion techniques in order to combine textual linguistic
features. Our intuition is that by combining different types of features we may find
semantic relatedness among words at different levels and thus, the combination
(and recombination) of these levels may yield gains in terms of metrics’ perfor-
mance. To our knowledge, employing these techniques has not been studied for
the tasks we address in this paper. We test the proposed fusion techniques on three
datasets for named entity recognition and one for word sense disambiguation and
induction. Our results show that the combination of textual features indeed im-
proves the performance compared to single feature representation and the trivial
feature concatenation.

1 Introduction

Named Entity Recognition (NER) and Word Sense Induction and Disambiguation (WSI/
WSD) requires textual features to represent the similarities between words in order
to discern between different words’ meanings. NER goal is to automatically discover,
within a text, mentions that belong to a well-defined semantic category. The classic task
of NER involves detecting entities of type Location, Organization, Person and Miscel-
laneous. The task is of great importance for more complex NLP systems, e.g, relation
extraction, opinion mining. Common solutions to NER consist on one of the following:
via matching patterns created manually or extracted semi-automatically; or by training
a supervised machine learning algorithm with large quantities of annotated text. The
latter being the currently more popular solution to this task.

Word Sense Induction and Disambiguation involves two closely related tasks1. WSI
aims to automatically discover the set of possible senses for a target word given a text
corpus containing several occurrences of said target word. Meanwhile, WSD takes a
set of possible senses and determines the most appropriate sense for each instance of

1 Even though these tasks are related, they are independent from one another. Still, in this paper
we consider them to be a single one.



the target word according to the instance’s context. WSI is usually approached as an
unsupervised learning task, i.e., a cluster method is applied to the words occurring in
the instances of a target word. The groups found are interpreted as the senses of the
target word. The WSD task is usually solved with knowledge-based approaches, based
on WordNet; or more recently with supervised models which require annotated data.

As stated before, both tasks rely on features extracted from text. Usually, these rep-
resentations are obtained from the surrounding context of the words in the input corpus.
Mainly two types of representations are used. According to their nature we call these
features lexical and syntactical. The first type requires no extra information than that
contained already in the analyzed text itself. It consists merely on the tokens surround-
ing a word, i.e., those tokens that come before and after within a fixed window. The
second type, syntactical features, is similar to the lexical representation in that we also
consider as features the tokens that appear next to the corpus’ words. Nonetheless, it
requires a deeper degree of language understanding. In particular, these features are
based on part of speech tags, phrase constituents information, and syntactical function-
ality between words, portrayed by syntactical dependencies. Likewise, specific features,
particular to a task are also employed. These features later on become standard features
in the literature.

Most of the approaches in the literature dealing with these tasks use each of these
features independently or stacked together, i.e., different feature columns in an input
representation space matrix. In the latter case, features are usually combined without
regards to their nature.

The main intuition of the present work is that word similarities may be found at
different levels according to the type of features employed. In order to exploit these
similarities, we look into multimedia fusion methods. In order to better perform an
analysis task, these techniques combine multimodal representations, their correspond-
ing similarities, or the decisions coming from models fitted with these features. In this
paper, we try to mutually complement independent representations by utilizing said fu-
sion techniques to combine (or fuse) features in the hope of improving the performance
of the tasks at hand, specially compared to the use of features independently.

Fusion techniques have previously shown their efficiency, mainly on text and im-
age related tasks, where there is a need to model the relation between images and text
extracts. Here, in order to apply multimedia fusion techniques, we consider textual fea-
tures as different modalities, i.e., instead of having textual and image features we have
lexical and syntactical features. The main contribution of this work is to assess the
effectiveness of simple yet untested techniques to combine classical and easy to ob-
tain textual features. As a second contribution, we propose a series of feature combi-
nation and recombination to attain better results. We test our intuitions on both NER
and WSI/WSD tasks and over four different corpora: CoNLL-2003 [17], WikiNER and
Wikigold [4] for NER; Semeval-2007 [1] for WSI/WSD.

The rest of the paper is organized as follows: in Section 2, we go into further details
about fusion techniques. We introduce the fusion operators that we use in our exper-
iments in Section 3. Then, in Section 4 we show the effectiveness of the presented
methods by testing them on NER and WSI/WSD and their respective datasets. Finally,
in Section 5 we present our conclusions and future directions to explore.



2 Background and Related Work

In this section, we describe the fusion techniques we use in our methodology as well as
relevant use-cases where they have been employed.

2.1 Multimodal Fusion Techniques

Multimodal fusion is a set of popular techniques used in multimedia analysis tasks.
These methods integrate multiple media features, the affinities among these attributes
or the decisions obtained from systems trained with said features, to obtain rich insights
about the data being used and thus to solve a given analysis task [2, 3]. We note that
these techniques come at the price of augmenting the training time of a system by
increasing both the dimension space and/or the density of a given feature matrix.

In the multimodal fusion literature we can discern two main common types of tech-
niques: early fusion and late fusion.

Early Fusion This technique is the most widely used fusion method. The principle
is simple: we take both modal features and concatenate them into a single representa-
tion matrix. More formally, we consider two matrices that represent different modality
features each over the same set of individuals. To perform early fusion we concate-
nate them column-wise, such that we form a new matrix having the same number of
lines but increasing the number of columns to the sum of the number of columns of
both matrices. The matrices may also be weighted as to control the influence of each
modality.

The main advantage of early fusion is that a single unique model is fitted while
leveraging the correlations among the concatenated features. The method is also easy
to integrate into an analysis system. The main drawback is that we increase the repre-
sentation space and may make it harder to fit models over it.

Late Fusion In contrast to early fusion, in late fusion the combination of multimodal
features are generally performed at the decision level, i.e., using the output of indepen-
dent models trained each with an unique set of features [5]. In this setting, decisions
produced by each model are combined into a single final result set. The methods used
to combine preliminary decisions usually involve one of two types: rule-based (where
modalities are combined according to domain-specific knowledge) or linear fusion (e.g.,
weighting and then adding or multiplying both matrices together). This type of fusion
is very close to the so-called ensemble methods in the machine learning literature. Late
fusion combines both modalities in the same semantic space. In that sense, we may also
combine modalities via an affinity representation instead of final decision sets. In other
words, we can combine two modality matrices by means of their respective similari-
ties. A final representation is then usually obtained by adding the weighted similarity
matrices.

The advantages of late fusion include the combination of features at the same level
of representation (either the fusion of decisions or similarity matrices). Also, given
that independent models are trained separately, we can chose which algorithm is more
adequate for each type of features.



Cross-media Similarity Fusion A third type of fusion technique, cross-media simi-
larity fusion (or simply cross fusion), introduced in [2, 5], is defined and employed to
propagate a single similarity matrix into a second similarity matrix. In their paper, the
authors propagated information from textual media towards visual media. In our case,
we transfer information among textual features. For example, to perform a cross fusion
between lexical and syntactical features, we perform the following steps:

1. Compute the corresponding similarity matrices for each type of feature.
2. Select only the k-nearest neighbor for each word within the lexical similarity ma-

trix. These neighbors are to be used as lexical representatives to enrich the syntac-
tical similarities.

3. Linearly combine both similarity matrices (lexical k-nearest lexical neighbors with
the syntactical features) via a matrix product.

Cross fusion aims to bridge the semantic gap between two modalities by using the
most similar neighbors as proxies to transfer valuable information from one modality
onto another one. Usually, the result of a cross fusion is combined with the previous
techniques, early and late fusion. In this paper we perform experiment in that sense.

Hybrid Fusion We may leverage the advantages of the previous two types of fusion
techniques by combining them once more in a hybrid setting. As described in [3, 18], the
main idea is to simultaneously combine features at the feature level, i.e., early fusion,
and at the same semantic space or decision level. Nonetheless, they define a specific
type of hybrid fusion. In this paper, we adopt a looser definition of hybrid fusion. That
is, we perform hybrid fusion by leveraging the combination of the fusion strategies
described before.

We consider the first three types of fusion techniques (early fusion, late fusion and
cross fusion) as the building blocks to the experiments we conduct. While we work
with a single modality, i.e., textual data, we consider the different kinds of features
extracted from it as distinct modalities. Our intuition being that the semantic similarities
among words in these different spaces can be combined in order to exploit the latent
complementarity between the lexical and syntactical representations. The fusion should
therefore improve the performance of the NLP tasks at hand, NER and WSI/WSD.

Our first goal is to assess the effectiveness of the classic fusion methods and then,
as a second goal, to propose new combinations that yield better outcomes in terms of
performance than the simpler approaches. The new combinations are found empirically.
Nonetheless, as we will show, their effectiveness replicates across different datasets and
NLP tasks.

2.2 NER and WSI/WSD

To the best of our knowledge, there is no work that addresses both NER and WSI/WSD
explicitly while using fusion techniques from the multimedia analysis domain. Still,
we base our experiments on those carried on in [6, 8, 10] using well-known supervised
(structured perceptron) and unsupervised (spectral clustering) learning algorithms. A
thorough review on NER and WSI/WSD can be found in [13] and [14], respectively.
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Fig. 1. Steps followed on our experiments. First the corpus is preprocessed, then features are
extracted from the text. A fusion matrix is generated, which in turn is used as input to a learning
algorithm. Finally, the system yields its results and to be analyzed.

3 Methodology

In the present section we address the core of the work performed in this paper. We for-
mally describe the fusion techniques we employ in the next section. Also, we delineate
the procedure followed in our experiments.

The experiments we carry on consist in generating fusion matrices that will serve
as input to a learning algorithm in order to solve NER and WSI/WSD. These input
feature matrices are based upon lexical, syntactical, or other types of representation.
The procedure can be seen in Figure 1.

3.1 Fusion Strategies

We begin by presenting a formal definition of the fusion techniques employed and de-
scribed in the previous sections. We define (weighted) early fusion, late fusion and cross
fusion as follows:

Early Fusion
E(A,B) = hstack(A,B) (1)

Weighted Early Fusion

wEα(A,B) = hstack(α ·A, (1− α) ·B) (2)

Late Fusion
Lβ(A,B) = β ·A+ (1− β) ·B (3)



Cross fusion
Xγ(A,B) = K(A, γ)×B (4)

Parameters A and B are arbitrary input matrices. They may initially represent, for
example, the lexical (MLEX ) or syntactical based (MSY N ) features matrix, or their
corresponding similarity matrices, SLEX and SSY N , respectively. In a broader sense,
matrices A and B may represent any pair of valid2 fusion matrices.

In early fusion, E(A,B), the matrices A and B are combined together via a func-
tion called hstack which concatenates, column-wise, both matricesA andB. Weighted
early fusion represents the same operation as before with an extra parameter: α, which
controls the relative importance of each matrix. In the following, we refer to both oper-
ations as early fusion. When α is determined, we refer to weighted early fusion.

Regarding late fusion Lβ(A,B), the β parameter determines again the importance
of the matrix A, and consequently also the relevance of matrix B.

In cross fusionXγ(A,B), the K(·) function keeps the top-γ closest words (columns)
to each word (lines) while the rest of the values are set to zero.

Using the previously defined operators, we distinguish four levels of experiments:

1. Single Features: in this phase we consider the modalities independently as input to
the learning methods. For instance, we may train a model for NER using only the
lexical features matrix MLEX .

2. First Degree Fusion: we consider the three elementary fusion techniques by them-
selves (early fusion, late fusion, cross fusion) without any recombination. These
experiments, as well as those from the previous level, serve as the baselines we set
to surpass in order to show the efficacy of the rest of the fusion approaches. As an
example, we may obtain a representation matrix by performing an early fusion be-
tween the lexical matrix and the syntactical features matrix: E(MLEX ,MSY N ).
In this level we distinguish two types of cross fusion: Cross Early Fusion (XEF)
and Cross Late Fusion (XLF). The first one combines a similarity matrix with a
feature matrix: X(SLEX ,MSY N). The second one joins a similarity matrix with a
similarity matrix: X(SSY N , SLEX).

3. Second Degree Fusion: we recombine the outputs of the previous two levels with
the elementary techniques. This procedure then yields a recombination of ”second-
degree” among fusion methods. We introduce the four types of second degree fu-
sions in the following list. Each one is illustrated with an example:
(a) Cross Late Early Fusion (XLEF): X(X(SSTD, SSY N),MSTD)
(b) Cross Early Early Fusion (XEEF: X(SSTD, X(SSTD, SSY N))
(c) Early Cross Early Fusion (EXEF): E(MSTD, X(SLEX ,MSTD))
(d) Late Cross Early Fusion (LXEF): L(MSTD, X(SSTD,MSTD))

4. N-Degree Fusion: in this last level we follow a similar approach to the previous
level by combining the output of the second-degree fusion level multiple times
(more than two times) with other second-degree fusion outputs. Again, in this level
we test the following two fusion operations:
(a) Early Late Cross Early Fusion (ELXEF):E(MSTD, L(MSTD, X(SSTD,MSTD)))
(b) Early ELXEF (EELXEF):E(MLEX , E(E(MSTD, L(MSTD, X(SSTD,MSTD))),

L(MLEX , X(SSY N ,MLEX))))

2 Valid in terms of having compatible shapes while computing a matrix sum or multiplication.



3.2 Feature Matrices

In the previous subsection we presented the fusion operators used in our experiments.
Below we detail the three types of features used to describe the words of each of the
tested corpus.

Lexical Matrix (LEX) For each token in the corpus, we use a lexical window of two
words to the left and two words to the right, plus the token itself. Specifically, for a target
word w, its lexical context is (w−2, w−2, w, w+1, w+2). This type of context features is
typical for most systems studying the surroundings of a word, i.e., using a distributional
approach [11].

Syntactical Matrix (SYN) Based on the syntactic features used in [11, 15], we derive
contexts based on the syntactic relations a word participates in, as well as including
the part of speech (PoS) of the arguments of these relations. Formally, for a word w
with modifiers m1, . . . ,mk and their corresponding PoS tags pm1 , . . . , p

m
k ; a head h

and its corresponding PoS tag ph, we consider the context features (m1, pm1
, lbl1), . . . ,

(mk, pmk
, lblk), (h, ph, lbl invh). In this case, lbl and lblinv indicate the label of the de-

pendency relation and its inverse, correspondingly. Using syntactic dependencies as fea-
tures should yield more specific similarities, closer to synonymy, instead of the broader
topical similarity found through lexical contexts.

NER Standard Features Matrix (STD) The features used for NER are based on those
used in [8, 4]. The feature set consists of: the word itself, whether the word begins with
capital letter, prefix and suffix up to three characters (within a window of two words to
the left and two words to the right), and the PoS tag of the current word. These features
are considered to be standard in the literature. We note that the matrix generated with
these features is exclusively used in the experiments regarding NER.

3.3 Learning Methods

We use supervised and unsupervised learning methods for NER and WSI/WSD re-
spectively. On the one hand, for NER, as supervised algorithm, we use an averaged
structured perceptron [6, 8] to determine the tags of the named entities. We considered
Logistic Regression and linear SVM. We chose the perceptron because of its perfor-
mance and its lower training time.

On the other hand, for WSD/WSI, specifically for the induction part, we applied
spectral clustering, as in [10], on the input matrices in order to automatically discover
senses (a cluster is considered a sense). Regarding disambiguation, we trivially assign
senses to the target word instances according to the number of common words in each
cluster and the context words of the target word. In other words, for each test instance of
a target word, we select the cluster (sense) with the maximum number of shared words
with the current instance context.



4 Experiments and Evaluation

We experiment with four levels of fusion: Single Features (SF), First-degree Fusion
(1F), Second-degree Fusion (2F) and N-degree Fusion (NF). The representation matri-
ces for NER come from lexical context features MLEX , syntactical context features
MSY N or standard features MSTD. On the other hand, experiments on WSI/WSD
exclusively employ matrices MLEX and MSY N .

Our first goal is to compare the efficiency of the basic multimedia fusion techniques
applied to single-modality multi-feature NLP tasks, namely NER and WSI/WSD. A
second goal is to empirically determine a fusion combination setting able to leverage
the complementarity of our features.

To this end, we evaluate the aforementioned 4 fusion levels. We note that the fusion
combinations in the third and fourth level (2F and NF) are proposed based on the re-
sults obtained in the previous levels. In other words, in order to reduce the number of
experiments, we restrict our tests to the best performing configurations. This is due to
the large number of possible combinations (an argument to a fusion operation may be
any valid output of a second fusion operation).

4.1 Named Entity Recognition

Pre-processing As is usual when preprocessing text before performing named entity
recognition, [16], we normalize tokens that include numbers. This allows a degree of
abstraction to tokens that contain years, phone numbers, etc.

Features The linguistic information we use are extracted with the Stanford’s CoreNLP
parser [12]. Again, the features used for these experiments on NER are those described
before: lexical, syntactic and standard features, i.e., MLEX , MSY N , and MSTD, re-
spectively.

Test Datasets We work with three corpora coming from two different domains:

(1) CoNLL-2003 (CONLL): This dataset was used in the language-independent named
entity recognition CoNLL-2003 shared task [17]. It contains selected news-wire
articles from the Reuters Corpus. Each article is annotated manually. It is divided
in three parts: training (train) and two testing sets (testa and testb). The training
part contains 219,554 lines, while the test sets contain 55,044 and 50,350 lines,
respectively. The task was evaluated on the testb file, as in the original task.

(2) WikiNER (WNER): A more recent dataset [4] of selected English Wikipedia arti-
cles, all of them annotated automatically with the author’s semi-supervised method.
In total, it contains 3,656,439 words.

(3) Wikigold (WGLD): Also a corpus of Wikipedia articles, from the same authors
of the previous corpus. Nonetheless, this was annotated manually. This dataset
is the smaller, with 41,011 words. We used this corpus to validate human-tagged
Wikipedia text. These three datasets are tagged with the same four types of entities:
Location, Organization, Person and Miscellaneous.



Table 1. NER F-measure results using the Single Features over the three datasets. These values
serve as a first set of baselines.

A Single Features

CONLL WNER WGLD

MSTD 77.41 77.50 59.66
MLEX 69.40 69.17 52.34
MSY N 32.95 28.47 25.49

Evaluation Measures We evaluate our NER models following the standard CoNLL-
2003 evaluation script. Given the amount of experiments we carried on, and the size
constraints, we report exclusively the total F-measure for the four types of entities (Lo-
cation, Organization, Person, Miscellaneous). WNER and WGLD datasets are evalu-
ated on a 5-fold cross validation.

Results We present in this subsection the results obtained in the named entity recogni-
tion task, while employing the 4 levels of fusion proposed in the previous section.

In contrast to other related fusion works [2, 5, 9], we do not focus our analysis on
the impact of the parameters of the fusion operators. Instead, we focus our analysis on
the effect of the type of linguistic data being used and how, by transferring information
from one feature type to another, they can be experimentally recombined to generate
more complete representations.

Regarding the fusion operators’ parameters, we empirically found the best configu-
ration for β, from late fusion Lβ(A,B) = β ·A+ (1− β) ·B, is β = 0.5. This implies
that an equal combination is the best linear fusion for two different types of features.

In respect of the γ parameter, used in cross fusion Xγ(A,B) = K(A, γ) × B, we
set γ = 5. This indicates that just few high quality similarities attain better results than
utilizing a larger quantity of lower quality similarities.

Single Features Looking at Table 1, we see that the best independent features, in terms
of F-measure come from the standard representation matrix MSTD. This is not surpris-
ing as these features, simple as they may be, have been used and proved extensively in
the NER community. On the other hand, MLEX performs relatively well, considering
it only includes information contained in the dataset itself. Nevertheless, this represen-
tation that this kind of lexical context features are the foundation of most word embed-
ding techniques used nowadays. While we expected better results from the syntactical
features MSY N , as they are able to provide not only general word similarity, but also
functional, getting close to synonymy-level [11], we believe that the relatively small
size of the datasets do not provide enough information to generalize

First Degree Fusion In Table 2 we present the First Degree fusion level. The best
performance is obtained by trivially concatenating the representation matrices. This
baseline proved to be the toughest result to beat. Late fusion does not perform well in
this setting, still, we see further on that by linearly combining weighted representation



Table 2. NER F-measure results using first
degree fusion (1F). B is either indicated
on the table or specified as follows. Look-
ing at EF, b̂EF = E(MSY N ,MSTD). In
XEF, b∗XEF takes the matrix from the set
{MLEX ,MSTD} which yields the best per-
forming result. In XLF, b̂∗XLF corresponds to
the best performing matrix in {SLEX , SSY N}.
These configurations serve as the main set of
baseline results.

A B Early Fusion

CONLL WNER WGLD

MLEX MSY N 72.01 70.59 59.38
MLEX MSTD 78.13 79.78 61.96
MSY N MSTD 77.70 78.10 60.93
MLEX b̂EF 78.90 80.04 63.20

Late Fusion

CONLL WNER WGLD

SLEX SSY N 61.65 58.79 44.29
SLEX SSTD 55.64 67.70 48.00
SSY N SSTD 50.21 58.41 49.81

Cross Early Fusion

CONLL WNER WGLD

SLEX MSTD 49.90 70.27 62.69
SSY N MSTD 47.27 51.38 48.53
SSTD b∗XEF 52.89 62.21 50.15

Cross Late Fusion

CONLL WNER WGLD

SLEX SSTD 27.75 59.12 38.35
SSY N b∗XLF 36.87 40.92 39.62
SSTD b∗XLF 41.89 52.03 39.92

Table 3. NER F-measure results using second
degree fusion (2F). In XLEF, a∗ corre-
sponds to the best performing matrix in the
set {X(SSTD, SLEX), X(SLEX , SSTD),
X(SSTD, SSY N)}. For XEEF,
b̂XEEF = E(MLEX ,MSTD). In
EXEF, b∗EXEF takes the best perform-
ing matrix from {X(SSY N ,MLEX),
X(SLEX ,MLEX), X(SLEX ,MSTD),
X(SSY N ,MLEX), X(SSY N ,MSTD)}.
Finally, in LXEF, b̂LXEF takes
the best possible matrix from
{X(SLEX ,MSTD), X(SSY N ,MSTD),
X(SSY N ,MLEX)}.

A B Cross Late Early Fusion

CONLL WNER WGLD

â MSTD 37.69 59.44 41.71
â MLEX 38.31 58.73 41.56
â MSY N 29.31 52.06 34.91

Cross Early Early Fusion

CONLL WNER WGLD

SSTD b̂XEEF 54.34 64.20 39.59
SLEX b̂XEEF 49.71 71.84 45.14
SSY N b̂XEEF 47.54 53.77 43.32

Early Cross Early Fusion

CONLL WNER WGLD

MSTD b∗EXEF 49.58 77.32 61.69
MLEX b∗EXEF 49.79 66.22 53.54
MSY N b∗EXEF 51.53 70.94 53.70

Late Cross Early Fusion

CONLL WNER WGLD

MSTD b̂LXEF 54.82 75.70 54.73
MLEX b̂LXEF 56.53 62.27 52.39

matrices, we can add information to an already strong representation. Finally, regarding
the cross fusion techniques, cross early and late fusion, we see that they depend directly
on the information contained in the similarity matrices. We note that, as is the case
on single features, the combinations with matrix SSTD yield almost always the best
results. While these fusion techniques by themselves may not offer the best results, we
see below that by recombining them with other types of fusion we can improve the
general performance of a representation.



Second Degree Fusion The second degree fusion techniques presented in Table 3 show
that the recombination of cross fusion techniques gets us closer to the early fusion base-
line. With the exception of cross late early fusion, the rest of the recombination schemes
yield interesting results. First, in cross early fusion, the best results, for the most part, are
obtained while using the SLEX matrix combined with the output of E(MLEX ,MSTD),
which is still far from the baseline values. Concerning, EXEF, we get already close to
surpass the baselines with the MSTD matrix, with the exception of the CONLL dataset.
In LXEF, even though the cross fusion X(SSY N ,MLEX) is not the best performing,
we found experimentally that by combining it with MLEX through a late fusion, it gets
a strong complementary representation. Our intuition in this case was to complement
MLEX with itself but enriched with the SSY N information. In the N-degree fusion re-
sults we discover that indeed this propagation of information helps us beat the baselines
we set before.

N-degree Fusion Finally, the last set of experiments are shown in Table 4. Using a
recombination of fusion techniques, a so-called hybrid approach, we finally beat the
baselines (single features and early fusion) for each dataset. We note that the best con-
figuration made use of a weighted early fusion with α = 0.95. This indicates that the
single feature matrix, MLEX is enriched a small amount by the fusion recombination,
which is enough to improve the results of said baselines. In CONLL, the early fusion
(see Table 2) baseline being 78.13, we reached 78.69, the lowest improvement of the
three datasets. Regarding the Wikipedia corpus, in WNER, we passed from 79.78 to
81.75; and in WGLD, from 61.96 to 67.29, the largest improvement of all. It is impor-
tant that we tried the weighted Early Fusion operator with different α and the best result
does not beat these fusion results.

In the next section we transfer the knowledge gained in this task to a new one, word
sense induction and disambiguation.

4.2 Word Sense Induction and Disambiguation

Having learned the best fusion configuration from the previous task, in this experiments
we set to test if the improvements achieved can be transfered into another NLP task,
namely Word Sensed Induction and Disambiguation (WSI/WSD).

Pre-processing We simply remove stopwords and tokens with less than three letters.

Features We use the same set of features from the previous task, with the exception of
the standard NER features, that is, those represented by MSTD, as they are specifically
designed to tackle NER.

Test Dataset The WSI/WSD model is tested on the dataset of the Semeval-2007 WSID
task [1]. The task was based on a set of 100 target words (65 nouns and 35 verbs), each
word having a set of instances, which are specific contexts where the word appear.
Senses are induced from these contexts and applied to each one of the instances.



Table 4. F-measure results using N-degree fusion (NF). In ELXEF,
b̂ELXEF = L(MLEX , X(SSY N ,MLEX)). For EELXEF, b̂EELXEF =
E(E(MSTD, L(MLEX , X(SSY N ,MLEX))), L(MLEX , X(SSTD,MLEX))) for CONLL and
b̂EELXEF = E(E(MSTD, L(MSTD, X(SSY N ,MSTD))), L(MLEX , X(SSY N ,MLEX)))
for WNER and WGLD. The best result is obtained in EELXEF when α = 0.95.

A B
Early Late

Cross Early Fusion

CONLL WNER WGLD

MSTD b̂ELXEF 67.16 79.45 62.37

Early Early
Late Cross Early Fusion

CONLL WNER WGLD

MLEX b̂EELXEF 65.01 78.02 62.34
MLEX
α=0.95 b̂EELXEF 79.67 81.79 67.05

EF Baseline 78.90 80.04 63.20

Evaluation Measures Being an unsupervised task, the evaluation metrics of WSI/WSD
are debated in terms of quality [7]. We consider supervised recall and unsupervised F-
measure, as in the competition original paper [1]. The first one maps the output of a
system to the true senses of the target words’ instances and the second one measures
the quality of the correspondence between the automatically found clusters and the
senses. We consider that the number of senses found by the system is also a rather good
indicator of performance: the best competition baseline assigns the most frequent sense
to each target word (this baseline is called MFS), thus this baseline system would have
an average of 1 sense (cluster) per word. A system that goes near this average may be
indeed not resolving the task efficiently but finding the MFS trivial solution. Conse-
quently, to show that we do not fall in the MFS solution, we display in our results the
average number of clusters.

Results Word sense induction and disambiguation results are found in Table 5. Again,
we aim to surpass the baseline of the single features and early fusion. We experimentally
set β = 0.90 and γ = 50. In this task, in late fusion, when the first matrix is deemed
more relevant than the second one, the performance is higher. This may be due to the
fact that, in this task, the feature matrices rows contain types (that is, each line represent
an unique word), and thus they are more dense, which may entail more noisy data. By
reducing the relevance of the second matrix in late fusion, we are effectively attenuating
the less important information. Regarding γ = 50, again due to the denser characteristic
of the matrices, there is a larger quantity of true similar words that are useful to project
information into another matrix, through cross fusion.

The WSI/WSD results are shown in Table 5. In the following paragraph, we will
discuss these result all at once. Due to the page limit constraint, we omit certain config-
urations that do not yield interesting results either by converging to the MFS solution (1



Table 5. Supervised Recall and Unsupervised F-measure for the Semeval-2007 corpus. We also
display the average number of clusters found by each fusion configuration.

Method Recall (%) FM (%) # cl

all noun verb all noun verb

Single Features

MLEX 79.20 82.10 75.80 72.70 76.90 67.90 4.13
MSY N 79.10 81.60 76.20 69.30 69.40 69.20 4.47

Early Fusion

E(MLEX ,MSY N ) 78.70 81.11 76.10 74.00 76.66 71.11 4.46

Cross Early Fusion

X(SLEX ,MLEX) 79.20 82.30 75.70 76.20 79.60 72.50 3.63
X(SLEX ,MSY N ) 78.30 80.90 75.30 74.60 75.10 73.90 3.08
X(SSY N ,MLEX) 78.60 80.90 76.10 78.90 80.70 76.90 1.08
X(SSY N ,MSY N ) 78.90 81.40 76.10 73.70 77.70 70.00 2.72

Cross Late Fusion

X(SSY N , SLEX) 78.70 80.90 76.20 78.90 80.80 76.80 1.01
X(SLEX , SSY N ) 78.80 80.90 76.06 78.70 80.50 76.80 1.33

Cross Late Early Fusion

X(X(SLEX , SSY N ),MLEX) 78.40 80.40 76.10 70.00 68.70 71.40 3.11
X(X(SLEX , SSY N ),MSY N ) 78.90 81.80 75.60 75.20 77.40 72.80 3.16

Early Cross Early Fusion

E(MLEX , X(SLEX ,MLEX)) 79.20 82.40 75.70 76.00 79.50 72.10 3.57
E(MSY N , X(SLEX ,MLEX)) 78.30 80.50 75.80 75.20 75.40 75.00 1.95

Late Cross Early Fusion

L(MSY N , X(SLEX ,MSY N )) 78.60 81.10 75.80 67.80 71.40 63.80 4.22
L(MLEX , X(SLEX ,MLEX)) 79.50 82.80 75.70 76.09 79.10 72.70 3.96

Early Late Cross Early Fusion

E(MLEX , L(MSY N , X(SLEX ,MSY N ))) 78.50 81.40 75.40 74.20 78.20 69.80 4.26
E(MLEX , L(MLEX , X(SLEX ,MLEX))) 79.50 82.70 75.90 75.80 78.50 72.70 3.99

sense found per target word) or because the performance shown by those configurations
is not interesting.

Regarding Single Features, MLEX comes on top of MSY N again. Nonetheless,
MSY N is much closer in terms of performance, and as expected, it is actually higher
with regards to verbs.

On the 1F level, we see that the early fusion technique in this task does not sur-
pass the independent features representation. Our intuition is that the similarities of
both matrices seem to be correlated. In cross early fusion, the best result is obtained by



X(SLEX ,MLEX), regarding the unsupervised F-measure. This configuration already
beats our baselines, improving both noun and verb results on the unsupervised evalua-
tion, improving the supervised recall of nouns, and staying on the same level consider-
ing all words. Also, it produces more senses than the MSF average number of senses (1
sense per target word), which is good but not indicative of results correctness. Regard-
ing cross late fusion, given the average number of clusters produced, it seems that both
results converge towards the MFS, therefore we do not consider these results.

Beginning with the fusion recombinations, in level 2F, both cross late early fu-
sions yield average results. In cross early cross early fusion, the early fusion of MLEX

with X(SLEX ,MLEX) yields very similar results than X(SLEX ,MLEX). The next
natural step is to test this fusion via a linear combination, with a late fusion. The
result obtained confirmed the intuition of enriching a single feature matrix with an-
other weighted-down matrix to improve the performance. Indeed, we consider that
L(MLEX , X(SLEX ,MLEX)) gets the best results in terms of all-words supervised
recall and the second best all-words unsupervised F-measure (we do not consider solu-
tions that are too close to the MFS baseline).

We test the same configurations as in NER, within the NF level, to try and improve
our results. Nonetheless, in general, they do not overcome the best result found previ-
ously.

In general, we found that the recombination fusion techniques work in terms of
improving the performance of the tasks addressed. In the following, we make our final
remarks and the future work to be done regarding fusion techniques on NLP tasks.

5 Conclusion and Future Work

In this paper, we presented a comparative study of multimedia fusion techniques applied
to two NLP tasks: Named Entity Recognition and Word Sense Induction and Disam-
biguation. We also proposed new fusion recombinations in order to complement the
information contained in the single representation matrices. In order to accomplish this
goal, we built upon basic fusion techniques such as early and late fusion, as well as
cross media fusion to transfer quality information from one set of features to another.

We found that by taking a strong feature, in our case lexical context, MLEX , and
enriching it with the output of rather complex fusion combinations, we can improve the
performance of the tasks addressed. The enrichment has to give more relevance to the
strong feature matrix, by selecting the right parameters.

While there is an improvement, we do note that fusion techniques augment the
computing time and memory consumption of the tasks at hand by enlarging the feature
space or by making it more dense. In that sense, more intelligent ways of finding the
most appropriate fusion must be researched. This is indeed one of our future work
paths: determining an optimal fusion path from single features to a N-degree fusion
recombination. Coupled with this, the automatic determination of the parameters is still
ongoing research in the multimedia fusion community. Consequently, we believe that
efficiently determining both parameters and fusion combinations is the general domain
of our future work. Another route we would like to explore is testing these techniques on
other tasks and with datasets from different domains, in order to assert its effectiveness.
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