
Hypergraph Modelization of a Syntactically Annotated English Wikipedia
Dump

Edmundo-Pavel Soriano-Morales, Julien Ah-Pine, Sabine Loudcher
Université de Lyon, Laboratoire ERIC, France

{edmundo.soriano-morales, julien.ah-pine, sabine.loudcher}@univ-lyon2.fr

Abstract
Wikipedia, the well known internet encyclopedia, is nowadays a widely used source of information. To leverage its rich information,
already parsed versions of Wikipedia have been proposed. We present an annotated dump of the English Wikipedia. This dump draws
upon previously released Wikipedia parsed dumps. Still, we head in a different direction. In this parse we focus more into the syntactical
characteristics of words: aside from the classical Part-of-Speech (PoS) tags and dependency parsing relations, we provide the full
constituent parse branch for each word in a succinct way. Additionally, we propose a hypergraph network representation of the extracted
linguistic information. The proposed modelization aims to take advantage of the information stocked within our parsed Wikipedia dump.
We hope that by releasing these resources, researchers from the concerned communities will have a ready-to-experiment Wikipedia
corpus to compare and distribute their work. We render public our parsed Wikipedia dump as well as the tool (and its source code) used
to perform the parse. The hypergraph network and its related metadata is also distributed.

1. Introduction and Related Work
Today, the broad reach of Wikipedia in Text Mining (TM)
and Natural Language Processing (NLP) research is indis-
putable. Several recent approaches and tools have been
conducted based on the explicit and implicit knowledge
contained in it. Certainly, Wikipedia provides a common
ground for researchers and developers to test and compare
their results.
Wikipedia has been used as a source of valuable data as
well as a common background corpus to perform exper-
iments and compare results for diverse NLP/TM related
tasks. For example, concerning the first case, in the area of
Information Extraction, Wikipedia’s infoboxes structured
information is used in (Wu and Weld, 2010) as a valuable
resource to complement and improve their open IE system.
Along the same line, (Charton and Torres-Moreno, 2010)
extracted metadata from Wikipedia while leveraging its in-
ternal structure in order to produce a semantically anno-
tated corpus. Moving on to the Information Retrieval field,
features extracted from Wikipedia can also help to better
predict the performance of a query (Katz et al., 2014) in
a given corpus. In the second case, as a background col-
lection for experiments, a document-aligned version of En-
glish and Italian Wikipedia has been used to determine the
quality between word’s translations (Vulić et al., 2011).
Wikipedia, being such a popular resource already has var-
ious off-the-shelf parsed snapshots (or dumps). These
parsed dumps allow researchers to focus more into their
approaches than into the extraction and transformation of
Wikipedia’s data. We briefly describe certain relevant
parses found in the literature.
A relevant Wikipedia parsed dump example comes from
(Jordi Atserias and Attardi, 2008). Their work provides a
balanced amount of syntactic and semantic information. In
short, the dump includes each word’s Part-of-Speech (PoS)
tag, their dependency relations as well as the output of three
different named entity recognition parsers. Additionally,
they provide a graph structure that leverages Wikipedia’s
internal composition alongside its corresponding metadata.

Nonetheless, the resource is no longer available on the orig-
inal URL although it may be obtained through Yahoo’s
Webscope1 datasets library. In (Flickinger et al., 2010),
they perform a deep parse analysis is performed to provide
detailed syntactic and semantic information. The authors
leverage a previously manually annotated portion of the En-
glish Wikipedia. They extract a grammar from this portion
and also train a statistical model to automatically parse the
rest of Wikipedia. Even though the parse offered is deep
and rich in details, the annotation labels, as well as the cor-
pus output format, may not be convenient and easy to use
because of its complexity and particular nature. (Schenkel
et al., 2007) released a purely semantic XML parse that
links WordNet concepts to Wikipedia pages. They focus
greatly on cleaning and pre-treating Wikipedia. In this pa-
per we do not focus as much into the cleaning of Wikipedia
as already available tools can solve the task quite well for
non-specific needs. Finally, there are certain Wikipedia
dumps that offer the raw cleaned text without any extra sub-
sequent parsing or analysis. Such is the case of the corpus
made available by (Shaoul and Westbury, 2010). This cor-
pus makes use of the WikiExtractor script (Giuseppe At-
tardi, 2015) to clean the Wikipedia dump.
Although the existing parses and dumps already satisfy nu-
merous specific research needs, they have certain limita-
tions that drove us to build our own resource: the Syn-
tactically Annotated English Wikipedia Dump (SAEWD).
Specifically, we address the following shortcomings: the
lack of constituents-based tree information, the complex
output formats, the limited online access and the absence of
the tools used (i.e., the source code) to create the annotated
corpus. In SAEWD we include the complete parse tree in-
formation for each word provided by well-known parsing
tools. We store the extracted information in a simple and
already existing output format. Additionally, we give open
access to the parsed dump and we share our source code
with the community. The code allows anyone (with pro-
gramming skills) to apply our processing pipeline and build

1https://webscope.sandbox.yahoo.com/

https://webscope.sandbox.yahoo.com/


their own particular Wikipedia parse or even to parse other
text collections. Finally, we present and provide a hyper-
graph linguistic network for fast NLP/TM experimentation.
Indeed, SAEWD aims to be used as a stepping stone for a
standard Wikipedia parsed version for the largest possible
set of tasks in future research.
SAEWD uses widely known English language parsing
tools, namely those included in the Stanford CoreNLP
suite. Aside from being accessible and regularly main-
tained, it provides a common set of labels (Universal De-
pendencies2) used by numerous NLP and TM experiments.
Regarding SAEWD output’s format, we believe that the file
format we use, which follows that of (Jordi Atserias and At-
tardi, 2008), allows for fast reading and simple interpreta-
tion. Among other syntactical information, we provide the
constituents parse branch for each word (explained in de-
tail in Section 3.). Constituent’s paths, and hence chunk’s
production rules, have been proved useful as a complement
feature to classic text representations (Sagae and Gordon,
2009; Bergsma et al., 2012; Massung et al., 2013).
As a second contribution, we propose a hypergraph lin-
guistic representation. Over the past few years, research
on the NLP domain has been focusing on novel techniques
that take advantage of the characteristics of language net-
works to achieve new and interesting results (Rada Mihal-
cea and Dragomir Radev, 2011). That is why, in addi-
tion to SAEWD, we also propose, as a proof of concept,
a hypergraph representation that stores certain information
found in a SAEWD in a practical way that allows for fast
and effortless data extraction. This hypergraph can be in-
deed considered as a Linguistic Network (Choudhury and
Mukherjee, 2009). It aims to facilitate the implementation
of graph-based approaches by allowing researchers to jump
directly into the algorithm development stage. We use a
sub-sample of the Wikipedia corpus consisting of articles
related to Natural Language Processing and Text Mining.
In the following sections we describe the steps we under-
took to transform a Wikipedia dump into SAEWD (Section
2), we give a detailed account of the contents of SAEWD
and the format in which we stored the parsed information
(Section 3), then we explain the characteristics of our pro-
posed network structure (Section 4). Lastly, we present our
final comments on the nature of the work done as well as
possible future work perspectives.

2. Construction of SAEWD
The three main steps we followed to build SAEWD are pre-
sented in Figure 1. Briefly, we have one input, which is the
Wikipedia dump and one output which is the parsed snap-
shot. In the following we provide a detailed description of
each of the process.
We begin the construction of the parsed corpus with the
Wikipedia dump XML file obtained from the Wikipedia
database3 from early November 2014. This dump contains
around 4.7 million article pages4. As shown in Figure 1,

2http://universaldependencies.github.io/
docs/

3https://dumps.wikimedia.org/enwiki
4We kept all articles available in the Wikipedia dump.

Clean
Wikipedia

Wikipedia
Dump

Parse
Wikipedia

Identify Tokens

PoS tags

Syntactic Parse

Store
Wikipedia

Parse

YAWPD

Figure 1: The tree steps we took to build SAEWD.

we apply the following processing steps in order to yield
the final parsed version.

2.1. Cleaning Wikipedia
First, we discard Wikipedia’s tables, references and lists,
markup annotations and HTML tags with the WikiExtractor
(Giuseppe Attardi, 2015) script. We used this tool to clean
and split the content of the original XML file into 429 fold-
ers each one containing 100 files of approximately 300 kB.
These files contain a certain number of complete Wikipedia
articles which is automatically determined by WikiExtrac-
tor according to the maximum possible size assigned for
each file, 300 kB in our case, thus the number of articles
in each file may vary. We decided to use numerous files as
well as a small size to easily read their content into mem-
ory while parsing. Having multiple small files also makes
it easier to handle the multi-threading aspect of our pars-
ing tool. We kept WikiExtractor’s original folder nomen-
clature which assigns to each one of them a sequence of
letters sorted lexicographically5. The files containing the
cleaned text is simply named wiki XX where XX goes from
00 to 99, as we have 100 files per folder. It is important
to note that the Wikipedia articles’ titles themselves are not
sorted in any specific way, as it was not in the interest of
our research to have them ordered. Inside each cleaned file,
besides the article’s text, WikiExtractor keeps the original
article’s URL as well as its unique Wikipedia ID within an
XML-like label that also doubles as article separator.

2.2. Parsing Wikipedia
Next, once the Wikipedia dump had been cleaned, we use
the Stanford CoreNLP6 (Manning et al., 2014) analysis
tools to parse all the file texts produced during the previous
step. As a part of our processing pipeline, we first perform
sentence segmentation, word tokenization and lemmatiza-
tion. Below, we briefly describe each of the extracted at-
tributes. We also exemplify them in detail in Section 3..

5We have folders named AA, AB, AC and so on.
6http://nlp.stanford.edu/software/

corenlp.shtml

http://universaldependencies.github.io/docs/
http://universaldependencies.github.io/docs/
https://dumps.wikimedia.org/enwiki
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml


Number of tokens 1,889,769,908
Unique tokens (types) 8,761,691
Number of sentences 84,760,512
Average number of tokens per sentence 22.30

Table 1: English Wikipedia dump statistics.

• PoS tagging: We obtain the grammatical category
of each word, i.e., the part-of-speech tag, using the
CoreNLP default tagger, the left3words PoS tagging
model.

• Dependency parse: this attribute consists on an ex-
tracted tree that describes the types of grammatical
relations between words, i.e., the dependency-based
parse tree. The analysis was performed with the Stan-
ford’s Shift-Reduce parser. As information represen-
tation, we use the basic dependencies scheme, as we
wanted to include each one of the possible dependency
relations without any collapsing between them.

• Constituents parse: the output of this analysis is
a rooted tree that represents the syntactic structure
of a phrase. This tree is commonly known as the
constituency-based parse tree. For each word, we store
its complete path in the constituency tree. Specifically,
we keep all the nodes of a word’s own branch from the
root to the word itself. We employ the Stanford Shift-
Reduce parser. This path is transformed into a single
line and included in SAEWD.

Finally, once the parsing process is complete, the parsed
files are stored into individual files and thus there are as
much parsed files as input Wikipedia cleaned files. The
parsed files keep their original name plus the parsed ex-
tension, e.g., wiki 00.parsed. The structure within the
files is described in Section 3.2.. After parsing, we found
the statistics shown in Table 1.

3. SAEWD Description
In this section we describe in detail the characteristics of
SAEWD.

3.1. Constituency parse storage in detail
We will use an example to better explain the storage of the
constituency-based parse tree. In Figure 2 we can see the
constituency parse of the phrase A great brigand becomes a
ruler of a Nation. On the bottom of the figure, we observe
the constituent’s path (or branch), of the words brigand and
Nation. As in any tree structure, each leaf node has a de-
fined path from the root node to itself. In this example,
the leaf containing the noun brigand follows the bottom-up
path NP22→S97. Brigand’s parent node is a Noun Phrase
(NP) node which in turn comes from the root of the tree,
the Sentence node S. We assign to each phrase chunk an
identifier (22 and 97 in this case) in order to distinguish
them according to their building elements as specified by
the grammar rule used. In other words, a phrase chunk, e.g.,
a NP, a Verbal Phrase (VP), a Prepositional Phrase (PP), or
other chunk defined by the grammar in CoreNLP, may be
built from different types of PoS tags. Thus, again from

S97

NP22

DT

A

NN

report

VP44

VBZ

becomes

NP20

NP18

DT

a

NN

ruler

PP57

IN

of

NP18

DT

a

NN

Nation

brigand (NN): NP22→S97
Nation (NN): NP18→PP57→NP20→VP44→S97

Figure 2: Constituency tree for the phrase A great brigand
becomes a ruler of a Nation.

Figure 2, we see that the sentence S97 is built both from
a NP and a VP chunk. In a similar way, the noun phrase
NP18 is produced by a determinant (DT) and a noun (NN),
while NP22 is generated by a determinant, an adjective (JJ)
and a noun. The identification digits are obtained from the
hash code that represents each chunk object inside our Java
application. For each phrase-chunk tree node, we keep the
last two significative figures produced by the hashCode7

Java method.
As another example, the noun Nation has
the following bottom-up constituency path:
NP18→PP57→NP20→VP44. Indeed, the string
NP 18,PP 57,NP 20,VP 44,S 97, originating
from the previously described path, is the information we
keep about the constituency parse for each token in the
Wikipedia dump.

3.2. Annotation scheme
To store the parsed text we use a scheme inspired by that
used in (Jordi Atserias and Attardi, 2008). The format can
be considered as a regular tsv file (i.e., the entries are sep-
arated by tab spaces) with additional metadata tags. An
extract from a parsed file can be observed in Table 2.
The file includes two headers: the first one simply indicates
the name of the current parse file; the second one contains
the names that describe each column. The tags and columns
our parsed dump contains are the following:

• Metadata tags:

1. FILENAME: indicates the original file used to
extract the current parse,

2. %%#PAGE: denotes a new Wikipedia article, as
well as its title,

7Java hashCode function description: https://en.
wikipedia.org/wiki/Java_hashCode%28%29

https://en.wikipedia.org/wiki/Java_hashCode%28%29
https://en.wikipedia.org/wiki/Java_hashCode%28%29


FILENAME wiki 00.parsed
token lemma POS constituency head dependency
%%#PAGE Anarchism
...

...
...

...
...

...
%%#SEN 25 9
A a DT NP 22,S 97 3 det
great great JJ NP 22,S 97 3 amod
brigand brigand NN NP 22,S 97 4 nsubj
becomes become VBZ VP 44,S 97 0 root
a a DT NP 18,NP 20,VP 44,S 97 6 det
ruler ruler NN NP 18,NP 20,VP 44,S 97 4 xcomp
of of IN PP 57,NP 20,VP 44,S 97 9 case
a a DT NP 18,PP 57,NP 20,VP 44,S 97 9 det
Nation nation NN NP 18,PP 57,NP 20,VP 44,S 97 6 nmod

Table 2: Extract of a Wikipedia parsed file. The phrase shown is the parse result of the previous example sentence in
Figure 2

PoS Tag Token NP DEP SEN
NP 221 NP 201 NP 181 NP 182 nsubj become xcomp become nmod ruler amod brigand S1

NN
brigand 1 1 1
ruler 1 1 1 1
nation 1 1 1 1

VB becomes 1
JJ great 1 1 1

Table 3: Brief example of the linguistic network incidence matrix of the previous used phrase. On the left side, as on the
top, we can see the metadata we store for each word (rows) and each column (hyperedges). We omit the rest of the words
from the example phrase for brevity.

3. %%#SEN: marks the beginning of a new sen-
tence. It is followed by two integers: (1) the num-
ber of the current sentence, and (2), the number
of tokens in the sentence.

• Parse columns for each token:

1. Token: the token itself,

2. Lemma: the token the canonical form,

3. POS: its part of speech tag,

4. Constituency: the bottom-up constituency path
described before,

5. Head: the head index of the dependency relation
the current token belongs to,

6. Constituency: the name of the grammatical rela-
tionship this token participates in as a dependent.

Using the example phrase introduced before (Table 2), the
token becomes has become as lemma, it is a verb, thus it has
VBZ as PoS tag, its constituency path is VP 44,S 97, so it
belongs to the verb phrase VP44 which in turn comes from
sentence S97. Finally, becomes, being the main verb, is in
this case the grammatical root of the sentence and its head
is by convention determined as zero.
Concerning the computation time, SAEWD takes around
40 hours to be produced using a general purpose laptop (In-
tel i7 4700MQ with 4 cores, 8 GB and Linux Mint 17 as
operative system). Most of the time is taken by the parsing
step.

We verified the consistency of the corpus built by analyzing
a sample of 20 Wikipedia articles. The output of CoreNLP
and the information contained in the corpus match.

4. Hypergraph and its Metadata
Once SAEWD is saved to disk, we leverage its informa-
tion by building a linguistic network by connecting tokens
according to their interaction within the Wikipedia corpus.
The following section describes the network built from a
sample of the information stored in SAEWD.
Given the large size of the Wikipedia corpus, we chose a
sample of it to illustrate our proposed representation. We
selected all the articles that are linked and that link to the
Natural Language Processing Wikipedia’s page.
The network is modeled as a hypergraph. Briefly, a hy-
pergraph is a graph generalization where the main differ-
ence is that edges (named hyperedges) can link any num-
ber of vertices. Hypergraphs have been previously used to
model complex networks allowing for a more complete rep-
resentation of their inner dynamics (Estrada and Rodriguez-
Velazquez, 2005). In our case, hyperedges allow us to
group words together according to certain features, such
as whether words belong to the same phrase chunk, to the
same sentence, whether they share the same dependency
relation or if they occur in the same context window with
another and so on.
Our hypergraph provides a structure that establishes rela-
tions between tokens. These relationships can be one of
two broad types: syntactical dependencies or contextual
co-occurrences. The former takes into account the gram-



matical relation tokens partake in; the latter connects words
according to their co-occurrences at the sentence or NP
chunk level. Formally, our hypergraph is defined by a pair
G = (V,E), where the vertices V = {v1, v2, ..., vn} repre-
sent the set of tokens in the corpus and E = {e1, e2, ..., em}
the set of hyperedges.
Each hyperedge may be one of three types: noun phrase
(NP), dependency (DEP), or sentence (SEN). These hy-
peredges represent linuistic units. The NP set of hyper-
edges contain words that appear in the same noun phrase.
In the same sense, DEP hyperedges are the sets of words
that share the same syntactic dependency relation (as de-
pendents of a specific head). Finally, hyperedges of type
SEN group tokens that appear in the same sentence.
Our hypergraph can be represented as a n × m incidence
matrix with entries h(i, j) = N(vi, ej) where N(vi, ej) is
the number of times vi ∈ ej occurs in the corpus. That is
to say, the value h(i, j) correspond to the number of times
a token i occurs in the same sentence, noun phrase or syn-
tactic relation j across the entire Wikipedia corpus.
Table 3 shows the nature of the hypergraph data structure
we provide using again the example phrase described in
previous sections. There are two main parts to it: (1) the
incidence matrix, and (2) its accompanying metadata. The
matrix contains the counts of the occurrences of each word
within each kind of column as stated above. The meta-
data is the information that describes the meaning of each
row (tokens) and each column (hyperedges) in the matrix.
The matrix itself contains only positive values as it is the
number of times each word has occurred in each one of
the hyperedges considered. The metadata, shown in Table
3, gives us, for each line and column, information about
the token itself, its PoS tag, the type of column (NP,DEP,
SEN), and the sub-type columns of NP and DEP, that is,
what kind of noun phrase or syntactic relation we are con-
sidering. Looking at the first line of the matrix, we can
know it is the token brigand, which is a noun (its PoS tag
is NN). The metadata also tells us that it occurred in the
first noun phrase of type NP 22, it took part in the nominal
subject relation (nsubj) where the head was the lemmatized
token become. Finally, we know it occurred in the same
sentence as ruler, nation, becomes, great and the rest of the
words from the phrase, which are not shown for brevity.
We store the incidence matrix (which is in fact a sparse ma-
trix) on disk as a Matrix Market format file. The metadata
is stored as JSON files. Both formats allow for an easy data
lecture.

5. Conclusion and Future Work
We parsed the English Wikipedia, focusing on syntactic
features namely the dependencies and constituents parse
trees. We believe that the constituent membership for each
token is a rich source of information for future research.
The Wikipedia dump was stripped clean of tables, lists and
other noisy elements, thanks to the WikiExtractor script.
Our analysis was done with the CoreNLP suite which is a
common tool among NLP/TM researchers and developers.
It is a reliable tool that allow us to hastily and reliably pro-
cess the complete corpus. The format of SAEWD follows a

previous one which hopefully will allow for an easier adop-
tion throughout the community.
We proposed and make available a hypergraph repre-
sentation of a sample of the data collected in SAEWD.
All our resources are available in http://eric.
univ-lyon2.fr/˜psoriano/SAWD.html.
As future research directions, we are currently working
with the information contained in SAEWD, in part us-
ing the network proposed. We believe that the use of
the constituency paths, coupled with the classic word co-
occurrence relations, can shed light into interesting results
to a number of tasks in NLP. Concerning the hypergraph,
we plan to analyze the possible redundancy that may exist
while adding hyperedges for each noun phrase found in the
corpus. Although we get access to detailed syntactic infor-
mation, the number of columns grows rapidly. Finally, a
comparison between the nature of the network among dif-
ferent languages is also of our interest.

6. References
Bergsma, S., Post, M., and Yarowsky, D. (2012). Stylo-

metric Analysis of Scientific Articles. In Proceedings of
the 2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, NAACL HLT ’12, pages 327–
337, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Charton, E. and Torres-Moreno, J.-M. (2010). NLGbAse:
A Free Linguistic Resource for Natural Language Pro-
cessing Systems. In Proceedings of the Seventh confer-
ence on International Language Resources and Evalu-
ation (LREC’10), Valletta, Malta, May. European Lan-
guage Resources Association (ELRA).

Choudhury, M. and Mukherjee, A. (2009). The structure
and dynamics of linguistic networks. In Ganguly, N.,
Deutsch, A., and Mukherjee, A., editors, Dynamics On
and Of Complex Networks, Modeling and Simulation in
Science, Engineering and Technology, pages 145–166.
Birkhäuser Boston.

Estrada, E. and Rodriguez-Velazquez, J. A. (2005).
Complex networks as hypergraphs. arXiv preprint
physics/0505137.

Flickinger, D., Oepen, S., and Ytrestøl, G. (2010).
WikiWoods: Syntacto-Semantic Annotation for English
Wikipedia. In Proceedings of the Seventh Interna-
tional Conference on Language Resources and Evalu-
ation (LREC’10), Valletta, Malta, May. European Lan-
guage Resources Association (ELRA).

Giuseppe Attardi. (2015). WikiExtractor. https://
github.com/attardi/wikiextractor.

Jordi Atserias, Hugo Zaragoza, M. C. and Attardi, G.
(2008). Semantically Annotated Snapshot of the En-
glish Wikipedia. In Proceedings of the Sixth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’08), Marrakech, Morocco, May. European
Language Resources Association (ELRA).

Katz, G., Shtock, A., Kurland, O., Shapira, B., and Rokach,
L. (2014). Wikipedia-based query performance predic-
tion. In Proceedings of the 37th international ACM SI-

http://eric.univ-lyon2.fr/~psoriano/SAWD.html
http://eric.univ-lyon2.fr/~psoriano/SAWD.html
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor


GIR conference on Research & development in informa-
tion retrieval, pages 1235–1238. ACM.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. (2014). The Stan-
ford CoreNLP Natural Language Processing Toolkit. In
Proceedings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations,
pages 55–60.

Massung, S., Zhai, C., and Hockenmaier, J. (2013). Struc-
tural parse tree features for text representation. In Se-
mantic Computing (ICSC), 2013 IEEE Seventh Interna-
tional Conference on, pages 9–16.

Rada Mihalcea and Dragomir Radev. (2011). Graph-
based Natural Language Processing and Information
Retrieval. Cambridge University Press. Cambridge
Books Online.

Sagae, K. and Gordon, A. S. (2009). Clustering Words
by Syntactic Similarity Improves Dependency Parsing of
Predicate-Argument Structures. In International Confer-
ence on Parsing Technologies (IWPT-09), Paris, France,
October.

Schenkel, R., Suchanek, F. M., and Kasneci, G. (2007).
YAWN: A semantically annotated wikipedia XML cor-
pus. In Datenbanksysteme in Business, Technologie und
Web (BTW 2007), 12. Fachtagung des GI-Fachbereichs
”Datenbanken und Informationssysteme” (DBIS), Pro-
ceedings, 7.-9. März 2007, Aachen, Germany, pages
277–291.

Shaoul, C. and Westbury, C. (2010). The Westbury
Lab Wikipedia Corpus. http://www.psych.
ualberta.ca/˜westburylab/downloads/
westburylab.wikicorp.download.html.

Vulić, I., De Smet, W., and Moens, M.-F. (2011). Iden-
tifying word translations from comparable corpora us-
ing latent topic models. In Proceedings of the 49th An-
nual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies: short papers-
Volume 2, pages 479–484. Association for Computa-
tional Linguistics.

Wu, F. and Weld, D. S. (2010). Open information extrac-
tion using wikipedia. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguis-
tics, ACL ’10, pages 118–127, Stroudsburg, PA, USA.
Association for Computational Linguistics.

http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html
http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html
http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html

	Introduction and Related Work
	Construction of SAEWD
	Cleaning Wikipedia
	Parsing Wikipedia

	SAEWD Description
	Constituency parse storage in detail
	Annotation scheme

	Hypergraph and its Metadata
	Conclusion and Future Work
	References

