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sabine.loudcher@univ-lyon2.fr

Laboratory ERIC – University of Lyon 2
5 avenue Pierre Mendès–France,

69676 Bron Cedex, France

ABSTRACT
On Line Analysis Processing (OLAP) is a technology basi-
cally created to provide users with tools in order to explore
and navigate into data cubes. Unfortunately, in huge and
sparse data volumes, exploration becomes a tedious task and
the simple user’s intuition or experience does not always lead
to efficient results. In this paper, we propose to exploit the
results of the Multiple Correspondence Analysis (MCA) in
order to enhance a data cube representation. Our approach
address the issues of organizing data in an interesting way
and detecting relevant facts. We also treat the problem of
evaluating the quality of data representation in a multidi-
mensional space. For this, we propose a new criterion to
measure the relevance of data representations. This crite-
rion is based on the concept of geometric neighborhood and
similarity between cells of a data cube. The experimental
results we led on real data samples have shown the interest
and the efficiency of our approach.

Categories and Subject Descriptors
B.8.2 [Hardware]: Performance and reliability—Performance
Analysis and Design Aids; E.1.1 [Data]: Data structures—
Arrays; H.4.2 [Information Systems]: Information sys-
tems ApplicationsTypes of Systems[Decision support]

General Terms
Algorithms, Experimentation, Performance

Keywords
OLAP, Data cubes, Data representation, MCA, Test-values,
Arrangement of attributes, Characteristic attributes, Homo-
geneity criterion
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1. INTRODUCTION
On-Line Analytical Processing (OLAP) is a technology

supported by most data warehousing systems [9, 12]. It
provides a platform for analyzing data according to multi-
ple dimensions and multiple hierarchical levels. Data are
presented in multidimensional views, commonly called data
cubes [3]. A data cube can be considered as a space repre-
sentation composed by a set of cells. A cell is associated with
one or more measures and identified by coordinates repre-
sented by one member from each dimension. Each cell in a
cube represents a precise fact. For example, if dimensions
are products, stores and months, the measure of a particular
cell can be the sales of one product in a particular store on a
given month. OLAP provides the user with tools to summa-
rize, explore and navigate into data cubes in order to detect
interesting and relevant information. However, exploring a
data cube is not always an easy task to perform. Obviously,
in large cubes containing sparse data, the whole analysis
process becomes tedious and complex. In such a case, an in-
tuitive exploration based on the user’s experience does not
quickly lead to efficient results. More generally, in the case
of a data cube with more than three dimensions, a user is
naturally faced to a hard task of navigation and exploration
in order to detect relevant information. Current OLAP pro-
vides query-driven tools to browse data cubes, but does not
deeply assist the user and help him/her to investigate inter-
esting patterns.
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Figure 1: Example of different representations of a
2-dimensional data cube.

For example, consider the cube of Figure 1(a). This cube
displays sales of products (P1, . . . , P10) crossed by geographic
locations of stores (L1, . . . , L8). In one hand, in the Fig-



ure 1(a), the way the cube is displayed does not provide an
attractive representation that helps a user to easily inter-
pret data. Full cells (gray cells) of are displayed randomly
according to the lexical ordering of the members1 in each
dimension. On the other hand, Figure 1(b) contains the
same information as Figure 1(a). However, it displays a
data representation that is easier to analyze. Furthermore,
the cube of Figure 1(b) emerges interesting facts by gather-
ing full cells together. Such a representation is more com-
fortable to perform efficient analysis. Representation (b) of
Figure 1 can be interactively constructed by the user from
representation (a) via some classic OLAP operators. This
suppose that the user intuitively knows how to arrange the
attributes. Therefore, we propose to provide the user with
an assistance to identify interesting facts and arrange them
in a suitable representation. As shown in Figure 1, we pro-
pose an approach that allows the user to get relevant facts
and displays them in an appropriate way that enhances the
exploration process independently of the cube’s size. Thus,
we suggest to carry out a Multiple Correspondence Anal-
ysis [10] (MCA) on a data cube as a preprocessing step.
Basically MCA is a powerful describing method even for
huge volumes of data. It factors categorical variables and
displays data in a factorial space constructed by orthogonal
system of axis that provides relevant views of data. These
elements motivate us to exploit the results of the MCA in
order to better explore large data cubes by identifying and
arranging its interesting facts. The firsts constructed facto-
rial axis summarizes the maximum of information contained
in the cube. We focus on relevant OLAP facts associated
with characteristic attributes (variables) given by the fac-
torial axis. These facts are interesting since they reflect
relationships and concentrate a significant information. For
a better visualization of these facts, we highlight them and
arrange their attributes in the data space representation by
using the test-values [15] (see subsection 5.1).

We also propose in this paper a novel quality representa-
tion criterion to evaluate relevance of multidimensional data
representations (see section 6). This criterion is based on ge-
ometric neighborhood of data cube cells. It also take into
account the similarity of measure of cells. The goal of this
criterion is to provide a scalar quantification for the qual-
ity representation of a given data cube. It also allows to
evaluate the performance of our approach by comparing the
quality of initial data representation and the arranged one.

This paper is organized as follows. In section 2, we present
some related work to our approach. We provide in section 3
the problem formalization and present the general context
of this work. The section 5 introduces the test-values and
details steps of our approach. We define in the next section
our quality representation criterion. The section 7 presents
a real world case study on a huge and sparse data cube. We
propose experimental results in the section 8. Finally, we
conclude and propose some future works.

2. RELATED WORK
Several works have already treated the issue of enhancing

the space representation of data cubes. These works were
undertaken following different motivations and adopted dif-

1To avoid confusion in the followings, we adopt the term
“attribute” to indicate a “member” or a “modality” of a
dimension.

ferent ways to address the problem. While some are inter-
ested to technical optimization (storage space, queries re-
sponse time, etc.), others have rather focused on OLAP as-
pects. Our present work fits into the second category. Recall
that, in our case, we focus on assisting OLAP users in or-
der to improve and help the analysis process on large and
sparse data cubes. We use a factorial approach to highlight
relevant facts and provide interesting data representations
for the analysis.

In [21], Vitter et al. proposed to build compact data cubes
by using approximation through wavelets. Another data
structure, called Quasi-Cube [1], compresses data represen-
tation by materializing only sufficient parts of a data cube,
the remaining parts are approximated by a linear regression.
In [19] approximation is performed by estimating the den-
sity function of data. Dwarf [20] reduces the storage space of
a cube by identifying and factoring redundant tuples in the
fact’s table. Wang et al. propose to factorize these redun-
dancies by exploiting BST [22] (Base Single Tuple). Thus, a
more condensed data cube (MinCube) was proposed. In [7],
Feng et al. introduce PrefixCube, a data structure based
on only one BST.

The Quotient Cube [13] method summarizes semantic con-
tents of a data cube and partitions it into cells with identi-
cal values. In [14], Quotient Cube was involved and a novel
data structure, QC-Tree, was proposed. QC-Tree is directly
constructed from the base table in order to maintain it un-
der updates. Feng et al. [8] identify correlation between
attributes values and propose the Range CUBE method to
compute and compress a data cube without loss of precision.
Ross and Srivastava [18] propose Partitioned-Cube. This
algorithm is based on partitioning the large relations into
fragments. Operations over the whole cube are performed
on each memory-sized fragment independently. In [16], huge
high dimensional data are partitioned in disjoint small datasets.
For each dataset, a local data cube is computed offline and
used to compute queries in an online fashion.

Finally, in our approach we share already the same moti-
vation of Choong et al [5, 4]. They also address the problem
of high dimensionality of data cubes and try to enhance anal-
ysis processes by preparing the data set into appropriate rep-
resentation so that the user can explore it in a more effective
manner. The authors use an approach that combines asso-
ciation rules algorithm and a fuzzy subsets method. Their
approach consists in identifying blocks of similar measures
in the data cube. However, this approach does not take into
account the problem of sparse data cubes.

3. PROBLEM FORMALIZATION
Let C denote a data cube. Note that, our approach can be

applied directly on C or on a data view (a sub-cube) taken
from an initial cube C. It is up to the user to select dimen-
sions, fix one hierarchical level per dimension and select mea-
sures in order to create a particular data view (s)he wishes
to visualize. Thus, to enhance the data representation of the
constructed view, the user can apply on it our proposed ap-
proach. In order to lighten the formalization, in the follow-
ings of the paper, we assume that a user has selected a data
cube C, with d dimensions (D1, . . . , Dt, . . . , Dd), mmeasures
(M1, . . . ,Mq, . . . ,Mm) and n facts. We also assume that
the user has fixed one hierarchical level with pt categorical
attributes per dimension. Let at

j the jth attribute of the di-



mension Dt and p =
Pd

t=1 pt the total number of attributes
in C. For each dimension Dt, we note {at

1, . . . , a
t
j , . . . , a

t
pt
}

the set of its attributes.
In a first step, the aim of our approach is to organize

the space representation of a given data cube C by arrang-
ing the attributes of its dimensions. For each dimension Dt,
our approach establishes a new arrangement of its attributes
at

j in the data space (see subsection 5.2). This arrangement
provides a data representation visually easier to interpret
and displays multidimensional information in a more suit-
able way for analysis. In a second step, our approach detects
from the resulted representation relevant facts expressing in-
teresting relationships. To do that, we select from each di-
mension Dt a subset Φt of significant attributes, also called
characteristic attributes (see subsection 5.3). The crossing
of these particular attributes allows to identify relevant cells
in the cube.

Our approach is based on the MCA [10, 15]. The MCA
is a factorial method that displays categorical variables in a
property space which maps their associations in two or more
dimensions. From a table of n observations on p categori-
cal variables, describing a p-dimensional cloud of individu-
als (p < n), the MCA provides orthogonal axis to describe
the most variance of the whole data cloud. The fundamen-
tal idea is to reduce the dimensionality of the original data
thanks to a reduced number of variables (factors) which are
a combination of the original ones. The MCA is generally
used as an exploratory approach to unearth empirical regu-
larities of a dataset.

In our case, we assume the cube’s facts as the individuals
of the MCA, the cube’s dimensions as its variables, and the
attributes of a dimension as values of their corresponding
variables. We apply the MCA on the n facts of the cube C
and use its results to build test-values (see subsection 5.1)
for the attributes at

j of the dimensions Dt. We exploit these
test-values to arrange attributes and detect characteristic
ones in their corresponding dimensions.

4. APPLYING THE MCA ON A DATA CUBE
Like all statistic methods, the MCA needs a tabular rep-

resentation of data as input. Therefore, we can not apply
it directly on a multidimensional representation. So, we
should transform the data of C under a complete disjunctive
table. For each dimension Dt, we generate a binary matrix
Zt with n lines and pt columns. Lines represent the facts,
and columns represent the dimension’s attributes. The ith

line of Zt contains (pt − 1) times the value 0 and one time
the value 1 in the column that fits with the attribute taken
by the fact i. The general term of Zt is:

zt
ij =

¡
1 if the fact i takes the attribute at

j

0 else

By merging the d matrices Zt, we get the complete dis-
junctive table Z = [Z1, Z2, . . . , Zt, . . . , Zd] having n lines
and p columns. Z describes the d positions of the n facts of
C through a binary coding. In the case of a large data cube,
we naturally get very huge matrix Z. Recall that the MCA,
like all factorial methods, is perfectly suitable for huge input
dataset with high numbers of lines and columns.

Already having the complete disjunctive table Z, the MCA
starts by constructing the Burt table B = Z′Z (Z′ is the
transposed matrix of Z). B is a (p, p) symmetric matrix

that contains all the category marginals on the main diag-
onal and all possible cross-tables of the d dimensions of C
in the off-diagonal. Let consider X a (p, p) diagonal ma-
trix that has the same diagonal elements of B and zeros
otherwise. By diagonalizing the matrix S = 1

d
Z′ZX−1,

we obtain (p − d) diagonal elements. These elements are
called eigenvalues and noted λα. Each eigenvalue λα is as-
sociated to a directory vector uα for a factorial axis Fα,
where Suα = λαuα. The Figure 2 summarizes the previous
approach via the algorithm CubeToMCA. This algorithm
creates a complete disjunctive table from an input cube C,
applies on the MCA and returns eigenvalues as output.

Algorithm CubeToMCA(C)
Input:
C: data cube

Begin
for (t = 1; t ≤ p; t + +) do

Zt ← 0;
for each attribute at

j in Dt do
for each fact i in C do
if (fact i takes at

j) then

zt
ij ← 1;

Break for;
end if

end for
end for
Z ← merge(Z,Zt);

end for
B ← ZZ′;
for (i = 1; i ≤ p; i + +) do
for (j = 1; j ≤ p; j + +) do
if (i 6= j) then

xij ← 0;
else xij ← bij ;

end if
end for

end for
S ← 1

d Z′ZX−1;
S ← diagonalize(S);
for (α = 1; α ≤ p− d; α + +) do

λα ← sαα;
end for

End

Figure 2: Algorithm CubeToMCA.

An eigenvalue represents the amount of inertia (variance)
that reflects the relative importance of its axis. The first axis
always explains the most inertia and has the largest eigen-
value. Usually, in a factorial analysis process, researchers
keep only the first, two or three axis. Other researchers give
complex mathematical criteria [2, 11, 17, 6] to determine the
number of axis to keep. In [10], Benzecri suggests that this
limit should be fixed by the user’s capacity to give a mean-
ingful interpretation to the axis he keeps. It’s not because
an axis has a relatively small eigenvalue that we should dis-
card it. It can often help to make a fine point about the
data. It’s up to the user to choose the number k of axis
(s)he wants to keep after checking the eigenvalues and the
general meaning of the axis.

5. ORGANIZING DATA CUBES AND DE-
TECTING RELEVANT FACTS

Usually in a factorial analysis, relative contributions of
variables are used to give sense to the axis. A relative con-
tribution shows the percent of inertia of a particular axis
which is explained by an attribute. The largest relative con-
tribution of a variable to an axis is, the more it gives sense



of this axis. In our approach, we interpret a factorial axis
by characteristic attributes detected through the use of the
test-values proposed by Lebart et al. in [15]. We present in
the following subsection the theorical principle of test-values
applied to the context of our approach.

5.1 The test-values
Let I(at

j) denotes the set of facts having at
j as attribute

in the dimension Dt. We also note nt
j = Card(I(at

j)) =Pn
i=1 z

t
ij the number of elements in I(at

j). It corresponds to
the number of facts in C having at

j as attribute (weight of
at

j in the cube). We consider ϕt
αj = 1

nt
j

√
λα

P
i∈I(at

j) ψαi the

coordinate of at
j on the factorial axis Fα, where ψαi is the

coordinate of the facts i on Fα. Suppose that, under a null
hypothesis H0, the nt

j facts are selected randomly in the set
of the n facts, the mean of their coordinates in Fα can be rep-
resented by a random variable Y t

αj = 1
nt

j

P
i∈I(at

j) ψαi, where

E(Y t
αj) = 0 and VARH0(Y

t
αj) =

n−nt
j

n−1
λα

nt
j
. Remark that

ϕt
αj = 1√

λα
Y t

αj . Thus, E(ϕt
αj) = 0, and VARH0(ϕ

t
αj) =

n−nt
j

n−1
1

nt
j
. The test-value of the attribute at

j is:

V t
αj =

s
nt

j

n− 1

n− nt
j

ϕt
αj (1)

V t
αj measures the number of standard deviation between

the attribute at
j , i.e. the gravity center of its nt

j facts, and
the center of factorial axis Fα. The position of an attribute
is interesting for a given axis Fα if its cloud of facts is located
in a narrow zone in the direction α. This zone should also
be as far as possible from the center of the axis. The test-
value is a criterion that quickly provides an appreciation if
an attribute has a significant position on a given factorial
axis or not.

5.2 Arrangement of attributes
In a classic OLAP representation of data cubes, attributes

of dimensions are usually organized according to a lexical
order such as alphabetic order for geographic dimensions or
chronological order for times dimensions. In our approach,
we propose to exploit the test-values of attributes in order
to organize differently the data cube’s facts. The new orga-
nization will display a relevant data representation easier to
analyze and to interpret especially in the case of large and
sparse cubes. For each dimension of a data cube, we sort
its attributes according to the increasing order of their test-
values. Actually, a test-value indicates the position of an
attribute on a given axis. The relative geometric position of
an attribute is more significant to a factorial axis when these
axis are important (have the greatest eigenvalues). For this,
we propose to sort attributes according to the k first axis
selected by the user. We sort the pt test-values V t

αj of the
attributes at

j on the axis Fα. This will provide a new order
of indices j. According to this order, we arrange attributes
at

j in the dimension Dt.
In general, we assume that all attributes of a dimensionDt

are geometrically ordered in the data cube space represen-
tation according to the order of indices jt. i.e, the attribute
at

jt−1 precedes at
jt

and at
jt

precedes at
jt+1 (see the example

of Figure 3). Indices jt are ordered according to the ar-
rangement of the attributes in the space representation of
the dimension Dt. Let us take an example of a dimension

Dt with four attributes {at
1, a

t
2, a

t
3, a

t
4}. In the Table 1(a)

attributes are arranged according to the initial order in the
space representation. Therefore, the Table 1(b) displays a
new arrangement of attributes by sorting its test-values on
F1 then by test-values on F2.

Attributes at
1 at

2 at
3 at

4
Test-values on F1 V t

11 = 5 V t
12 = 11 V t

13 = 7 V t
14 = 5

Test-values on F2 V t
21 = 12 V t

22 = 3 V t
23 = 4 V t

24 = 7

(a)

Attributes at
4 at

1 at
3 at

2
Test-values on F1 V t

14 = 5 V t
11 = 5 V t

13 = 7 V t
12 = 11

Test-values on F2 V t
24 = 7 V t

21 = 12 V t
23 = 4 V t

22 = 3

(b)

Table 1: Example of attributes (a) before and (b)
after arrangement.

5.3 Characteristic attributes
In general, an attribute is considered significant for an

axis if the absolute value of its test-value is higher than
τ = 2. This corresponds roughly to an error threshold of
5%. We note that, the lower error threshold is, the greater τ
is. In our case, for one attribute, the test of the hypothesis
H0 can induce a possible error. This error will inevitably
be increased when we perform the test p times for all the
attributes of the cube. To minimize this accumulation of
errors, we propose to fix for each test an error threshold of
1% which correspond to τ = 3. We also note that, when
a given axis can be characterized by too much attributes
according to their test-values, instead of taking them all, we
can restrict the selection by considering only a percentage
of the most characteristic ones. i.e, those having the highest
absolute test-values. Finally to detect interesting facts in a
data cube, for each dimension Dt, we select the following
set of characteristic attributes.

Φt =

¡
at

j , where ∀ j ∈ {1, . . . , pt},
∃ α ∈ {1, . . . , k} such as |V t

αj | ≥ 3

¿
(2)

6. QUALITY OF A DATA REPRESENTA-
TION

In this section, we propose a quality criterion of data cube
representation. This criterion measures the homogeneity of
geometric distribution of the cube cells. One cell in a data
cube contains one or more measures of an OLAP fact. We
consider the attributes of a cell in the cube’s dimensions as
its coordinates in the data space representation. Let A =
(a1

j1 , . . . , a
t
jt
, . . . , ad

jd
) a cell in C, with t ∈ {1, . . . , d} and

jt ∈ {1, . . . , pt}. jt is the index of the attribute that takes
the cell A in the dimension Dt. We note |A| the value of
the measure contained in the cell A which is equal to NULL
in the case where A is empty. For example, in the Figure 3,
|A| = 5.7 whereas |Y | = NULL. We define the notion of
neighborhood of cells as follows.

Definition 1. Let A = (a1
j1 , . . . , a

t
jt
, . . . , ad

jd
) a cell in a

cube C. The cell B = (b1j1 , . . . , b
t
jt
, . . . , bdjd

) is neighbor of A,
noted B a A, if ∀t ∈ {1, . . . , d}, the coordinates of B satisfy:
btjt

= at
jt−1 or btjt

= at
jt

or btjt
= at

jt+1. Except the case
where ∀t ∈ {1, . . . , d} btjt

= at
jt

, which means A = B.

In Figure 3, the cell B is neighbor of A (B a A). Y is
also neighbor of A (Y a A). Whereas cells S and R are not
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Figure 3: A 2-dimensional example of a data cube.

neighbors of A. This lead us to define the neighborhood of
a cell.

Definition 2. Let A a cell of a cube C, we define the neigh-
borhood of A, noted N (A), by the set of all cells B of C who
are neighbors of A.

N (A) = {B ∈ C where B a A}

For example, in Figure 3, the neighborhood of A cor-
responds to the set N (A) = {F,K,L, T,E,H,B, Y }. To
quantify similarities between neighbor cells, we define a sim-
ilarity function δ.

Definition 3. The similarity δ for two cells A and B of
the cube C is defined as follows:

δ : C × C −→ R

δ(A, B) 7−→
(

1− (
||A|−|B||

max(C)−min(C) ) if A and B are full

0 else

Where ||A|−|B|| is the absolute difference of the measures
contained in the cells A and B, and max(C) (respectively,
min(C)) is the maximum (respectively, the minimum) mea-
sure value in the cube C.

In the cube of the Figure 3, where grayed cells are full and
white ones are empty, max(C) = 7 which matches with the
cell S and min(C) = 1.5 which matches with the cell K. For

instance, δ(A,B) = 1 − ( |5.7−4.5|
7−1.5

) ' 0.78 and δ(A, Y ) = 0.
Let us now introduce the function ∆.

Definition 4. ∆ is defined from C to R such as:

∀A ∈ C, ∆(A) =
X

B∈N (A)

δ(A,B)

∆(A) corresponds to the sum of the similarities of A with
all its full neighbor cells. For instance, in Figure 3, ∆(A) =
δ(A,F )+ δ(A,K)+ δ(A,L)+ δ(A, T )+ δ(A,E)+ δ(A,H)+
δ(A,B) + δ(A, Y ) ' 1.64.

Definition 5. We define the crude homogeneity criterion
of a data cube C as:

chc(C) =
X

A ∈ C
|A| 6= NULL

X

B∈N (A)

δ(A,B) =
X

A ∈ C
|A| 6= NULL

∆(A)

The crude homogeneity criterion computes the sum of
similarities of every couple of full and neighbor cells in a
data cube. For instance, in Figure 3, the crude homogeneity
criterion is computed as chc(C) = ∆(F ) + ∆(K) + ∆(A) +
∆(S) + ∆(B) + ∆(E) ' 6.67. Note that, the crude homo-
geneity criterion of a data cube touches its maximum when
all the cells of the cube are fulls and their measures are
equals.

chcmax(C) =
X
A∈C

X

B∈N (A)

1

Definition 6. The homogeneity criterion of a data cube is
defined as:

hc(C) =
chc(C)

chcmax(C) =

X

A ∈ C
|A| 6= NULL

∆(A)

X
A∈C

X

B∈N (A)

1

The homogeneity criterion represent the quality of a mul-
tidimensional data representation. This quality is rather
better when full and similar cells are neighbors. Indeed,
when similar cells are gathered together in specific regions
of the space representation of a data cube, this cube is easier
to visualize and so a user can directly focus his/her data in-
terpretation on these regions. We summarize the process of
computing the homogeneity criterion of an input data cube
C by the algorithm provided in Figure 4. For example, in the
Figure 3, chcmax(C) = 84, and so the homogeneity criterion
of this representation is: hc(C) = 6.67

84
' 0.08. Nevertheless,

such a criterion can not make real sens for a single situa-
tion of a data representation. In all cases, we should rather
compare it to other data representations of the same cube.
In fact, recall that the aim of our method is to organize
the facts of an initial data cube representation by arranging
attributes in each dimensions according to the order of test-
values. Let us note the initial cube Cini and the organized
one Corg. To measure the relevance of the organization pro-
vided by our method, we compute the gain realized by the
homogeneity criterion according to the formula:

g =
hc(Corg)− hc(Cini)

hc(Cini)

We should also note that, for the same cube, its organized
representation does not depend of the initial representation
because the results of the MCA are insensitive to the order
of the input variables.

7. A CASE STUDY
To test and validate our approach, we apply it on a 5-

dimensional cube (d = 5) that we have constructed from
the Census-Income Database2 of the UCI Knowledge Discov-
ery in Databases Archive3. This data set contains weighted
census data extracted from the 1994 and 1995 current pop-
ulation surveys conducted by the U.S. Census Bureau. The
data contains demographic and employment related vari-
ables. The constructed cube contains 199 523 facts and one

2http://kdd.ics.uci.edu/databases/census-income/census-
income.html
3http://kdd.ics.uci.edu/



Algorithm MeasureQualityOfCube(C)
Input:
C: data cube

Begin
chc← 0;
chcmax ← 0;
for each cell A in C do
if (|A| 6= NULL) then
for each cell B in N (A) do
if (|B| 6= NULL) then

chc← chc + (1− (
||A|−|B||

max(C)−min(C) ));
end if
chcmax ← chcmax + 1;

end for
else
for each cell B in N (A) do

chcmax ← chcmax + 1;
end for

end if
end for
hc← chc

chcmax
;

End

Figure 4: Algorithm MeasureQualityOfCube.

fact represents a particular profile of a sub population mea-
sured by the Wage per hour. The Table 2 details the cube’s
dimensions and measures.

Dimension pt

D1 : Education level p1 = 17
D2 : Professional category p2 = 22
D3 : State of residence p3 = 51
D4 : Household situation p4 = 38
D5 : Country of birth p5 = 42

Table 2: Description of the data cube’s dimensions.

According to a binary coding of the cube dimensions, we
generate Z = [Z1, Z2, Z3, Z4, Z5] as a complete disjunctive
table. Z contains 199 523 lines and p =

P5
t=1 pt = 170

columns. By applying the MCA on Z we obtain p−d = 165
factorial axis Fα. Each axis is associated to an eigenvalue
λα. Suppose that, according to the histogram of eigenval-
ues, a user chooses the three first axis (k = 3). These axis
explain 15.35% of the total inertia of the facts cloud. This
contribution does not seem very important at a first sight.
But we should note that in a case of a uniform distribution of
eigenvalues, we get normally a contribution of 1

p−d
= 0.6%

per axis, i.e. the three first axis represent an inertia already
25 times more important than a uniform distribution. The
Figure 5 displays the first factorial plane we obtain.

The organized Census-Income data cube is obtained by
sorting the attributes of its dimensions. For each dimension
Dt its attributes are sorted by the increasing values of V t

1j ,
then by V t

2j and then by V t
3j . The Table 3 shows the new at-

tributes’ order of the Professional category dimension (D2).
Note that j is the index of the original alphabetic order of
the attributes. This order is replaced by a new one accord-
ing to the sort of test-values. In the Figure 6 we can clearly
see the visual effect of this arrangement of attributes. This
figure displays views of data by crossing the Professional cat-
egory dimension on columns (D2) and the Country of birth
dimension on rows (D5). The representation (a) displays the
initial view according to the alphabetic order of attributes,
whereas representation (b) displays the same view where at-
tributes are rather sorted according to their test-values. At
a first sight, the visual representation (b) is better and more
suitable to analyze than (a). This is confirmed by the mea-

Factor 1

F
a

c
to

r 
2

Figure 5: First factorial plane constructed on the
Census-Income’s data cube.

sure of homogeneity criterion. Indeed, for a sparsity ratio
of 63.42%, the homogeneity criterion for the organized cube
of representation (b) is hc(Corg) = 0.134; whereas it mea-
sures hc(Corg) = 0.112 for the initial cube of representation
(a). i.e, we release a gain g = 19.64% of homogeneity when
arranging the attributes of the cube according to test-values.

Test-values

j Attributes V 1
1j V 1

2j V 1
3j

9 Hospital services -99.90 -99.90 -99.90
14 Other professional services -99.90 -99.90 99.90
17 Public administration -99.90 -99.90 99.90
12 Medical except hospital -99.90 99.90 -99.90
5 Education -99.90 99.90 99.90
7 Finance insurance -99.90 99.90 99.90
19 Social services -99.90 99.90 99.90
8 Forestry and fisheries -35.43 -8.11 83.57
3 Communications -34.05 -99.90 99.90
15 Personal services except private -21.92 -5.50 10.28
13 Mining -6.59 -99.64 -5.25
16 Private household services 7.77 51.45 11.68
6 Entertainment 40.04 99.90 96.23
1 Agriculture 68.66 3.39 -27.38
4 Construction 99.90 -99.90 -99.90
10 Manufact. durable goods 99.90 -99.90 -99.90
11 Manufact. nondurable goods 99.90 -99.90 -99.90
21 Utilities and sanitary services 99.90 -99.90 -99.90
22 Wholesale trade 99.90 -99.90 -24.37
20 Transportation 99.90 -99.90 99.90
18 Retail trade 99.90 99.90 -99.90
2 Business and repair 99.90 99.90 99.90

Table 3: Attribute’s test-values of Professional cat-
egory dimension.

Furthermore, according to the test of the Equation (2),
for each t ∈ {1, . . . , 5}, we select from Dt the set of charac-
teristic attributes for the three selected factorial axis. These
characteristic attributes give the best semantic interpration
of factorial axis and express strong relationships for their
corresponding facts. To avoid great number of possible char-
acteristic attributes per axis, we can consider, for each axis,
only the first 50% of attributes having the highest absolute
test-values. For instance, in the Professional category di-
mension D2, the set Φ2 of characteristic attributes is:



Φ2 =

8
>>>>>>>>>>>><
>>>>>>>>>>>>:

Hospital services, Other professional services,
Public administration, Medical except hospital,
Education, Finance insurance, Social services,
Forestry and fisheries, Communications,
Entertainment, Agriculture Construction,
Manufact. durable goods,
Manufact. nondurable goods,
Utilities and sanitary services, Wholesale trade,
Transportation, Retail trade,
Business and repair services

9
>>>>>>>>>>>>=
>>>>>>>>>>>>;

In the same way, we apply the test of the Equation (2)
on the other dimensions of the cube. In the representation
(b) of the Figure 6, we clearly see that the zones of facts
corresponding to characteristic attributes of the dimensions
D2 and D5 seem to be interesting and denser than other re-
gions in the data space representation. These zones contains
relevant information and reflect interesting association be-
tween facts. For example, we can easily note that industrial
and physical jobs, like construction, agriculture and manu-
facturing are highly performed by native Latin Americans
from Ecuador, Peru, Nicaragua and Mexico for example.
At the opposite, Asian people from India, Iran, Japan and
China are rather concentrated in commerce and trade.

8. EXPERIMENTAL RESULTS
We have realized some experiments of our approach in or-

der to appreciate its efficiency. To achieve this, we based
our experiments on the Census-Income data cube presented
in section 7. The aim of these experiments is to measure
the homogeneity gain realized by our MCA-based organiza-
tion method on data representations with different sparsity
ratios. To vary sparsity we proceed by a random sampling
of the data set of the initial n facts of the considered cube.
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Figure 7: Evolution of the homogeneity gain accord-
ing to sparsity.

According to the Figure 7, the homogeneity gain has an in-
creasing general trend. Nevertheless, we should note that for
low sparsity ratios, the curve is rather oscillating around the
null value of the homogeneity gain. In fact, when sparsity is
less then 60%, the gain does not have a constant variation.
It sometimes drops to negative values. This means that
our method does not bring a value added to the quality of
data representation. For dense data cubes, the employment
of our method is not always significant. This is naturally
due to the construction of the homogeneity criterion which

closely depends of the number of empty and full cells. It
can also be due to the structure of the random data samples
that can generate data representations already having good
qualities and high homogeneity values.

Our MCA-based organization method is rather interesting
for data representations with high sparsity. In the Figure 7,
we clearly see that curve is rapidly increasing to high positive
values of gain when sparsity is greater thant 60%. Actually,
with high relative number of empty cells in a data cube, we
have a large manoeuvre margin for concentrating similar full
cells and gathering them in the space representation. This
shows the vocation of using our approach in order to enhance
the visual quality representation, and thus the analysis of
huge and sparse data cubes.

9. CONCLUSION AND FUTURE WORK
In this paper we have introduced a MCA-based approach

to enhance the space representation of large and sparse data
cubes. This approach aims to provide an assistance to the
OLAP user and helps him/her to easily explore huge vol-
umes of data. For a given data cube, we compute the test-
values of its attributes. According to these test-values, we
arrange attributes of each dimension and so display in an
appropriate way the space representation of facts. This rep-
resentation provides better property for data visualization
since it gather full cells expression interesting relationships
of data. We also identify relevant regions of facts in this
data representation by detecting characteristic attributes of
factorial axis. This solve the problem of high dimensionality
and sparsity of data and allows the user to directly focus his
exploration and data interpretation on these regions.

We have also proposed an homogeneity criterion to mea-
sure the quality of data representations. This criterion is
based on the notion of geometric neighborhood of cells and
their measures’ similarities. Through experiments we led on
real world data, our criterion proved the efficiency of our
approach for huge and sparse data cubes.

Currently, we are studying some possible extensions for
this work. For instance, we are addressing the problem of
materializing organized representations. We are also trying
to envolve our approach in order to make it able to take into
account the data updates.
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Figure 6: (a) Initial and (b) organized data representations of the Census-Income cube.
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