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ABSTRACT
On-line analytical processing (OLAP) provides tools to ex-
plore and navigate into data cubes in order to extract inter-
esting information. Nevertheless, OLAP is not capable of
explaining relationships that could exist in a data cube. As-
sociation rules are one kind of data mining techniques which
finds associations among data. In this paper, we propose
a framework for mining inter-dimensional association rules
from data cubes according to a sum-based aggregate measure

more general than simple frequencies provided by the tradi-
tional COUNT measure. Our mining process is guided by a
meta-rule context driven by analysis objectives and exploits
aggregate measures to revisit the definition of support and
confidence. We also evaluate the interestingness of mined as-
sociation rules according to Lift and Loevinger criteria and
propose an efficient algorithm for mining inter-dimensional
association rules directly from a multidimensional data.

Categories and Subject Descriptors: H.2.8 [Informa-
tion systems]: Database applications—Data mining ; H.4.2
[Information systems]: Types of systems—Decision support .

General Terms: Algorithms, Experimentation.

Keywords: OLAP, association rules, data cubes.

1. INTRODUCTION
Data warehousing and OLAP technology has known an

important progress since the 90s. In addition, with effi-
cient techniques developed for computing data cubes, OLAP
users have become widely able to explore multidimensional
data, navigate through hierarchical levels of dimensions, and
therefore extract interesting information according to mul-
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tiple levels of granularity in data. Nevertheless, the OLAP
technology is quite limited to an exploratory task and does
not provide automatic tools to explain relationships and as-
sociations within data. For example, we can note from a
data cube that sales of sleeping bags are particulary high
in a given city. Nevertheless, current OLAP tools are not
able to automatically explain the causes of this particular
fact. Users are usually supposed to explore the data cube
according to multiple dimensions in order to manually find
an explanation for a given phenomenon (e.g., high sales).
For instance, one possible explanation of the previous ex-
ample consists in associating sales of sleeping bags with the
summer season and young tourist costumers.

In the recent years, many studies addressed the issue of
performing data mining tasks on data warehouses. Some
of them were specifically interested in mining patterns and
association rules in data cubes. For instance, Kamber et al.

state that it is important to explore data cubes by using as-
sociation rules algorithms since data cube structures make
good use of structured warehouse and pre-computed aggre-
gation information [8]. Further, Imieliński et al. believe
that OLAP is closely intertwined with association rules and
shares with them the goal of finding patterns in the data [7].
In [5], Goil and Choudhary argue that automated tech-
niques of data mining can make OLAP more useful and
easier to apply in the overall scheme of decision support
systems. Indeed, data mining techniques such as associa-
tion rule mining can be used together with OLAP to dis-
cover knowledge from data cubes. Moreover, dimension hi-
erarchies can be exploited to generate multilevel association
rules. The aggregate values needed for discovering associa-
tion rules are already pre-computed and stored in the data
cube. A COUNT cell of a cube stores the number of occur-
rences of the corresponding multidimensional data values.
A dimension COUNT cell stores the sum of COUNTs of the
whole dimension. With this structure, it is straightforward
to calculate the values of the support and the confidence of
association rules based on the values in these summary cells.

The COUNT measure corresponds to the frequency of
facts. Nevertheless, in an analysis process, users are usu-
ally interested in observing multidimensional data and their



associations according to measures more elaborated than
simple frequencies. In this paper, we establish a general
framework for mining inter-dimensional association rules
from multidimensional data. We use the concept of inter-

dimensional meta-rule which allows users to guide the min-
ing process and focus on a specific context from which rules
can be extracted. Our framework allows also a redefini-
tion of the support and confidence measures based on the
aggregate functions (SUM and COUNT) used as cube indi-
cators (measures). Therefore, the computation of support
and confidence according to the COUNT measure becomes
a particular case in our proposal. In addition to support
and confidence, we use two other descriptive criteria (Lift

and Loevinger) in order to evaluate interestingness of mined
associations. These criteria are computed according to a
sum-based aggregate measure in the data cube and reflect
interestingness of associations in a more relevant way than
what is offered by support and confidence. We developed our
proposal according to a bottom-up algorithm for searching
association rules. Our algorithm consists in an adaptation of
the traditional Apriori algorithm to multidimensional data.

This paper is organized as follows. In Section 2, we give
a brief overview of association rule mining from multidi-
mensional data. In Section 3, we develop the formal back-
ground, notations, and definitions of our proposal. Section 4
introduces our proposed framework: the concept of inter-

dimensional meta-rule, the general computation of support
and confidence based on measures, and criteria for the ad-
vanced evaluation of mined association rules. Section 5 pro-
vides an implementation and describes our algorithm for
mining inter-dimensional association rules. In Section 6, we
conduct some experiments concerning the performance of
the developed algorithm. Finally, Section 7 gives a conclu-
sion and future research directions.

2. RELATED WORK
Association rule mining was first introduced by Agrawal

et al. [1] who were motivated by market basket analysis and
designed a framework for extracting rules from a set of trans-
actions related to items bought by customers. They also pro-
posed the Apriori algorithm that discovers large (frequent)
itemsets satisfying the minimum support and association
rules based on the minimum confidence. Since then, many
developments have been performed in order to handle var-
ious types and structures of data. For instance, the prob-
lem of mining quantitative association rules from large rela-
tional tables was first addressed in [17]. In [16], Srikant and
Agrawal proposed to mine association rules for categorical
data. In [6], Han and Fu introduced multilevel association

rules which cope with multilevel data abstractions.
To the best of our knowledge, Kamber et al. [8] were the

first who addressed the issue of mining association rules

from multidimensional data. They introduced the concept
of metarule-guided mining which consists in using rule tem-
plates defined by users in order to guide the mining pro-
cess. This mining process considers precomputed data cubes
and dynamic construction of relevant data cubes. Inter-
dimensional association rules with distinct predicates are
mined from single levels of dimensions. Support and con-
fidence are computed according to the COUNT measure.
Zhu considers the problem of mining association rules from
data cubes under three groups: inter-dimensional, intra-

dimensional, and hybrid association mining [19]. Intra-dime-

nsional association rule cover repetitive predicates from a
single dimension, whereas inter-dimensional association rules
are mined from multiple dimensions without repetition of
predicates in each dimension. His proposal does not profit
from hierarchical levels of dimensions since it flattens data
cubes to mine associations. Further, he uses the COUNT

measure and does not take into account further OLAP mea-
sures to evaluate discovered rules. Cubegrades, proposed
by Imieliński et al., are a generalization of association rules.
They focus on significant changes that affect measures when
a cube is modified through specialization, generalization or
mutation [7]. The authors argue that traditional associa-
tion rules are restricted to the COUNT aggregate and can
only express relative changes from body of the rule to body
and head. In [4], Dong et al. study an interesting and
efficient version of the cubegrade problem, called multidi-
mensional constrained gradients, which also seeks significant
changes in measures when cells are modified through gen-
eralization, specialization or mutation. To capture signifi-
cant changes only and prune the search space, three types
of constraints are considered. The concepts of cubegrades

and constrained gradients are quite different from the tradi-
tional association rules mining. They discover modifications
on OLAP aggregates when moving from a Source-Cube to
a Target-Cube rather than data patterns and associations
included in the cube itself. Nevertheless, we can consider a
cubegrade or a constrained gradient as an inter-dimensional
association rule with repetitive predicates. Chen et al. mine
intra-dimensional association rules by adding features from
other dimensions features at multiple levels [3]. Therefore,
association rules at different area levels and time levels can
be specified. Nevertheless, the use of association rules in
this approach closely depends on the specific domain of Web
access analysis. Furthermore, it lacks a formal description
that enables a concrete generalization to other application
domains. Extended association rules were proposed in [14]
by Nestorov and Jukić. It consists in mining associations
from data warehouses by utilizing the SQL processing power
of the data warehouse itself without using a separate data
mining tool. An extended association rule is a repetitive
predicate rule which involves attributes of non-item dimen-
sions defined by the user. The authors focus on mining as-
sociations from transactional databases and do not take di-
mension hierarchy and data cube measures into account for
computing support and confidence. Tjioe and Taniar [18]
propose a method for mining association rules in data ware-
houses. Based on the multidimensional data organization,
their method is able to extract associations from multiple
dimensions at multiple levels of abstraction by focusing on
summarized data according to the COUNT measure. In or-
der to do this, the authors prepare multidimensional data
for the mining process according to four algorithms: VAvg,
HAvg, WMAvg, and ModusFilter. These algorithms prune
all rows in the fact table which have less than the average
quantity and provide an initialized table. This table is next
used for mining both non-repetitive predicate and repetitive
predicate association rules.

In Table 1, we summarize a set of association rule min-
ing proposals according to a set of criteria. Some of these
proposals mine intra-dimensional association rules, whereas
others deal with inter-dimensional association rules. Al-
most all intra-dimensional proposals provide associations
with repetitive predicates from a single dimension of a data
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Kamber et al. • • • • •

Zhu • • • • • • •

Imieliński et al. • • • • •

Dong et al. • • • • •

Chen et al. • • • • •

Nestorov & Jukić • • • • •

Tjioe & Taniar • • • • • • •

Our proposal • • • • •

Table 1: Comparison of mining associations propos-
als from multidimensional data

cube. Inter-dimensional associations are not necessarily re-
stricted to the traditional market basket analysis and can
be extended to large application domains. The hierarchical
aspect of multidimensional data is not widely exploited. It
rather concerns intra-dimensional associations with repet-
itive predicates coming from different levels of the mined
dimension. Except for cubegrades [7] where any measure
can be used in order to check the effects of changes on the
cube structure, all the proposed approaches are restricted to
the COUNT measure in the mining process. In this paper,
we use the notion of metarule-guided mining proposed by
Kamber et al. [8] to guide a general process of mining inter-
dimensional associations with non-repetitive predicates.

The main contribution of our proposal consists in inte-
grating the measures of a data cube in the computation of
the support and the confidence of association rules. We also
use advanced criteria in order to evaluate interestingness
of mined associations. An Apriori-based algorithm is also
adapted in order to handle multidimensional data.

3. FORMAL BACKGROUND AND NOTA-
TIONS

Let C be a data cube with a non empty set of d dimensions
D = {Di}(1≤i≤d), and a non empty set of measures M. Each
dimension Di ∈ D has a non empty set of hierarchical levels.
We assume that Hi

j is the jth (j ≥ 0) hierarchical level in Di.

The coarse level of Di, denoted Hi
0, corresponds to its total

aggregation level All. For example, in Figure 1, dimension
Shop (D1) has three levels: All, Continent, and Country. The
All level is denoted H1

0 , the Continent level is denoted H1
1 ,

and the Country level is denoted H1
2 . Let Hi be the set of

hierarchical levels of dimension Di, where each level Hi
j ∈ Hi

consists of a non empty set of members denoted Aij . For
example, in Figure 1, the set of hierarchical levels of D2 is
H2 = {H2

0 , H2
1 , H2

2} = {All, Family, Article}, and the set of
members of the Article level of D2 is A22 ={iTwin, iPower,
DV-400, EN-700, aStar, aDream}.

Definition 1. (Sub-cube)
Let D′ ⊆ D be a non empty set of p dimensions {D1, . . . , Dp}
from the data cube C (p ≤ d). The p-tuple (Θ1, . . . , Θp) is
called a sub-cube on C according to D′ iff ∀i ∈ {1, . . . , p},
Θi 6= ∅ and there exists a unique j such that Θi ⊆ Aij .

As defined above, a sub-cube according to a set of di-
mensions D′ corresponds to a portion from the initial data
cube C. It consists in setting for each dimension from D′

a non empty subset of member values from a single hi-
erarchical level of that dimension. For example, consider

D′ = {D1, D2} a subset of dimensions from the cube of
Figure 1. (Θ1,Θ2) = (Europe, {EN-700, aStar, aDream}) is
therefore a possible sub-cube on C according to D′, which
is displayed by the grayed portion of the cube in the figure.
Note that the same portion of the cube can be defined dif-
ferently by considering the sub-cube (Θ1,Θ2,Θ3) = (Europe,
{EN-700, aStar, aDream}, All) according to D={D1,D2,D3}.

One particular case of the sub-cube definition is when it is
defined on C according to D′ = D = {D1, . . . , Dd} and ∀i ∈
{1, . . . , d}, Θi is a single member from the finest hierarchical
level of Di. In this case, the sub-cube corresponds to a
cube cell in C. For example, the black cell in Figure 1 can
be considered as the sub-cube (Japan, iTwin, 2002) on C
according to D = {D1, D2, D3}. Each cell from the data
cube C represents an OLAP fact which is evaluated in R

according to one measure M from M. In our proposal,
we evaluate a sub-cube according to its sum-based aggregate

measure which is defined as follows:

Definition 2. (Sum-based aggregate measure)
Let (Θ1, . . . , Θp) be a sub-cube on C according to D′ ⊆ D.
The sum-based aggregate measure of sub-cube (Θ1, . . . , Θp)
according to M ∈ M, noted M(Θ1, . . . , Θp), is the SUM of
measure M of all facts in the sub-cube.

For instance, the profit of sales of the grayed sub-cube
in Figure 1 can be evaluated by its sum-based aggregate
measure according to the expression Profit(Europe, {EN-700,
aStar, aDream}), which represents the SUM of the profit’s
values contained in grayed cells in the Sales cube.
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Figure 1: Example of Sales data cube

Definition 3. (Dimension predicate)
Let Di be a dimension of a data cube. A dimension predicate
αi in Di is a predicate of the form 〈a ∈ Aij〉.

A dimension predicate is a predicate which takes a di-
mension member as a value. For example, one dimension
predicate in D1 of Figure 1 can be of the form α1=〈a ∈
A11〉=〈a ∈ {America, Europe, Asia}〉.

Definition 4. (Inter-dimensional predicate)
Let D′ ⊆ D be a non empty set of p dimensions {D1, . . . , Dp}



from the data cube C (2 ≤ p ≤ d). (α1 ∧ · · · ∧ αp) is called
an inter-dimensional predicate in D′ iff ∀i ∈ {1, . . . , p}, αi

is a dimension predicate in Di.

For instance, let consider D′ = {D1, D2} a set of dimen-
sions from the cube of Figure 1. An inter-dimensional predi-
cate can be of the form: (〈a1 ∈ A12〉∧〈a2 ∈ A22〉). An inter-
dimensional predicate defines a conjunction of non-repetitive
predicates, i.e., each dimension has a distinct predicate in
the expression.

4. THE PROPOSED FRAMEWORK
As mentioned earlier, our proposal consists in (i) exploit-

ing metarule templates to mine rules from a limited subset
of a data cube, (ii) revisiting the definition of support and
confidence based on the measure values, (iii) using advanced
criteria to evaluate interestingness of mined associations,
and (iv) proposing an Apriori-based algorithm for mining
multidimensional data.

4.1 Inter-dimensional meta-rules
As in [15], we consider two distinct subsets of dimensions

in the data cube C: (i) DC ⊂ D is a subset of p context dimen-

sions. A sub-cube on C according to DC defines the context
of the mining process; and (ii) DA is a subset of analysis

dimensions from which predicates of an inter-dimensional
meta-rule are selected. An inter-dimensional meta-rule is
an association rule template of the following form:

In the context (Θ1, . . . , Θp)
(α1 ∧ · · · ∧ αs) ⇒ (β1 ∧ · · · ∧ βr)

(1)

where (Θ1, . . . , Θp) is a sub-cube on C according to DC . It
defines the portion of cube C to be mined. Unlike the meta-
rule proposed in [8], our proposal allows the user to target
a mining context by identifying the sub-cube (Θ1, . . . , Θp)
to be explored. Note that in the case when DC = ∅, no
particular analysis context is selected. Therefore, the mining
process covers the whole cube C.

We note that ∀k ∈ {1, . . . , s} (respectively ∀k ∈ {1, . . . , r}),
αk (respectively βk) is a dimension predicate in a distinct
dimension from DA. Therefore, the conjunction (α1 ∧ · · · ∧
αs)∧ (β1 ∧· · · ∧βr) is an inter-dimensional predicate in DA,
where the number of predicates (s + r) in the meta-rule is
equal to the number of dimensions in DA. We also note that
our meta-rule defines a non-repetitive predicate association
rules since each analysis dimension is associated with a dis-
tinct predicate. For instance, suppose that in addition to the
three dimensions displayed in Figure 1, the Sales cube con-
tains four other dimensions: Profile (D4), Profession (D5),
Gender(D6), and Promotion (D7). Let consider the following
subsets from the Sales data cube: DC = {D5, D6} ={Profe-

ssion, Gender}, and DA = {D1, D2, D3} ={Shop, Product,
Time}. One possible inter-dimensional meta-rule scheme is:

In the context (Student, Female)
〈a1 ∈ Continent〉 ∧ 〈a3 ∈ Year〉 ⇒ 〈a2 ∈ Article〉

(2)

According to the above inter-dimensional meta-rule, as-
sociation rules are mined in the sub-cube (Student, Female)
which covers the population of sales concerning female stu-
dents. The dimensions (Profile and Promotion) do not in-
terfere in the mining process. Dimension predicates in D1

and D3 are set in the body of the rule whereas the dimen-
sion predicate in D2 is set in the head of the rule. The

first dimension predicate is set to the Continent level of D1,
the second one is set to the Year level of D3, and the third
dimension predicate is set to the Article level of D2.

4.2 Measure-based support and confidence
Traditionally, as it was introduced in [1], the support

(Supp) of an association rule X ⇒ Y , in a database of trans-
actions T , is the probability that the population of trans-
actions contains both X and Y . The confidence (Conf)
of X ⇒ Y is the conditional probability that a transaction
contains Y given that it already contains X. Rules that
do not satisfy user provided minimum support (minsupp)
and minimum confidence (minconf ) thresholds are consid-
ered uninteresting. A rule is said large, or frequent, if its
support is no less than minsupp. In addition, a rule is said
strong if it satisfies both minsupp and minconf.

In the case of a data cube C, the structure of data facili-
tates the mining of multidimensional association rules. The
aggregate values needed for discovering association rules are
already computed and stored in C, which facilitates calculus
of the support and the confidence and therefore reduces the
testing and the filtering time. In fact, a data cube stores
the particular COUNT measure which represents precom-
puted frequencies of OLAP facts. With this structure, it is
straightforward to calculate support and confidence of asso-
ciations in a data cube based on these summary informa-
tion. For instance, suppose that a user needs to discover
association rules according to meta-rule (2). In this case
one association rule can be R1 : America ∧ 2004 ⇒ Laptop.
The support and confidence of R1 are computed as follows:

Supp(R1) = COUNT(America,Laptop,2004,All,Student,Female,All)
COUNT(All,All,All,All,Student,Female,All)

Conf(R1) = COUNT(America,Laptop,2004,All,Student,Female,All)
COUNT(America,All,2004,All,Student,Female,All)

Note that, in the previous expressions, the support (re-
spectively the confidence) is computed according to the fre-
quency of units of facts based on the COUNT measure. In
other words, only the number of facts is taken into account
to decide whether a rule is large (respectively strong) or not.
However, in the OLAP context, users are usually interested
to observe facts according to summarized values of measures
more expressive than their simple number of occurrences. It
seems naturally significant to compute the support and the
confidence of multidimensional association rules according
to the sum of these measures. For example, consider a frag-
ment from the previous Sales sub-cube (Student,Female) by
taking once the COUNT measure and then the SUM of the
profit measure. Table 2(a) and 2(b) sum-up views of these
sub-cube fragments. In this example, for a selected minsupp,
some itemsets are large according to the COUNT measure
in Table 2(a), whereas they are not frequent according to
the SUM of the profit measure in Table 2(b), and vice versa.
For instance, with a minsupp = 0.2, the itemsets (〈 Amer-

ica 〉, 〈 MP3 〉, 〈 2004 〉) and (〈 America 〉, 〈 MP3 〉, 〈 2005 〉)
are large according to the COUNT measure (grayed cells in
Table 2(a)). Whereas these itemsets are not large in Ta-
ble 2(b). The large itemsets according to the SUM of the
profit measure are rather (〈 Europe 〉, 〈 Laptop 〉, 〈 2004 〉)
and (〈 Europe 〉, 〈 Laptop 〉, 〈 2005 〉).

In the OLAP context, the rule mining process needs to
handle any measure from the data cube in order to evaluate
its interestingness. Therefore, a rule is not merely evaluated



2004 2005
America Europe America Europe

Desktop 1,200 800 950 500
Laptop 2,500 2,700 2,800 3,200
MP3 10,600 5,900 11,400 9,100

(a)

2004 2005
America Europe America Europe

Desktop $ 60,000 $ 33,000 $ 28,000 $ 10,000
Laptop $ 500,000 $ 567,000 $ 420,000 $ 544,000
MP3 $ 116,000 $ 118,000 $ 57,000 $ 91,000

(b)

Table 2: Fragment of the Sales cube according to the
(a) COUNT measure and the (b) SUM of the profit

measure

according to probabilities based on frequencies of facts, but
needs to be evaluated according to quantity measures of its
corresponding facts. In other words, studied associations do
not concern the population of facts, but they rather con-
cern the population of units of measures of these facts. The
choice of the measure closely depends on the analysis con-
text according to which a user needs to discover associations
within data. For instance, if a firm manager needs to see
strong associations of sales covered by achieved profits, it is
more suitable to compute the support and the confidence of
these associations based on units of profits rather than on
unit of sales themselves. Therefore, we define a general com-
putation of support and confidence of inter-dimensional as-
sociation rules according to a user defined measure M ∈ M
from the mined data cube. Consider a general rule R which
complies with the defined inter-dimensional meta-rule (1):

R: In the context (Θ1, . . . , Θp)
(x1 ∧ · · · ∧ xs) ⇒ (y1 ∧ · · · ∧ yr)

The support and the confidence of this rule are therefore
computed according to the following general expressions:

Supp(R) =
M(x1,...,xs,y1,...,yr,Θ1,...,Θp,All,...,All)

M(All,...,All,Θ1,...,Θp,All,...,All)
(3)

Conf(R) =
M(x1,...,xs,y1,...,yr,Θ1,...,Θp,All,...,All)

M(x1,...,xs,All,...,All,Θ1,...,Θp,All,...,All)
(4)

where M(x1, . . . , xs, y1, . . . , yr, Θ1, . . . , Θp, All, . . . , All) is the
sum-based aggregate measure of a sub-cube. From a statis-
tical point of view, the collection of facts is not studied ac-
cording to frequencies but rather with respect to the units of
mass evaluated by the OLAP measure M of the given facts.
Therefore, an association rule X ⇒ Y is considered large if
both X and Y are supported by a sufficient number of the
units of measure M . It is important to note that we provide
a definition of support and confidence which generalizes the
traditional computation of probabilities. In fact, traditional
support and confidence are particular cases of the above ex-
pressions which can be obtained by the COUNT measure.
Nevertheless, in order to simplify notations, we keep on re-
ferring to our generalized support and confidence with the
usual terms.

4.3 Advanced evaluation of association rules
Support and confidence are the most known measures for

the evaluation of association rule interestingness. These
measures are key elements of all Apriori-like algorithms [1]
which mine association rules such that their support and
confidence are greater than user defined thresholds. How-
ever, they usually produce a large number of rules which

may not be interesting. Various properties of interesting-
ness criteria of association rules have been investigated. For
a large list of criteria the reader can refer to [9, 10].

Let consider again the association rule R : X ⇒ Y which
complies with the inter-dimensional meta-rule (1), where
X = (x1∧· · ·∧xs) and Y = (y1∧· · ·∧yr) are conjunctions of
dimension predicates. We also consider a user-defined mea-
sure M ∈ M from data cube C. We denote by PX (respec-
tively PY , PXY ) the relative measure M of facts matching
X (respectively Y , X and Y ) in the sub-cube defined by the
instance (Θ1, . . . , Θp) in the context dimensions DC . We also
denote by PX = 1−PX (respectively PY = 1−PY ) the rel-
ative measure M of facts not matching X (respectively Y ),
i.e., the probability of not having X (respectively Y ). The
support of R is equal to PXY and its confidence is defined
by the ratio PXY

PX
which is a conditional probability, denoted

PY/X , of matching Y given that X is already matched.

PX =
M(x1,...,xs,All,...,All,Θ1,...,Θp,All,...,All)

M(All,...,All,Θ1,...,Θp,All,...,All)

PY =
M(All,...,All,y1,...,yr,Θ1,...,Θp,All,...,All)

M(All,...,All,Θ1,...,Θp,All,...,All)

PXY = Supp(R) =
M(x1,...,xs,y1,...,yr,Θ1,...,Θp,All,...,All)

M(All,...,All,Θ1,...,Θp,All,...,All)

PY/X = Conf(R) =
M(x1,...,xs,y1,...,yr,Θ1,...,Θp,All,...,All)

M(x1,...,xs,All,...,All,Θ1,...,Θp,All,...,All)

There are two categories of frequently used evaluation cri-
teria to capture the interestingness of association rules: de-

scriptive criteria and statistical criteria. In general, one of
the most important drawbacks of a statistical criterion is
that it depends on the size of the mined population [9]. In
fact, when the number of examples in the mined population
becomes large, such a criterion loses its discriminating power
and tends to take a value close to one. In addition, a statis-
tical criterion requires a probabilistic approach to model the
mined population of examples. This approach is quite heavy
to undertake and assumes advanced statistical knowledge of
users, which is not particulary true for OLAP users.

On the other hand, descriptive criteria are easy to use
and express interestingness of association rules in a more
natural manner. In our approach, in addition to support and
confidence, we add two descriptive criteria for the evaluation
of mined association rules: the Lift criterion (Lift) [2] and
the Loevinger criterion (Loev) [11]. These two criteria take
the independence of itemsets X and Y as a reference, and
are defined on rule R as follows:

Lift(R) = PY X
PX PY

= Supp(R)
PX PY

(5)

Loev(R) =
PY/X−PY

PY
= Conf(R)−PY

PY
(6)

The Lift of a rule can be interpreted as the deviation of
the support of the rule from the support expected under the
independence hypothesis between the body X and the head
Y [2]. For the rule R, the Lift captures the deviation from
the independence of X and Y . This also means that the
Lift criterion represents the probability scale coefficient of
having Y when X occurs. For example, Lift(R) = 2 means
that facts matching with X have two times more chances
to match with Y . By opposition to the confidence, which
considers directional implication, the Lift directly captures
correlation between body X and its head Y . In general,
greater Lift values indicate stronger associations.



In addition to support and confidence, the Loevinger cri-
terion is one of the oldest used interestingness evaluation for
association rules [11]. It consists in a linear transformation
of the confidence in order to enhance it. This transformation
is achieved by centering the confidence on PY and dividing
it by the scale coefficient PY . In other terms, the Loevinger
criterion normalizes the centered confidence of a rule accord-
ing to the probability of not satisfying its head.

5. IMPLEMENTATION AND ALGORITHMS
We developed a Web application to mine association rules

from data cubes according to our proposal. This applica-
tion is a Mining Association Rule Module that runs on a
Client/Server platform, called MiningCubes, which already
includes previous work on mining multidimensional data [12,
13]. The platform is equipped with a data loader com-

ponent that enables connection to multidimensional data
cubes stored in the Analysis Services of MS SQL Server

2000. By employing MDX (MultiDimensional eXpressions)
queries, this component loads information about the struc-
ture (labels of dimensions, hierarchical levels and measures)
and the content of a user selected data cube. The Min-

ing Association Rule Module allows the definition of re-
quired parameters to run an association rule mining pro-
cess. In fact, a user is able to define analysis dimensions
DA, context dimensions DC , a meta-rule with its context
sub-cube (Θ1, . . . , Θp) and its inter-dimensional predicates
scheme (α1∧· · ·∧αs) ⇒ (β1∧· · ·∧βr), the measure M used
to compute criteria of association rules, and the thresholds
minsupp and minconf.

The generation of association rules from a data cube closely
depends on the search for large (frequent) itemsets. Tradi-
tionally, frequent itemsets can be mined according to two
different approaches: (i) the top-down approach which starts
with k-itemsets and steps down to 1-itemsets. The decision
whether an itemset is frequent or not is directly based on
the minsupp criterion. In addition, it supposes that if a k-
itemset is frequent, then all sub-itemsets are frequent, too;
(ii) the bottom-up approach which goes from 1-itemsets to
longer itemsets. It complies with the Apriori property [1]
which proves that for each non frequent itemset, all its super-

itemsets are definitely not frequent.
The previous property enables the reduction of the search

space, especially when it deals with large and sparse data
sets, which is particulary the case of OLAP data cubes.
Therefore, we base our algorithm on the Apriori property
according to a bottom-up approach for searching large item-
sets. As summarized in Algorithm 1, we proceed by an in-
creasing level wise search for large i-itemsets, where level i is
the number of items in the set. We denote by C(i) the sets
of i-candidates, i.e., i-itemsets that are potentially frequent,
and F (i) the sets of i-frequents, i.e., frequent i-itemsets.

At the initialization step, our algorithm captures the
1-candidates from user defined analysis dimensions DA over
the data cube C. These 1-candidates correspond to members
of DA, where each member complies with one dimension
predicate αk or βk in the meta-rule R. In other words, for
each dimension Di of DA, we capture 1-candidates from Aij ,
which is the set of members of the jth hierarchical level of
Di selected in its corresponding dimensional predicate in the
meta-rule scheme. For example, let consider the data cube
of Figure 2. We suppose that, according to a user meta-
rule, mined association rules are needed to comply with the

? ? ?

? ?

- -
(a) (T2)

L1

L2

T1 T2
P1

P2

(b) (T2 ∧ P1)

L1

L2

T1 T2
P1

P2

(c) (L2 ∧ T2 ∧ P1)

L1

L2

T1 T2
P1

P2

(a) Supp(T2) =
M(All,T2,All)
M(All,All,All)

(b) Supp(T2 ∧ P1) =
M(All,T2,P1)
M(All,All,All)

(c) Supp(L2 ∧ T2 ∧ P1) =
M(L2,T2,P1)

M(All,All,All)

C(1)
{L1}
{L2}
{T1}
{T2}
{P1}
{P2}

C(2)
{L2, T2}
{L2, P1}
{L2, P2}
{T2, P1}
{T2, P2}

C(3)
{L2, T2, P2}
{L2, T2, P1}

F (1)
{L2}
{T2}
{P1}
{P2}

F (2)
{L2, T2}
{L2, P2}
{T2, P1}

F (3)
{L2, T2, P1}

L2 ⇒ P2

T2 ⇒ P1

(L2 ∧ T2)⇒ P1

Figure 2: Example of a bottom-up generation of as-
sociation rules from a data cube

meta-rule scheme: 〈a1 ∈ {L1, L2}〉∧〈a2 ∈ {T1, T2}〉 ⇒ 〈a3 ∈
{P1, P2}〉. Therefore, the set of 1-candidates is C1 = {{L1},
{L2}, {T1}, {T2}, {P1}, {P2}}.

Our algorithm is a level wise iterative process. For each
level i, if the set C(i) is not empty and i is less than s + r,
the first step of our algorithm derives frequent itemsets
F (i) from C(i) according to two conditions: (i) an item-
set A ∈ C(i) should be an instance of an inter-dimensional
predicates in DA, i.e., A must be a conjunction of members
from i distinct dimensions from DA; and (ii) in addition to
the previous condition, to be included in F (i), an itemset
A ∈ C(i) must have a support greater than the minimum
support threshold minsupp. As shown by the example of
Figure 2, Supp(A) is a measure-based support computed
according to a user selected measure M from the cube.

From each A ∈ F (i), the second step extracts associa-
tion rules with respect to two conditions: (i) an association
rule X ⇒ Y must comply with the user defined meta-rule R,
i.e., items of X (respectively, items of Y ) must be instances
of dimension predicates defined in the body (respectively,
in the head) of the meta-rule scheme of R. For example,
in Figure 2, P2 ⇒ L2 can not be derived from F (2) be-
cause, according to the previous meta-rule scheme, instances
of 〈a1 ∈ {L1, L2}〉 must be in the body of mined rules and
not in their head; and (ii) an association rule must have a
confidence greater than the minimum confidence threshold
minconf. The computation of confidence is also based on the
user defined measure M . When an association rule satisfies
the two previous conditions, the algorithm computes its Lift
and Loevinger criteria according to the formalism defined
in Subsection 4.3. Finally, the rule, its support, confidence,
Lift and Loevinger criteria are returned by the algorithm.

Based on the Apriori property, the third step uses the
set F (i) of large i-itemsets to derive a new set C(i + 1) of
(i + 1)-candidates. One (i + 1)-candidate is the union of
two i-itemsets A and B from F (i) that respects three con-
ditions: (i) A and B must have i − 1 commun items; (ii) all
non empty sub-itemsets from A ∪ B must be instances of
inter-dimensional predicates in DA; and (iii) all non empty
sub-itemsets from A∪B must be frequent itemsets. For ex-



input : C,DC,DA,DU , R, M, minsupp, minconf

output: X ⇒ Y, Supp, Conf, Lift, Loev

C(1)← ∅;
for i← 1 to (s + r) do

C(1)← C(1) ∪Aij ;
end
i← 1;
while C(i) 6= ∅ and i ≤ (s + r) do

F (i) ← ∅;
foreach A ∈ C(i) do

if A is an inter-dimensional predicates then
Supp ← ComputeSupport(A, M);
if Supp ≥ minsupp then F (i)← F (i) ∪ {A};

end

end
foreach A ∈ F (i) do

foreach non empty B ∈ A do
if A\B ⇒ B complies with R then

Conf← ComputeConfidence(A\B, B, M);
if Conf ≥ minconf then

X ← A\B;
Y ← B;
Lift← ComputeLift(X, Y, M);
Loev← ComputeLoevinger(X, Y, M);
return (X ⇒ Y, Supp, Conf, Lift, Loev);

end

end

end

end
C(i + 1)← ∅;
foreach A ∈ F (i) do

foreach B ∈ F (i) that shares i− 1 items with A do
if All Z ⊂ {A ∪ B} of i items are
inter-dimensional predicates and frequent then

C(i + 1)← C(i + 1) ∪ {A ∪ B};
end

end

end
i← i + 1;

end

Algorithm 1: Algorithm for mining association
rules in a data cube

ample, in Figure 2, itemsets A = {L2, T2} and B = {L2, P2}
from F (2) have {L2} as a commun 1-itemset, all non empty
sub-itemsets from A ∪ B = {L2, T2, P2} are frequents and
represent instances of inter-dimensional predicates. There-
fore, {L2, T2, P2} is a 3-candidate included in C(3).

SELECT

NON EMPTY {[Shop].[Continent].[America]} ON AXIS(0),

NON EMPTY {[Time].[Year].[2004]} ON AXIS(1),

NON EMPTY {[Product].[Family].[Laptop]} ON AXIS(2)

FROM Sales

WHERE ([Measures].[Profit],

[Profession].[Profession category].[Student],

[Gender].[Gender].[Female])

Figure 3: A MDX query example

Note that the computation of support, confidence, Lift
and Loevinger criteria are performed respectively by the
functions: ComputeSupport, ComputeConfidence, Com-

puteLift and ComputeLoevinger. These functions take
the measure M into account according to the formalism de-
fined in Subsections 4.2 and 4.3. In our implementation,
these functions work with MDX queries which directly pick
up required precomputed aggregates from the data cube.
For instance, reconsider the Sales data cube of Figure 1, the
meta-rule (2), and the rule R1 : America ∧ 2004 ⇒ Laptop.
According to formula (3) and by considering the Profit mea-

sure, the support of R1 is written as follows:

Supp(R1) = Profit(America,Laptop,2004,All,Student,Female,All)
Profit(All,All,All,All,Student,Female,All)

The numerator value of Supp(R1) is therefore returned
by the MDX query of Figure 3.

6. PERFORMANCE EVALUATION
In order to evaluate the performance of our developed

application, we conducted a set of experiments under Win-
dows XP on a 1.60GHz PC with 480MB of main memory,
and an Intel Pentium 4, and used Analysis Services of MS

SQL Server 2000.
Figure 4(a) shows the relation between the runtime of our

algorithm and the support of mined association rules accord-
ing to several confidence thresholds. In general, the mining
of association rules needs less time when it deals with in-
creasing values of the support. Figure 4(b) presents a test
of our algorithm on a varying number of facts. For small
support values, the running time considerably increases with
the number of mined facts. However, for large supports, the
algorithm has already equal response times independently
from the number of mined facts. Another point of view
of this phenomenon can be illustrated by Figure 4(c). In
the latter figure, for a support and a confidence thresholds
equal to 5%, we can clearly notice that the efficiency of
the algorithm closely depends on the number of extracted
frequent itemsets and association rules. The running time
obviously increases according to the number of extracted fre-
quent itemsets and association rules. Nevertheless, the gen-
eration of association rules from frequent itemsets is more
time consuming than the extraction of frequent itemsets
themselves. In fact, an Apriori-based algorithm is efficient
for searching frequent itemsets and has a low complexity
level especially in the case of sparse data. Nevertheless, the
Apriori property does not reduce the running time of ex-
tracting association rules from a frequent itemset. For each
frequent itemset, the algorithm must generate all possible
association rules that comply with the meta-rule scheme and
search those having a confidence greater than minconf.

In general, these experiments highlight acceptable run-
time processing. The efficiency of our algorithm is due to:
(i) the use of inter-dimensional meta-rules which reduce the
search space of association rules and therefore, considerably
decreases the runtime of the mining process; (ii) the use of
precomputed aggregates of the multidimensional cube which
helps compute the support and the confidence via MDX
queries; and (iii) the use of the Apriori property which is
definitely suited to sparse data cubes and considerably re-
duces the complexity of large itemsets search.

7. CONCLUSION AND PERSPECTIVES
In this paper, we establish a general framework for min-

ing inter-dimensional association rules from data cubes. We
use inter-dimensional meta-rule which allows users to limit
the mining process to a specific context defined by a partic-
ular portion in the mined data cube. In our proposal, we
provide a general computation of support and confidence of
association rules that can be based on any measure from the
data cube. This issue is quite interesting since it expresses
associations which consider wide analysis objectives and do
not restrict users’ analysis to associations only driven by the
traditional COUNT measure. We also propose to evaluate
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Figure 4: The running times of our algorithm according to (a) support with different confidences, (b) support
with different # of facts, (c) # of frequent itemsets and # of association rules

interestingness of mined rules according to two additional
descriptive criteria (Lift and Loevinger). These criteria can
express the relevance of rules in a more precise way than
what is offered by the support and the confidence. We de-
veloped our proposal according to a bottom-up algorithm
for searching association rules. Our algorithm consists in
an adaptation of the traditional Apriori algorithm in order
to handle the multidimensional structure of data. Series of
experiments proved the efficiency of our proposal and the
acceptable runtime of our algorithm.

Some future directions need to be addressed for this work.
First, we plan to extend this proposal in order to han-
dle inter-dimensional association rules with repetitive predi-
cates as well as intra-dimensional association rules. Another
possible extension consists in embedding the measure in the
expression of mined association rules. In addition, we need
to profit from the hierarchical aspect of cube dimensions to
mine multi-level association rules. Finally, we also have to
cope with the visualization of mined association rules in the
space representation of the data cube itself in order to make
associations easier to interpret and exploit by OLAP users.
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