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ABSTRACT
In the On Line Analytical Processing (OLAP) context, ex-
ploration of huge and sparse data cubes is a tedious task
which does not always lead to efficient results. In this paper,
we couple OLAP with the Multiple Correspondence Analy-
sis (MCA) in order to enhance visual representations of data
cubes and thus, facilitate their interpretations and analysis.
We also provide a quality criterion to measure the relevance
of obtained representations. The criterion is based on a
geometric neighborhood concept and a similarity metric be-
tween cells of a data cube. Experimental results on real data
proved the interest and the efficiency of our approach.

Categories and Subject Descriptors
E.1.1 [Data]: Data structures—Arrays; H.4.2 [Information
Systems]: Information systems ApplicationsTypes of Sys-
tems[Decision support]

General Terms
Algorithms, Experimentation, Performance

Keywords
OLAP, Data cubes, Data representation, MCA, Test-values,
Arrangement of attributes, Characteristic attributes, Homo-
geneity criterion

1. INTRODUCTION
On Line Analytical Processing (OLAP) is a technology

supported by most data warehousing systems [3]. It pro-
vides a platform for analyzing data according to multiple
dimensions and multiple hierarchical levels. Data are pre-
sented in multidimensional views, commonly named data
cubes. A data cube can be considered as a space represen-
tation composed by a set of cells. Each cell represents a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

precise fact associated with one or more measures and iden-
tified by coordinates represented by one attribute from each
dimension. OLAP provides users with visual based tools
to summarize, explore and navigate into data cubes in or-
der to detect interesting and relevant information. However,
exploring data cubes is not always an easy task to perform.
Obviously, in large cubes with sparse data, the whole anal-
ysis process becomes tedious and complex.
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Figure 1: Example of different representations of a
2-dimensional data cube.

For instance, consider the cube of Figure 1 which dis-
plays sales of products (P1, . . . , P10) crossed by geographic
locations of stores (L1, . . . , L8). On the one hand, in repre-
sentation 1(a), full cells (gray cells) are displayed randomly
according to a lexical order of attributes – also named mem-

bers – in each dimension. The way the cube is displayed does
not provide an attractive representation that visually helps
to interpret data. On the other hand, Figure 1(b) contains
the same information as Figure 1(a). However, it displays a
data representation which is visually easier to analyze. Fig-
ure 1(b) gathers full cells together and separates them from
empty ones. Such a representation is naturally more com-
fortable and enables easy and efficient analysis. Note that
representation (b) can be interactively constructed from rep-
resentation (a) via some traditional OLAP operators. How-
ever, this suppose that the user intuitively knows how to
arrange attributes of each dimension. We propose an auto-
matic identification and an arrangement of interesting facts.
Our a method enables to get relevant facts expressing re-
lationships and displays them in an appropriate way in or-
der to enhance the exploration process independently of the
cube’s size. In order to do so, we carry out a Multiple Cor-
respondence Analysis [2] (MCA) on a data cube. Basically,
MCA is a powerful describing method even for huge volumes



of data. It factors categorical variables and displays data in
a factorial space constructed by orthogonal system of axes
which provides relevant views of data. We focus on relevant
OLAP facts associated with characteristic attributes (vari-
ables) provided by factorial axes. These facts are interesting
since they reflect relationships and concentrate significant
information. In order to ensure an appropriate represen-
tation of these facts, we highlight them and arrange their
attributes in the data space representation by using test-

values [4]. We also propose a novel criterion to measure the
homogeneity of cells’ distribution in the space representa-
tion of a data cube. This criterion is based on a concept of
geometric neighborhood of cells. It also takes into account
a similarity metric of cells’ measures and therefore provides
a scalar quantification for the homogeneity of a given data
cube representation.

2. OVERVIEW OF OUR METHOD
Our method can be directly applied on a data cube C or

on a data view (a sub-cube) extracted from C. It is up to
the user to select dimensions, fix one hierarchical level per
dimension and select measures in order to create a partic-
ular data view to analyse. In order to lighten notations,
we assume that a user has selected a data cube C, with d
dimensions (Dt)1≤t≤d, m measures (Mq)1≤q≤m and n facts.
We also assume that the user has fixed one hierarchical level
with pt categorical attributes per dimension. Let at

j the jth

attribute of the dimension Dt and p =
Pd

t=1 pt the total
number of attributes in C. For each dimension Dt, we note
{at

1, . . . , a
t
j , . . . , a

t
pt
} the set of its attributes.

In a first step, the aim of our method is to organize the
space representation of a given data cube C by arranging
the attributes of its dimensions. For each dimension Dt, we
establish a new arrangement of its attributes at

j . This ar-
rangement displays multidimensional information in a more
appropriate manner. In a second step, our method detects
from the resulted representation relevant facts expressing
interesting relationships. In order to do so, we select from
each dimension Dt a subset Φt of significant attributes, also
named characteristic attributes. The crossing of these par-
ticular attributes allows to identify relevant cells in the cube.

We base our method on the MCA [2], which is a factorial
technique that displays categorical variables in a property
space and maps their associations in two or more dimen-
sions. From a table of n observations and p categorical vari-
ables (p < n), the MCA provides orthogonal axes to describe
the most variance of the whole data cloud. The fundamen-
tal idea is to reduce the dimensionality of the original data
thanks to a reduced number of variables (factors) which are
a combination of the original ones. In our case, we assume
the cube’s facts as the individuals of the MCA, the cube’s
dimensions as its variables, and the attributes of a dimen-
sion as values of their corresponding variables. We apply
the MCA on the n facts of the cube C and use its results to
build test-values for the attributes at

j of the dimensions Dt.
We exploit these test-values to arrange attributes and detect
characteristic ones in their corresponding dimensions.

3. APPLYING THE MCA ON A DATA CUBE
Like all statistical techniques, the MCA needs a tabular

representation of input data. Therefore, we can not apply
it directly on a multidimensional representation. We need

to convert C to a complete disjunctive table. The conversion
consists in transforming each dimension Dt into a binary
matrix Zt with n rows and pt columns. The ith row of Zt

contains (pt − 1) times the value 0 and one time the value 1
in the column that fits with the attribute taken by the fact
i. The general term of Zt is:

z
t
ij =

�
1 if the fact i takes the attribute at

j

0 otherwise
(1)

By merging the d matrices Zt, we obtain a complete dis-
junctive table Z = [Z1, Z2, . . . , Zt, . . . , Zd] with n rows and
p columns. It describes the d positions of the n facts of C
through a binary coding. In the case of a large data cube, we
naturally obtain a very huge matrix Z. Once the complete
disjunctive table Z is built, the MCA starts by constructing
a matrix B = Z′Z – called Burt table –, where Z′ is the
transposed matrix of Z. Burt table B is a (p, p) symmet-
ric matrix which contains all the category marginal on the
main diagonal and all possible cross-tables of the d dimen-
sions of C in the off-diagonal. Let X be a (p, p) diagonal
matrix which has the same diagonal elements of B and ze-
ros otherwise. We construct from Z and X a new matrix
S = 1

d
Z′ZX−1 = 1

d
BX−1

By diagonalizing S, we obtain (p− d) diagonal elements,
called eigenvalues and denoted λα. Each eigenvalue λα is
associated to a directory vector uα and corresponds to a fac-
torial axis Fα, where Suα = λαuα. An eigenvalue represents
the amount of inertia (variance) that reflects the relative im-
portance of its axis. The first axis always explains the most
inertia and has the largest eigenvalue. Usually, in a factorial
analysis process, we only keep the first, two or three axes of
inertia [5, 1]. In [2], Benzecri suggests that the number k of
axes to keep should be fixed by user’s capacity to give them
a meaningful interpretation. It is not because an axis has a
relatively small eigenvalue that we should discard it. It can
often help to make a fine point about the data.

4. ORGANIZING DATA CUBES AND DE-
TECTING RELEVANT FACTS

Usually in a factorial analysis, relative contributions of
variables are used to give sense to the axes. A relative con-
tribution shows the percentage of inertia of a particular axis
which is explained by an attribute. The largest relative con-
tribution of a variable to an axis is, the more it gives sense
to this axis. In our approach, we interpret a factorial axis
by characteristic attributes detected through the use of the
test-values proposed by Lebart et al. in [4]. In the followings,
we present the theoretical principle of test-values applied to
the context of our approach.

4.1 The test-values
Let I(at

j) denotes the set of facts having at
j as attribute

in the dimension Dt. We also note nt
j = Card(I(at

j)) =Pn

i=1 z
t
ij the number of elements in I(at

j). It corresponds to
the number of facts in C having at

j as attribute (weight of at
j

in the cube). ϕt
αj = 1

nt
j

√
λα

P
i∈I(at

j
) ψαi is the coordinate of

at
j on the factorial axis Fα, where ψαi is the coordinate of

the facts i on Fα.
Suppose that, under a null hypothesis H0, the nt

j facts
are selected randomly in the set of the n facts, the mean
of their coordinates in Fα can be represented by a random



variable Y t
αj = 1

nt
j

P
i∈I(at

j
) ψαi, where E(Y t

αj) = 0 and

VARH0
(Y t

αj) =
n−nt

j

n−1
λα

nt
j

. Note that ϕt
αj = 1√

λα
Y t

αj . Thus,

E(ϕt
αj) = 0, and VARH0

(ϕt
αj) =

n−nt
j

n−1
1

nt
j

. Therefore, the

test-value of the attribute at
j is:

V
t

αj =

s
nt

j

n− 1

n− nt
j

ϕ
t
αj (2)

V t
αj measures the number of standard deviations between

the attribute at
j (the gravity center of the nt

j facts) and the
center of the factorial axis Fα. The position of an attribute
is interesting for a given axis Fα if its cloud of facts is located
in a narrow zone in the direction α. This zone should also
be as far as possible from the center of the axis. The test-
value is a criterion that quickly provides an appreciation if
an attribute has a significant position on a given factorial
axis or not.

4.2 Arrangement of attributes
In traditional representation of data cubes, attributes are

usually organized according to a lexical order such as alpha-
betic order for a geographic dimension or chronological order
for a time dimension. In a formal way, we consider that at-
tributes of a dimension Dt are geometrically organized in
a cube representation according to the order of indices jt.
i.e, the attribute at

jt−1 precedes at
jt

, and at
jt

precedes at
jt+1,

and so on (see the example of Figure 2). We propose to
exploit the test-values of attributes in order to organize dif-
ferently the cube’s facts. Especially for large and sparse
cubes, this new organization displays a relevant data repre-
sentation suitable for analysis. In order to do so, for each
dimension, we sort its attributes at

j according to the increas-
ing order of their k first test-values V t

αj on axes Fα. Thus,
we obtain a new order of indices j, which provides a new
arrangement of attributes at

j in each dimension Dt.

4.3 Characteristic attributes
In general, an attribute is considered significant for an axis

if the absolute value of its test-value is higher than τ = 2.
This roughly corresponds to an error threshold of 5%. In our
case, for one attribute, the test of the hypothesis H0 can in-
duce a possible error. This error will inevitably be increased
when performing p tests for all attributes. To minimize this
accumulation of errors, we fix for each test an error threshold
of 1%, which correspond to τ = 3. We also note that, when
a given axis can be characterized by too much attributes
according to their test-values, instead of taking them all, we
can restrict the selection by only considering a percentage
of the most characteristic ones. Thus, for each dimension
Dt, we select the following set of characteristic attributes:

Φt =

�
at

j , where ∀ j ∈ {1, . . . , pt},
∃ α ∈ {1, . . . , k} such as |V t

αj | ≥ 3

�
(3)

5. QUALITY OF REPRESENTATIONS
We propose a quality criterion of data cube representa-

tions which measures the homogeneity of geometric distri-
bution of cells. Attributes of a cell represent its coordinates
according to dimensions of the data space representation.
Let A = (a1

j1
, . . . , at

jt
, . . . , ad

jd
) be a cell in C. jt is the index

of the attribute taken by A in dimension Dt. We assume
that |A| is the value of the measure contained in A, which
is equal to NULL if A is empty. For example, in Figure 2,
|A| = 5.7 and |Y | = NULL.

Let B = (b1j1 , . . . , b
t
jt
, . . . , bdjd

) be a second cell in C. B
is said neighbor of A, noted B ⊣ A, if ∀t ∈ {1, . . . , d}, the
coordinates of B satisfy: btjt

= at
jt−1 or btjt

= at
jt

or
btjt

= at
jt+1. This definition does not include the case where

∀t ∈ {1, . . . , d} btjt
= at

jt
, which corresponds to the situa-

tion where A = B. For example, in Figure 2, the cell B is
neighbor of A (B ⊣ A). Y is also neighbor of A (Y ⊣ A).
Whereas cells S and R are not neighbors of A.
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Figure 2: A 2-dimensional example of a data cube.

The neighborhood of A, noted N (A), defines the set of all
cells B of C neighbors of A. For example, in Figure 2, the
neighborhood of A corresponds to the set N (A)={F, K, L,

T, E, H, B, Y }. In a formal notation:

N (A) = {B ∈ C where B ⊣ A}

We also define a similarity metric δ of two cells A and B
from a cube C according to the following function:

δ : C × C −→ R

δ(A, B) 7−→

(
1 − ( ||A|−|B||

max(C)−min(C)
) if A and B are full

0 otherwise

where ||A| − |B|| is the absolute difference of the measures
contained in A and B, and max(C) (respectively, min(C)) is
the maximum (respectively, the minimum) existant measure
value in C. In Figure 2, where grayed cells are full and white
ones are empty, max(C) = 7, which corresponds to the cell
S, and min(C) = 1.5, which corresponds to the cell K. For

instance, δ(A,B) = 1 − ( |5.7−4.5|
7−1.5

) ≃ 0.78, and δ(A,Y ) = 0.
We introduce now the metric ∆ defined from C to R such

as ∀A ∈ C, ∆(A) =
P

B∈N (A) δ(A,B). It corresponds to

the sum of the similarities of A with all its full neighbor
cells. For example, in Figure 2, ∆(A) = δ(A,F )+δ(A,K)+
δ(A,L)+ δ(A,T )+ δ(A,E)+ δ(A,H)+ δ(A,B)+ δ(A,Y ) ≃
1.64.

Therefore, we can define the crude homogeneity criterion
of a data cube C as:

chc(C) =
X

A ∈ C
|A| 6= NULL

X
B∈N (A)

δ(A,B) =
X

A ∈ C
|A| 6= NULL

∆(A)

This criterion computes the sum of similarities of every
couple of full and neighbor cells in a data cube C. In Fig-
ure 2, the crude homogeneity criterion is computed as chc(C)



= ∆(F )+∆(K)+∆(A)+∆(S)+∆(B)+∆(E) ≃ 6.67. Note
that, the crude homogeneity criterion of a data cube touches
its maximum value chcmax(C) when all cells of C are full and
have the same measure value. Therefore, we consider that
chcmax(C) =

P
A∈C
P

B∈N (A) 1. Finally, we define the ho-

mogeneity criterion of a data cube as follows:

hc(C) =
chc(C)

chcmax(C)
=

X
A ∈ C

|A| 6= NULL

∆(A)X
A∈C

X
B∈N (A)

1

The homogeneity criterion represents the quality of a mul-
tidimensional data representation. This quality is rather
better when full and similar cells are neighbors. Indeed,
when similar cells are gathered together in specific regions
of the space representation of a data cube, this cube is easier
to visualize. One user can therefore directly focus his anal-
ysis on these regions. Nevertheless, such a criterion can not
make real sense for a single data representation. We should
rather compare it to other representations of the same cube.
Recall also that we aim at organizing facts of an initial data
cube representation by arranging attributes in each dimen-
sions. Let Cini be the initial cube representation, and Corg

be the organized one. To measure the relevance of the or-
ganization provided by our method, we compute its realized
gain of homogeneity:

g =
hc(Corg) − hc(Cini)

hc(Cini)

6. CASE STUDY
We apply our method on a 5-dimensional cube (d = 5)

that we constructed from the Census-Income Database1 of
the UCI Knowledge Discovery in Databases Archive2. This
data set contains weighted census data extracted from the
1994 and 1995 current population surveys conducted by the
U.S. Census Bureau. The data contains demographic and
employment related variables. The constructed cube con-
tains 199 523 facts. One fact represents a particular profile
of a sub population measured by the Wage per hour. The
following table illustrates the cube’s dimensions.

Dimension pt

D1 : Education level p1 = 17
D2 : Professional category p2 = 22
D3 : State of residence p3 = 51
D4 : Household situation p4 = 38
D5 : Country of birth p5 = 42

According to a binary coding of the cube dimensions, we
generate a complete disjunctive table Z = [Z1, Z2, Z3, Z4, Z5].
Z contains 199523 rows and p =

P5
t=1 pt = 170 columns.

By applying the MCA on Z we obtain p − d = 165 facto-
rial axes Fα. Each axis is associated to an eigenvalue λα.
Suppose that, according to the histogram of eigenvalues, a
user chooses the three first axes (k = 3). These axes explain

1http://kdd.ics.uci.edu/databases/census-income/census-
income.html
2http://kdd.ics.uci.edu/

15.35% of the total inertia of the facts cloud. This contri-
bution does not seem very important at a first sight. But
we should note that in a case of a uniform distribution of
eigenvalues, we normally get a contribution of 1

p−d
= 0.6%

per axis, i.e. the three first axes represent an inertia already
25 times more important than a uniform distribution.

For each dimension Dt of the Census-Income data cube,
its attributes are sorted according to the increasing values of
V t

1j , then by V t
2j , and then by V t

3j . Table 1 shows the new at-
tributes’ order of the Professional category dimension (D2).
Note that j is the index of the original alphabetic order of
the attributes. This order is replaced by a new one accord-
ing to the sort of test-values. In Figures 3(a) and 3(b), we
can clearly see the visual effect of this new arrangement of
attributes. These figures display views of data by crossing
the Professional category dimension on columns (D2) and
the Country of birth dimension on rows (D5). Representa-
tion 3(a) displays the initial view according to the alphabetic
order of attributes, whereas representation 3(b) displays the
same view where attributes are rather sorted according to
their test-values.

Test-values

j Attributes V 1

1j V 1

2j V 1

3j

9 Hospital services -99.90 -99.90 -99.90

14 Other professional services -99.90 -99.90 99.90

17 Public administration -99.90 -99.90 99.90

12 Medical except hospital -99.90 99.90 -99.90

5 Education -99.90 99.90 99.90

7 Finance insurance -99.90 99.90 99.90

19 Social services -99.90 99.90 99.90

8 Forestry and fisheries -35.43 -8.11 83.57

3 Communications -34.05 -99.90 99.90

15 Personal services except private -21.92 -5.50 10.28

13 Mining -6.59 -99.64 -5.25

16 Private household services 7.77 51.45 11.68

6 Entertainment 40.04 99.90 96.23

1 Agriculture 68.66 3.39 -27.38

4 Construction 99.90 -99.90 -99.90

10 Manufact. durable goods 99.90 -99.90 -99.90

11 Manufact. nondurable goods 99.90 -99.90 -99.90

21 Utilities and sanitary services 99.90 -99.90 -99.90

22 Wholesale trade 99.90 -99.90 -24.37

20 Transportation 99.90 -99.90 99.90

18 Retail trade 99.90 99.90 -99.90

2 Business and repair 99.90 99.90 99.90

Table 1: Attribute’s test-values of Professional cat-

egory dimension.

We emphasize that our method does not cope with com-
pressing dimensions of a data cube. We do not also aim
at decreasing the sparsity of a data cube. Nevertheless,
we act on this sparsity and reduce its negative effect on
OLAP interpretation. We rather arrange differently origi-
nal facts within a visual effect that gathers them as well as
possible in the space representation of the data cube. At
a first sight, representation 3(b) is more suitable to inter-
pretation than 3(a). We clearly distinguish in Figure 3(b)
four dense regions of full cells. In these regions, neighbor
cells are more homogeneous than in the rest of the space
representation. This result is confirmed by the homogeneity
criterion. Indeed, for a sparsity ratio of 63.42%, the homo-
geneity criterion of the organized cube in representation 3(b)
is hc(Corg) = 0.17; whereas it measures hc(Cini) = 0.14 for
the initial cube in representation 3(a), i.e, our method en-
ables a gain of homogeneity g = 17.19%.
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Cambodia 125.0 750.0

Canada 35.0 93.1 54.1 112.5 253.1 182.3 373.4 22.2 169.2 94.0 267.6 11.1 350.0

China 622.0 40.7 50.1 105.0 566.7 336.8 46.7 64.2 60.7 833.8 21.6 329.0 206.3

Columbia 79.0 46.6 80.3 175.0

Cuba 501.5 31.8 19.0 28.9

Dominican-Republic 375.0 116.7 146.0 92.7 38.1 35.1 75.0
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El-Salvador 55.6 46.1 36.1 81.0 950.8 344.0 184.7 19.4 120.0 79.5 20.7 400.0 36.9 365.6

England 77.9 222.7 418.1 90.2 50.0 46.9 383.0 257.1 365.0 194.7 136.4 26.3 198.9

France 450.0 394.8 229.0

Germany 115.0 200.0 157.1 97.9 417.2 152.3 31.7 128.6 22.2 218.9 108.7 77.9 253.1 428.2

Greece 257.1 300.0 150.0 241.7 400.0 52.4 400.0 63.6

Guatemala 121.8 47.5 39.8 136.2 25.8

Haiti 90.0 80.6 178.7 ###

Holand-Netherlands 21.4

Honduras 151.7 945.0

Hong Kong 125.4 190.5 590.4 183.3 100.0 225.0 ### 150.0 566.7 55.1 484.3

Hungary 400.0

India 94.2 101.2 17.9 228.1 157.2 145.9 100.0 167.1 81.3

Iran 95.8 225.0 66.7 160.7 311.1 100.0 316.7 90.0 159.0

Ireland 500.0 100.0 533.3

Italy 80.3 27.8 32.9
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Japan 107.1 63.5 425.0 192.1 678.9 50.9 164.6 26.4 150.0 273.3 107.5

Laos 500.0 116.6 350.0 71.4

Mexico 34.5 89.6 75.0 95.0 155.2 46.5 67.6 122.2 61.9 59.8 89.7 159.1 59.9 17.1 52.9 40.3 140.3 121.7 82.1

Nicaragua 159.5 83.3 140.0 47.6 340.0 76.5 65.6 74.1 160.0 178.3 81.0 85.7

Outlying-U S ### 93.8 200.0

Panama 452.5

Peru 225.0 699.6 69.7 106.3 47.0 450.0 166.7 215.4 76.2 134.5 127.3 124.2 86.4 20.0 32.0

Philippines 200.0 122.7 265.0 270.0 317.8 62.5 165.0 331.1 66.7 166.1 95.6 77.8 134.7 197.3 322.7

Poland 252.9 175.6 105.0 325.0 185.5 92.6 175.2 180.0 196.2 187.5 212.5

Portugal 166.7 155.6 107.1 141.1 236.7

Puerto-Rico 87.8 250.0 54.2 66.7 80.7 250.0 37.5 122.3 48.3 420.7 40.0 110.1 23.9 43.5 163.8 142.9 33.6

Scotland 87.5 725.0 300.0 785.0 95.2 14.0 23.9 131.3 350.0 173.6 700.0 36.5

South Korea 870.0

Taiwan 46.2

Thailand 150.0 43.8

Trinadad&Tobago 66.3 243.8 63.8 920.0 333.3 89.3 466.7 175.0 453.0 200.0 250.0

United-States 37.8 92.6 153.4 130.6 75.4 117.9 71.1 84.3 214.4 165.4 146.9 141.7 76.0 142.1 99.3 96.0 157.0 199.9 84.4

Vietnam ### 75.0 327.5 173.8 250.0 32.1

Yugoslavia 42.1
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Philippines 331.1 77.8 95.6 317.8 165.0 265.0 62.5 200.0 270.0 66.7 166.1 322.7 197.3 134.7 122.7

India 157.2 101.2 17.9 228.1 145.9 167.1 81.3 100.0 94.2

Canada 253.1 22.2 169.2 373.4 54.1 112.5 93.1 182.3 11.1 350.0 267.6 94.0 35.0

Jamaica 343.1 55.6 803.8 106.0 147.0 79.2 604.7 ### 91.7 100.0 250.0 100.0 571.4 19.4 533.3 158.8

Iran 311.1 316.7 66.7 100.0 225.0 160.7 159.0 90.0 95.8

Japan 678.9 63.5 150.0 192.1 425.0 50.9 164.6 107.5 273.3 26.4 107.1

China 336.8 833.8 60.7 50.1 105.0 566.7 622.0 40.7 46.7 64.2 329.0 206.3 21.6

Hong Kong 225.0 590.4 183.3 ### 125.4 190.5 100.0 55.1 484.3 566.7 150.0

Greece 241.7 400.0 257.1 400.0 300.0 150.0 63.6 52.4

Germany 417.2 22.2 108.7 128.6 97.9 200.0 218.9 157.1 152.3 31.7 428.2 253.1 77.9 115.0

Scotland 785.0 300.0 350.0 23.9 725.0 87.5 95.2 14.0 700.0 36.5 173.6 131.3

Poland 325.0 180.0 175.2 105.0 175.6 185.5 92.6 212.5 187.5 196.2 252.9

England 383.0 194.7 136.4 90.2 46.9 198.9 222.7 50.0 418.1 257.1 365.0 26.3 77.9

Haiti 90.0 178.7 80.6 ###

Taiwan 46.2

Panama 452.5

Outlying-U S ### 200.0 93.8

Thailand 150.0 43.8

Italy 80.3 27.8 32.9

Hungary 400.0

Vietnam 327.5 250.0 75.0 ### 32.1 173.8

Holand-Netherlands 21.4

Portugal 141.1 155.6 107.1 166.7 236.7

Yugoslavia 42.1

South Korea 870.0

Honduras 945.0 151.7

Cuba 31.8 19.0 501.5 28.9

France 450.0 394.8 229.0

Cambodia 125.0 750.0

Dominican-Republic 146.0 116.7 75.0 375.0 92.7 38.1 35.1

Laos 350.0 500.0 116.6 71.4

Guatemala 136.2 25.8 121.8 47.5 39.8

Columbia 175.0 80.3 79.0 46.6

Ireland 500.0 100.0 533.3

Trinadad&Tobago 175.0 333.3 200.0 89.3 920.0 66.3 63.8 466.7 250.0 453.0 243.8

Puerto-Rico 37.5 40.0 110.1 420.7 80.7 43.5 250.0 250.0 66.7 54.2 122.3 48.3 142.9 33.6 163.8 23.9 87.8

Ecuador 300.0 265.6 515.0 206.7 175.0 68.8 250.0 100.0 107.2 205.6 128.1 333.3 212.5 41.9 109.1

Peru 166.7 134.5 106.3 47.0 124.2 450.0 69.7 225.0 215.4 76.2 20.0 32.0 86.4 127.3 699.6

Nicaragua 74.1 178.3 65.6 140.0 47.6 83.3 160.0 159.5 340.0 76.5 85.7 81.0

Mexico 122.2 159.1 89.7 155.2 67.6 40.3 75.0 59.9 17.1 46.5 34.5 95.0 61.9 59.8 121.7 82.1 140.3 52.9 89.6

El-Salvador 120.0 81.0 344.0 400.0 79.5 950.8 55.6 36.1 184.7 19.4 365.6 36.9 20.7 46.1

United-States 214.4 76.0 142.1 141.7 75.4 71.1 96.0 84.3 153.4 117.9 37.8 130.6 165.4 146.9 199.9 84.4 157.0 99.3 92.6

(b)

Figure 3: (a) Initial and (b) organized data representations of the Census-Income’s data cube.



According to the test of the Equation (3), for each t ∈
{1, . . . , 5}, we select from Dt the set of characteristic at-
tributes for the three selected factorial axes. These charac-
teristic attributes give the best semantic interpretation of
factorial axes and express strong relationships for their cor-
responding facts. To avoid great number of possible char-
acteristic attributes per axis, we can consider, for each axis,
only the first 50% of attributes having the highest abso-
lute test-values. For instance, in the Professional category

dimension D2, the set Φ2 of characteristic attributes corre-
spond to grayed rows in Table 1.

In the same way, we apply the test of the Equation (3)
on the other dimensions of the cube. In the representation
of the Figure 3(b), we clearly see that the regions of facts
corresponding to characteristic attributes of the dimensions
D2 and D5 seem to be more interesting and denser than
other regions of the data space representation. These regions
contains relevant information and reflect interesting associ-
ation between facts. For instance, we can easily note that
industrial and physical jobs, like construction, agriculture
and manufacturing are highly performed by Native Latin

Americans from Ecuador, Peru, Nicaragua and Mexico for
example. At the opposite, Asians people from India, Iran,
Japan and China are rather specialized in commercial jobs
and trades.

7. EXPERIMENTAL RESULTS
We have realized some experiments on the Census-Income

data cube presented in section 6. The aim of these exper-
iments is to appreciate the efficiency of our approach by
measuring the homogeneity gain realized by our MCA-based
organization on data representations with different sparsity
ratios. To vary sparsity we proceeded by a random sampling
on the initial dataset of the 199523 facts from the considered
cube.
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Figure 4: Evolution of the homogeneity gain accord-
ing to sparsity.

According to Figure 4, the homogeneity gain has an in-
creasing general trend. Nevertheless, we should note that for
low sparsity ratios, the curve is rather oscillating around the
null value of the homogeneity gain. In fact, when sparsity is
less then 60%, the gain does not have a constant variation.
It sometimes drops to negative values. This means that our
method does not bring a value added to the quality of the
data representation. For dense data cubes, the employment
of our method is not always significant. This is naturally due

to the property of the homogeneity criterion which closely
depends on the number of empty and full cells. It can also
be due to the structure of the random data samples that can
generate data representations already having good qualities
and high homogeneity values.

Our MCA-based organization method is rather interesting
for data representations with high sparsity. In Figure 4, we
clearly see that curve is rapidly increasing to high positive
values of gain when sparsity is greater than 60%. Actually,
with high relative number of empty cells in a data cube, we
have a large manoeuvre margin for concentrating similar full
cells and gathering them in the space representation. This
shows the vocation of using our approach in order to enhance
the visual quality representation, and thus the analysis of
huge and sparse data cubes.

8. CONCLUSION AND FUTURE WORK
In this paper, we introduced a MCA-based method to

enhance the representation of large and sparse data cubes.
This method aims at providing an assistance to the OLAP
user and helps him to easily explore huge volumes of data.
For a given data cube, we compute the test-values of its
attributes. According to these test-values, we arrange at-
tributes of each dimension and so display an appropriate
representation of OLAP facts. This representation provides
better property for data visualization since it gathers full
cells expressing interesting relationships of data. We also
identify relevant regions of facts in this data representation
by detecting characteristic attributes of factorial axes. This
solve the problem of high dimensionality and sparsity of data
and allows the user to directly focus his exploration and data
interpretation on these regions. We have also proposed an
homogeneity criterion to measure the quality of data repre-
sentations. This criterion is based on a concept of geomet-
ric neighborhood of cells. It also uses a similarity metric
between cells. Through experiments we led on real world
data, our criterion proved the efficiency of our approach for
huge and sparse data cubes.

Currently, we are studying some possible extensions for
this work. We consider the problem of optimizing complex-
ity of our approach. We also try to involve our approach
in order to take into account the issue of data updates. Fi-
nally, we project to implement this approach under a Web
environment that offers an interesting on line aspect and an
interesting user interaction context.
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