Visualizing a large collection of Open datasets: an experiment with proximity graphs

Tianyang Liu¹, Durdana Bangash Ahmed¹, Fatma Bouali¹,², Gilles Venturini¹

¹University François-Rabelais Tours, Computer Science Lab., France
²University of Lille2, France

{tianyang.liu,durdana.bangash}@etu.univ-tours.fr,
Fatma.bouali@univ-lille2.fr, venturini@univ-tours.fr
Talk outline

• Introduction (motivations/objectives):
 - User access to Open data

• Method:
 - Feature extraction with text mining techniques
 - Proximity graph building with KNN graph
 - Graph interactive visualization

• Results on French Open datasets

Overview of the collection
Details on a cluster of datasets
Local links based on similarity
Introduction/motivations

- **Open datasets** = large amount of information
 - www.data.gouv.fr: over 353,000 datasets
- How can users/citizens browse such a collection?
- For most Open data web sites =
 - Search engines with keywords and with a basic interface
 - Visual and interactive interfaces are rare (see www.data.gov, data.gov.uk)
- Can we do better than that?

Query = health children (implicit OR)
Results = 499 datasets
3 relevant datasets in the first pages
Followed by a lot of Census datasets about cities …
Helping users to find Open datasets of interest in a large collection

- **Inspiration from Ben Schneiderman** « *Overview first, zoom and filter, then details on demand* »

1. **Provide the user with a visual and interactive overview of the complete collection:**
 - A kind of *map* with navigation, zoom, filtering, ... and opening of the dataset
 - Discovery of *clusters* of datasets (with similar topics), *relations* between clusters, outliers (rare topics), ...

2. **Suggest datasets to explore**
 - User is exploring one dataset, other *similar datasets*?
 - A content-based search guided by links based on local *similarity*

1. Datasets **download** and pre-processing
2. Feature **extraction** with text mining techniques
3. Proximity graph **building**
4. Graph **visualization** and **exploration**
Method/Feature extraction

- An Open dataset =
 - Meta-data: title, keywords, description
 - Data file: rows and columns but also several tables, texts, images, ...

- Meta-data = **textual** information, well formatted
- Data file = **unstructured** => not adressed in this paper

- Feature extraction with **text mining techniques**:
 - **Detect** words + years + zip codes, Stop list, Truncation,
 - **Extract** features with 1) **bag of words** or 2) **N-grams**
 - 3 gram: matrix -> mat, atr, tri, rix
 - **Compute** features frequencies in each dataset
 - Zipf law and the **TFIDF** scheme

=> Data matrix: n documents x m features

M. W. Berry and M. Castellanos. Survey of Text Mining II: Clustering, Classification, and Retrieval. 1 edition.
• Proximity graph = given n data + distance, create edges between data

• KNN graph:
 - connects each data to its K nearest neighbors
 - complexity = $O(n^2)$ but possibly $O(n \log n)$ with KD tree optimization,
 - at least K datasets to suggest for each node
 - can create several connected components

Selection of a graph visualization method:

- **Node/link representation** (1 node = 1 dataset, edges from KNNG, length of edges = f(similarity))

- Size of the graph => layout with multi-level approaches like the FM^3 method

- **Tulip software**:
 - various algorithms for graphs
 - interface for interactive exploration
 - added plug-in: clicking on a node => downloads + opens the dataset

Results/initial experiments

• Downloading of 293,769 datasets from www.data.gouv.fr (in June 2012)

Feature extraction:
• bag of words, 4-grams, 3-grams => too many features => data matrix is too large for building the graph

• 2-grams => m = 650 => building the graph is possible
• Resulting data matrix: \(n \times m = 191.10^6 \) values, 1.456GB

Building the graph:
• \(n = 293,769, K = 4 \) => 881,307 edges, too large for Tulip
• use of sampling, \(n \) reduced to 151,460 datasets
• \(K = 3 \) => 454,280 edges
• \(K = 4 \) => 605,840 edges and 34 connected components
• Overview with annotations

• 1st largest component
• 5 large sub-clusters
 ⇒ Census datasets
 ⇒ predefined categories:
 RPTL: Resident
 RPTEPA: Employ-Population
 RPTCE: Job Characteristics
 RPTCFM: Couples - Families
 RPTESP: Population structure

• Central hub
 ⇒ Miscellaneous, non-Census datasets

• 2nd largest component ⇒ Census datasets about Diplomas and training

• Small disconnected clusters
 ⇒ KNNG
• Other small clusters of interest
• Zoom on cluster 30.6 about Entertainment
Results/Visual map

- Zoom on cluster 30.6 about Entertainment
- Preferences and usage
- Frequency
Consider a user who is exploring a dataset about «health children»

Suggest the immediate neighbors of this node in the graph:

With the search engine, 2 relevant documents in the first 30 pages (i.e. 240 returned documents)
Conclusions

• Operational approach for the visual and interactive exploration of a large collection of Open datasets
• Combination of existing techniques:
 • text mining + proximity graphs + visual and interactive graph layout
• First experiment with positive results:
 • visualization of half of the collection, clusters and links seem to make sense

• Limitations and perspectives
 • What about the other half of the collection?
 ⇒ Gephi?
 • Taking the content into account
 • 2-grams are basic:
 ⇒ Select non census data (between 1% and 2% of the collection)
 ⇒ Test « bag of words » on them
 • improve the suggestions and local exploration of the subgraph:
 ⇒ more neighbors but connected short edges

• User evaluation: comparison between our tool and the search engine (web site)
• Proximity graph = given \(n \) data + distance, create edges between data:

- **KNN graph:**
 - complexity = \(O(n^2) \) but possibly \(O(n \log n) \) with KD tree optimization,
 - at least \(K \) datasets to suggest for each node
 - KNN graph can have several connected components
