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What is Scientometrics ?
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• Science of Science

• Measure and analyze science, technology and innovation



4

JASIST, 

1950, 

Wiley
Scientometrics

1978, Springer

Informetrics

2007, Elsevier

Collnet Journal of 

Scientometrics & 

Info Management

2007, Taylor & Francis

Major outlets in the field

IJ of Bibliometrics in 

Business & Management

2017, Interscience
Quantitative 

Science Studies

2019, MIT Press

ISSI, Leuven, 2021

WIS, Sri Lanka, 2020



Why is it important?

• Assist government, and society in general, 

make better R&D management decisions 

and assess the likely outcomes

• Policy makers and researchers need to 

assess the impacts of a nation’s or 

institution’s scientific enterprise

• Identify novelty and innovation in science 

portfolios

• Peer review is based on personal judgment, 

time-consuming and costly
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What determines future influence?

• Price (1965): current visibility, 

publishing venue and age highly 

influence a publication’s future impact

• Are institution affiliations, collaborations

and interdisciplinarity decisive factors in 

future outreach?

• How important is current status and 

publishing patterns?

6
Derek J. de Solla Price: Networks of Scientific Papers, Science, 30 July 1965.



Is it possible to predict future influence?

• Metrics for scientific output are 

cumulative but impact can decrease?

• Complicated underlying mechanism that 

determines future output - random effect 

too?

• Science is so diverse and dynamic… 

“one-to-fit-all” approaches good enough?
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Big Data and Data Intelligence

• Vast and varied ecosystem 

of recorded bibliometric data 

is growing in volume, velocity 

and variety (Big Data Era)

• Human knowledge and understanding is 

limited  need for Data Intelligence

• Data Intelligence has been utilized in 

various disciplines (marketing, business, 

security, etc.)

•8
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Taxonomy of approaches



Scientific entities
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• Scientific entity: most approaches focus on 

publications, 

• Higher availability of complete records for 

publications

• The evaluation of other 3 categories results 

from aggregation of respective portfolios

For authors, etc. increased complexity of 

calculations

Difficulties in disambiguation across 

online sources for the other 3 categories



Target variable (1)
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• h-index is a popular quantity to be predicted

 More stable than citation counts, limited range 

and non decreasing values

Orion Penner, Raj Pan, Alexander Petersen, Kimmo Kaski and Santo Fortunato: “On the Predictability of Future 

Impact in Science”, Scientific Reports, 2013.



• http://klab.smpp.northwestern.edu/h-index.html
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Target variable (2)
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Target variable (3)

Daniel Acuna, Stefano Alesina and Konrad Kording: “Predicting Scientific Success”, Nature, 489, 201-202, 2012.



• Exponential distribution of bibliometric 

quantities and their crude nature led to 

alternative formulation of prediction

Will this paper increase your h-index?

When this paper will get a first citation?

What will be the yearly increase of the 

target variable?

Will you reach the top ranking / group of 

a venue, institution or research field?
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Target variable (4)



Modeling approaches (1)

• Classification: a set of predefined 

categories is based on the current and past 

state  future approximated by the 

category behavior

• Issues: 

limiting and oversimplified

behavior often deviates from one’s cohort

predicting only certain aspects of future 

state not total output
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• Regression: predict a numerical quantity, 

e.g. h-index or citation counts. Seminal work 

by Acuna (1)

• Issues: 

Difficulty predicting highly skewed 

distributions

“One-to-fit-model” cannot be adapted to 

various publishing patterns

Need for fine-tuned, age and field adjusted 

models
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Modeling approaches (2)

Daniel Acuna, Stefano Alesina and Konrad Kording: “Predicting Scientific Success”, Nature, 489, 201-202, 2012.
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The predictive power of h-index increments for different disciplines 

averaged out over multiple age cohorts and performance levels

Modeling approaches (3)

Orion Penner, Raj Pan, Alexander Petersen, Kimmo Kaski and Santo Fortunato: “On the Predictability of Future 

Impact in Science”, Scientific Reports, 2013.



• Statistical Modeling: fit bibliometric 

quantities to complex distributions to 

approximate their evolution mechanism. 

Random Impact rule (Sinatra)

• Issues:

Abundance of data required to calculate 

statistical parameters (e.g. exponent)

Highly complex models when moving from 

publication level to author or institutional 

level
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Modeling approaches (4)

Roberta Sinatra, Dashun Wang, Pierre Deville, Chaoming Song, Albert-László Barabási: “Quantifying the 

evolution of individual scientific impact”, Science, 04 Nov 2016.
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Random Impact Rule
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Major discoveries occur at any point

Aaron Clauset, Daniel Larremore, Roberta Sinatra: “Data-driven predictions in the science of science”, 

Science, Vol.355, pp.477-480, Feb 2017.



Love is so short, forgetting is so long

• Previous statistical attempts use preferential 

attachment combined with randomness

• Recent proposal* combines preferential 

attachment with time decay inspired by:

• Neruda’s “Poema 20” “…love was short and 

intense, whereas forgetting lingered” 

which leads to the exploitation of:

• Communicative and Cultural memory 
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Cristian Candia, C. Jara-Figueroa, Carlos Rodriguez-Sickert, Albert-László Barabási & César A. Hidalgo, 

“The universal decay of collective memory and attention”, Natural Human Behavior, 3, 82–91 2019.



Communicative & Cultural memory

• The attention follows a decay:

• a short-lived and fast-decaying phase connected to 

communicative memory, and 

• a longer-lived and slower-decaying phase connected 

to cultural memory
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• Network approaches: citation, co-

citation, co-authorship, like link prediction

• Time Series prediction: ignore the 

multiple factors defining future output

• Deep learning approaches: Recurrent 

NN (RNN), Long Short-Term Memory 

(LSTM)

• Combination of approaches: gaining 

popularity recently
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Modeling approaches (6)



Factors of impact prediction (1)

• Research impact is a result of a complex 

interplay of various factors formulating 

interconnected networks

• For each case (age, field, level of maturity, 

country, etc.) the weight assigned to each 

factor may differ
24
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Categorization 

of factors 

characterizing 

scientific impact 

and its evolution 

modeled as 

features

Factors of impact prediction (2)



• Multidisciplinarity:

Breadth of inspiration (references) 

correlates to breadth of impact (citations)

True for journals such as Cell and Physical 

Review Letters

A typical journal today publishes articles inspired 

by and impacting about six disciplines

Nature and Science both have a greater breadth 

of impact (citations) and inspiration (references) 

than 99.7% of other journals
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Factors of impact prediction (3)

Alexander J. Gates, Qing Ke, Onur Varol and Albert-László Barabási, “Nature’s reach: narrow work has broad 

impact”, Nature. 2019 Nov; 575(7781):32-34.



 How many, how 

diverse and how 

balanced disciplines 

are across an 

article’s references 

and citations 

 This is growing 

across all of science
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Inspiration and Impact: 

Interdisciplinarity



 How much the 

disciplines in 

articles’ references 

vary from those in 

their citations

 The decline here is 

probably due to 

rising 

interdisciplinarity
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Inspiration and Impact: 

Cross-disciplinarity



Challenges

• Focusing on measurable quantities, 

e.g. citations to past papers, timing of 

discoveries or promotions, awards, etc.

Is it fair and meaningful?
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Difference between predicting citations to existing papers 

and predicting occurrence of new publications



“Rich getting richer”

• Preferential attachment: the majority 

achieves low scores in these metrics, 

with a selected few attracting significant 

attention

• Inert property of citation based metrics 

to be non-decreasing creates false 

self-fulfilling predictive models

• Focus on other performance metrics
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Timing is everything (?)

• Timing vs. magnitude of one’s impact

Varying heterogeneous patterns, 

e.g. “sleeping beauties”

How to interpret an abrupt boost in 

citations and how long will it last?

What obsolescence means in different 

fields?

Younger researchers are found to be 

more productive but mature ones have 

a broader outreach
31



Are we really predicting impact?

• Predicting highly cited scholars or 

publications is often a different problem 

from identifying the truly innovative 

ones

• Publications that conform to the 

mainstream within a field get cited more 

often than novel original works
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Time window?

• Long-term vs. short-term prediction

Is short-term decisive of the whole career?

Same factors at play in different time 

windows?
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The ‘‘predictive power’’ of a regression model of the h-index 

across disciplines and career age cohorts 

(years since first publication  t=3,5,7)



Future research directions ?

• Incorporation of context-specific data

• Integration with online presence and 

social media dissemination (Altmetrics)

• Cross-referencing of data from various 

online sources to mitigate database bias

• Unified framework across all levels and 

patterns with combination of approaches 

and varying input
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• Avoid oversimplification which makes 

generalization harder.

• Hard to create an accepted ground truth 

dataset for model evaluation

• Do not encourage cheating statistics over 

the progress of science

• Do not focus on individual metrics; 

aim for overall fair adjustable models

• Combine data intelligence with human 

insight to decipher science dynamics
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Epilogue - Morals

Science is a social dynamic versatile process
Diana Hicks, Paul Wouters, Ludo Waltman, Sarah de Rijcke, Ismail Rafols, “The Leiden Manifesto for Research Metrics”, Nature, 22 April 2015.
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Lab contribution (2)



• A book to be published by Springer

• Editors: Katsaros D. and Manolopoulos Y.

• Title “Predicting the Dynamics of Research Impact”

• Topics

• Part I. Impact prediction: Citation curve modelling, Citation (of 

papers/authors) prediction, Impact indicators evolution prediction, 

Rising star scientists prediction

• Part II. Citation network topology prediction: Publication number 

prediction, Missing link prediction, Models of citation network growth 

and their use in prediction, Multi-layer (heterogeneous) networks and 

impact prediction

• Part III. Case studies to scientific disciplines: Award-winning 

researchers’ prediction, Recommendations for co-authorship, citation, 

papers, Systems for (big) scholarly data

• Email: manolopo@csd.auth.gr if interested in contributing
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Lab contribution (3)
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Thank you!


