Can We Probabilistically Generate Uniformly Distributed Relation Instances Efficiently?

Joachim Biskup Marcel Preuß
Technische Universität Dortmund
Germany
DBSEC 2020, August 26, Lyon-online

Can We Probabilistically Generate Uniformly Distributed Relation Instances Efficiently?

Problem: Can We ... ?

Simplified Single-FD Scenario and Probabilistic Instance Generation Task

Inputs
$(R(\{A, B, C\}), A \rightarrow B) \quad$ relational schema with one functional dependency
$k_{a t t}=\left\|d o m_{a t t}\right\| \geq 2 \quad$ size of domain for attribute att $\in\{A, B, C\}$
$n>0$ required size (number of tuples) of an instance

Output
r
relation instance as an (unordered, duplicate-free) set, to be generated with uniform probability distribution

Can We Probabilistically Generate Uniformly Distributed Relation Instances Efficiently?

technische universität dortmund

Uniqueness and Diversity Areas for Single-FD $A \rightarrow B$

Combinatorial Analysis

Number of Single-FD Instances: $n-a k_{A}-k_{C}$-Representations

$$
\begin{aligned}
& \sum_{\left\lceil\frac{n}{k_{C}}\right\rceil \leq \boldsymbol{a} k_{\boldsymbol{A}} \leq \min \left(k_{A}, n\right)} \\
& \begin{array}{c}
\sum_{\substack{\mathbf{1} \leq k \leq n,\left(s_{\mathbf{1}}, m_{\mathbf{1}}\right), \ldots,\left(s_{i}, m_{i}\right), \ldots,\left(s_{k}, m_{k}\right): \\
\mathbf{1} \leq s_{i}<s_{i+1} \leq k_{C} ;}}^{\mathbf{1} \leq m_{i} \leq n ;} \\
n=\sum_{i=\mathbf{1}}^{k} s_{i} \cdot m_{i} ; \\
\boldsymbol{a} k_{\mathbf{A}}=\sum_{i=\mathbf{1}}^{k} m_{i}
\end{array} \\
& {\left[\prod_{i=1}^{k}\binom{k_{A}-\sum_{1 \leq j<i} m_{j}}{m_{j}} \cdot k_{B}^{a k_{A}} \cdot \prod_{i=1}^{k} m_{i} \cdot\binom{k_{C}}{s_{i}}\right]}
\end{aligned}
$$

- $1 \leq k \leq n$
number of different sizes of A-uniqueness areas
- $\left(s_{1}, m_{1}\right), \ldots,\left(s_{i}, m_{i}\right), \ldots,\left(s_{k}, m_{k}\right)$
sequence of such sizes with their multiplicity
- $1 \leq s_{i}<s_{i+1} \leq k_{C}$ such sizes strictly ordered, bounded by cardinality of dom_{C}
- $1 \leq m_{i} \leq n$
- $n=\sum_{i=1}^{k} s_{i} \cdot m_{i}$ such multiplicities bounded by overall size of instance
- $a k_{A}=\sum_{i=1}^{k} m_{i}$ such multiplied sizes sum up to overall size of instance such multiplicities sum up to size of selected active A-domain

$n-a k_{A}-k_{C}-$ Representations

Sophisticated Probabilistic Generation Procedure

Probabilistic Generation Procedure: Step I. Preprocessing

1. determine and list all possible sizes $a k_{A}$ of an active domain $a c t_{A}$ for attribute A
2. for each listed $a k_{A}$: (solve Restricted Integer Partition Problem [Euler 1741], i.e.,) determine and list all possible $n-a k_{A^{-}} k_{C}$-representations S
3. for each listed $a k_{A}$, for each listed $n-a k_{A}-k_{C}$-representation S :
calculate and keep the number $\operatorname{Inst}\left(a k_{A}, S\right)$ of complying instances
4. for each listed $a k_{A}$:
calculate and keep the number $\operatorname{Inst}\left(a k_{A}\right)$ of complying instances
5. determine and keep the number Inst of all instances
6. annotate each listed size $a k_{A}$ and each listed $n-a k_{A}-k_{C}$-representation S with probabilities $\operatorname{Inst}\left(a k_{A}\right) / \operatorname{Inst}$ and $\operatorname{Inst}\left(a k_{A}, S\right) / \operatorname{Inst}\left(a k_{A}\right)$, respectively

Probabilistic Generation Procedure: Step II. Generation with Probabilities

select size of	select	fill areas of array for:		
active domain	$n-a k_{A}-k_{C}$-representation S	A-uniqueness	partial	C-diversity
$a k_{A}$	$s_{1}, \ldots, s_{a k A}$	$a_{1}, \ldots, a_{a k A}$	B-uniqueness	
		pairwise different		

Probabilistic Generation Procedure: Outline of Time Complexity

- Part I (performed only once)
- essentially solving the Restricted Integer Partition Problem: exponential
- Part II (optimizable if few expected collisions)
- applying tools based on a standard pseudo-random generator
- give-next-element operation: constant
- shuffle operation: linear
- adaptation of pseudo-randomness: linear
- selection of different values by the following alternatives:
- repeat the give-next-element operation on a collision
- shuffle an array representation of the pertinent set of options and extract
- in total: quadratic (plus the time for adaptations)

Failure of Naive Generation Procedures

"First Choose A-Values, then B-/C-Values" with $n=2$ and $k_{\text {att }}=2$

Conclusions and Open Answer

Summary of Current Achievements

- systematic counting method for relation instances of required size for one functional dependency and given domain sizes
- identification of the failure of naive approaches to probabilistic instance generation: "local uniform selections" do not necessarily lead to "global uniformity"
- design and verification of a sophisticated probabilistic generation procedure with uniformly distributed outputs:

1. combinatorially adapted probabilities, to select a template structure
2. uniform probabilities, to select actual values

- open answer to our question, due to challenging interactions of requirements:
- by the database schema
- for the probability distribution of the outputs
- even more challenging for more general scenarios

