ArtSim: Improved estimation of current impact for recent articles

Serafeim Chatzopoulos, Thanasis Vergoulis, Ilias Kanellos, Theodore Dalamagas, Christos Tryfonopoulos

> AlMinScience 2020 1st International Workshop on Assessing Impact and Merit in Science

Problem definition (1/2)

- Plethora of available scientific articles
- Scientific impact can be defined in many ways [1]
- Variety of measures aiming to quantify scientific impact
- Practical applications
 - $\circ~$ Keyword search results
 - Literature exploration
 - $\circ~$ Articles comparison

[1] Bollen, J., Van de Sompel, H., Hagberg, A., Chute, R.: A principal component analysis of 39 scientific impact measures. PloS one (2009)

Problem definition (2/2)

- Estimate *popularity* or *hype* of an article i.e. its current impact
- Most popularity measures rely on citation history
- Recent articles have limited citation history
 - Their impact estimation is prone to inaccuracies
 - Existing measures fail to provide correct estimations

Our approach (1/3)

- ArtSim: a novel approach to assess article popularity
- Similar articles share similar popularity dynamics
- ArtSim considers similar articles with more complete citation history
- Scholarly Knowledge Graphs are used to compute article similarity
- Article similarity based on author lists and topics

Our approach (2/3)

- Knowledge Graphs encode rich domain-specific information
- A *metapath* is a path in the network schema
 - APTPA relates authors that have published papers in the same topics
- ArtSim calculates metapath-based similarity between papers [2]

[2] Xiong, Y., Zhu, Y., Yu, P.S.: Top-k similarity join in heterogeneous information networks. IEEE Transactions on Knowledge and Data Engineering (2015)

Our approach (3/3)

- ArtSim can be applied on top of any popularity measure
- ArtSim transforms scores of recent papers using article similarity

•
$$S(p) = \begin{cases} a * S_{PAP}(p) + \beta * S_{PTP}(p) + \gamma * S_{initial}(p), & p. year \ge t_c - y \\ S_{initial}(p) & , & otherwise \end{cases}$$

• $\alpha, \beta, \gamma \in [0, 1]$ and $\alpha + \beta + \gamma = 1$

Evaluation (1/5)

• Datasets

- DBLP Scholarly Knowledge Graph
- DBLP Article Similarities (<u>https://zenodo.org/record/3778916</u>)
- Ground truth: total rankings of papers based on their short term future citations [3]
- Measures: Kendall's τ and nDCG@k
- Best performing popularity measures [3]
 - Retained Adjacency Matrix (RAM)
 - Effective Contagion Matrix (ECM)
 - CiteRank (CR)
 - FutureRank (FR)

[3] Kanellos, I., Vergoulis, T., Sacharidis, D., Dalamagas, T., Vassiliou, Y.: Impactbased ranking of scientific publications: A survey and experimental evaluation. IEEE Transactions on Knowledge and Data Engineering (2019).

Evaluation (2/5)

Effectiveness of our approach for different parameters in terms of Kendall's τ correlation

Evaluation (3/5)

Effectiveness of our approach in terms of Kendall's τ correlation for best parameterization per year

Evaluation (4/5)

Effectiveness of our approach for y = 3 in terms of nDCG@k

	Small values of k			Large values of k		
	5	50	500	400,000	500,000	600,000
ECM	0.8323	0.8634	0.8953	0.8780	0.8833	0.8884
ArtSim-ECM	0.8323	0.8634	0.8953	0.8837	0.8912	0.9003
RAM	0.8588	0.8521	0.8943	0.8774	0.8842	0.8881
ArtSim-RAM	0.8588	0.8521	0.8943	0.8836	0.8904	0.9008
CR	0.3530	0.5263	0.6060	0.7904	0.8149	0.8272
ArtSim-CR	0.3530	0.5263	0.6060	0.7983	0.8199	0.8307
\mathbf{FR}	0.3403	0.5018	0.5526	0.7586	0.7934	0.8101
ArtSim-FR	0.3403	0.5018	0.5526	0.7731	0.7961	0.8152

Evaluation (5/5)

Effectiveness of our approach for y = 3 in terms of nDCG for different keyword search scenarios with y = 3 and varying k

Summarizing

• ArtSim can be applied on top of existing popularity measures to increase the

accuracy of their results

• Popularity of papers in their cold start period can be better estimated based on

the characteristics of other, similar papers

• Experimental evaluation showcases the effectiveness of ArtSim

Thank you for your attention!

schatz@athenarc.gr

Co-financed by Greece and the European Union