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Visual Data Exploration

TIME WELL SPENT™ by Tom Fisbborne

’ YOU THINK FINDING

YOUR CAR KEYS IS
HARD? TRY FINDING
INSIGHTS IN Bl6 DATA.

Workforce Innovation Thot Works™
KRONOS. (oM/ TIME WELLSPENT

S 4KRONOS

Goal: Unlock hidden insights

816 DATA DASHBOARD |

“After careful consideration of all 437 charts, graphs, and metrics,
I've decided to throw up my hands, hit the liquor store,
and get snockered. Who's with me?!”

Problem: Manual exploration is a time consuming tedious process

Solution: Automatic Visualization Recommendation Systems
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Deviation-Based Visnalization/View
Recommendation

= Select a subset of data D, (Exploratory Query Q)

Graduated
high school

| SELECT * FROM census WHERE edu>12": |

= Generate views based on all combinations of dimensions(A), measures (M),
aggregate functions (IF)

Example
A, EA
F, €F
M, e M

Entire
Database

O
® , i o
Target View V, Over D, Comparison View Over DY
SELECT A_, Fy(MZ) FROM census SELECT A, FY(MZ)FROM census
WHERE edu>12 GROUP BY A_; GROUP BY 2 _;
A 4
Probability Distribution Probability Distribution

of Target View

of Comparison View

.

1. M.Vartak et. al., “SeeDB: Automatically Generating Query Visualizations”,VLDB ’14

2. Ehsan, H., et. Al., “MuVE: efficient multi-objective view recommendation for visual data exploration”, ICDE ’16
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Compute Deviation

Recommend top-k views

3. Ehsan, H., et. Al., “Efficient recommendation of aggregate data visualizations”,TKDE ’18



Rggregate View Recommendation

= Key Issue: Assumption that the analyst is precise in defining
an input exploratory query that reveals interesting insights!

Example: Top-1 View S high-
DQ: SELECT * FROM Census WHERE edu > 12 school grads
0.9 | o data
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Solution: Automatic Query Refinement

= Our proposed approach: Automatic refinement of exploratory queries to select
data that reveals valuable insights

= Input query Q, specifies a conjunction of predicates, P, A P, A P,..... AP

= A refined query Q, is generated by modifying lower and/or upper limits for some
P, of Q.

= Example:

Q: SELECT * FROM Census WHERE edu > 12
Q1l: SELECT * FROM Census WHERE edu > 6
Q2: SELECT * FROM Census WHERE edu > 8

1. Mishra, C., Koudas, “Interactive query refinement”, EDBT"2009
2. Telang, A., et al., ”’One size does not fit all: Toward user and query dependent ranking for web databases”, TKDE’2012
3. Tran, Q.T., et al., “How to conquer why-not questions”, SIGMOD’2010



Naive Query Refinement

OUR CONSULTANT
HAS BEEN MINING

ACCORDING TO |
THE DATA, SALES

ARE ALWAYS
HIGHEST WHEN
I DO THIS... J

DATA ALL DAY

THE RESULTS
ARE QUITE
A SHOCKING.
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Key Issues
* Similarity Oblivious

* (dis)similarity to the initial exploratory query
 Statistically Insignificant Insights

* false discoveries



Similarity Aware Refinement

Issue #1: similarity oblivious Solution #1: similarity-aware query refinement

= Distance between the refined query Q; and the input query Q.

= Normalized similarity metric
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s(Q. Q) = 1/p i~

= Possible refinements are exponential to the number of predicates in Q.

= Challenge:
= Large number of refinements (Addressed in this paper)

= Large number of views per refinement (Addressed in our previous work)

1. Albarrak, A., et al., “Saqr: An efficient scheme for similarity-aware query refinement”, DASFAA’2014
2. Vartak, M., et al., “Refinement driven processing of aggregation constrained queries”, EDBT’2016



Multi Objective Utility Function

Formally, our proposed hybrid utility function is:

U(Vi,Qj) =0:5(Q, Q;) +9p D(Vi,Q_i)

U(Vi,Qj): Utility of a view V; from target query Q,
5(Q,Q;): Similarity between the input query Q and the refined query Q,

D(Vi,Qj): Deviation value of the view V, from query Q,

ap, O : Weight Parameters
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Issue #2: statistical significance Solution #2: hypothesis testing

= Recommended views may not have actual statistical significance.

= We employ Hypothesis testing to test the significance of the views.

[ chanse your MiND? |-

» Formulate null and alternate SIONIFICANCE LEVEL
. P-VALUE \
hypothesis pdove o

!
) P-vALUE
SISNIFICANCE LEVEL

= Calculate test statistics

» Compare p-value against (J

H
significance level f i
A\ | | —\— N -

1. Zhao, Z., et al., “Controlling false discoveries during interactive data exploration”, SIGMOD’ 2017
2. Chung, Y., et al., “Towards quantifying uncertainty in data analysis & exploration”. IEEE Data Eng. Bull. ‘2018
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Query Refinement for View Recommendation:

Formal Definition

Given a user-specified query O

on a database D,

a multi- objective utility function U,

a significance level o, statistical power 1-83

and a positive integer Xk,

1

values from all of the refined quéries Q. -
Such that pvalue (Q,) <o and power (Q;) > (1-B),

Find the k aggregate views V, , over D, ,which have the highest utility




The QuRVe Scheme

= Our multi-objective utility function is similar to Top- K preference
query processing.

= However, our problem is different in two ways:
* D(V] o) 1s not physically stored and they are computed on demand

= Size of the view search space is prohibitively large and potentially
infinite

Challenge: Scaling to a large number of possible views over a large number of refined queries




The QuRVe Scheme

= Predict maximum possible utility of unseen

views, depends on upper bound on deviation
D =1.

- UUnseen= Og X S(Q’Q]) +(1- O(S) X Du

= Access the views in decreasing order of
similarity objective until the top k views are
seen.

= In the example probe V1 for deviation
calculation and update U___._and U
accordingly.

seen unseen

Probe for Deviation

V2

Initializations

USeen

lJUnseen

S(Vi)

D(Vi)

U(Vi)

V3

V4

V5

V6

V7

V8

USeen

UUnseen




The QuRVe Scheme

= Predict maximum possible utility of unseen
views, depends on upper bound on deviation
D =1.

- UUnseen= Og X S(Q’Q]) +(1- O(S) X Du

= Access the views in decreasing order of
similarity objective until the top k views are
seen.

= In the example probe V1 for deviation
calculation and update U___._and U
accordingly.

seen unseen

= Stop when utility of seen views is higher than
the utility of unseen views

Initializations
asS aD k USeen lJUnseen
D e e
V1 1 0.1. 0.64 0.64 0.85

V2

0.75

V3

0.75

V4

0.5

V5

0.5

V6

0.5

V7

0.25

V8

0.25

Our QuRVe scheme uses
Early Termination to
minimize the number of
processed views




The QuRVe Scheme

= Predict maximum possible utility of unseen
views, depends on upper bound on deviation
D =1.

- UUnseen= Og X S(Q’Q]) +(1- o(S) X Du

= Access the views in decreasing order of
similarity objective until the top k views are
seen.

= In the example probe V1 for deviation
calculation and update U___._and U
accordingly.

seen unseen

= Stop when utility of seen views is higher than
the utility of unseen views

Initializations

as aD k USeen lJUnseen
.6 U
S(Vl) D(VI) U(VI) uSeen UUnseen

V1 1 0.1 0.64 0.64 0.85
V2 0.75 0.1 0.49 0.64 0.85
V3 0.75 0.15 0.51 0.64 0.7
V4 0.5 0.4 0.46 0.64 0.7
V5 05 034 0436 L0064 07
V6 0.5 0.7 0.58 0.64 0.55
V7 0.25
V8 0.25

Our QuRVe scheme uses
Early Termination to
minimize the number of
processed views




Experimen
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Conclusions

= We formulated the problem of query refinement for view
recommendation and proposed the QuRVe scheme.

= QuRVe efficiently navigates the refined queries search space to
maximize utility and reduce the overall cost.
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