The Teleform the teleform to telef

Antoine Chédin¹, *Matteo Francia*², Patrick Marcel¹, Verónika Peralta¹, Stefano Rizzi²

¹LIFAT, University of Tours, France

²DISI, University of Bologna, Italy

ABDIS 2020

Intentional Analytics Model

Intentional Analytics Model (IAM) [1]

- Facilitate analysis of multidimensional cubes
- Bring OLAP to higher abstraction level
- Escape from query answers as sets of tuples

Express high-level intentions, not queries

- <u>Describe</u>, Assess, Explain, Predict, Suggest

Get cubes enhanced with insights

- Apply (mining/ML) models to data
- Highlight interesting components

Classical OLAP

Identify interesting patterns / cells

- What if we have thousands of cells?
- Can we have an effective representation?

Intentional OLAP: Describe

`Describe` intention:

with cube describe $m_1, ..., m_z$ [for P] [by I] [using $t_1, ..., t_r$] [size k]

Cube measures: m₁, ..., m_z Selection predicate: P Cube level: I Models: t₁, ..., t_r (apply all models if omitted) Model size: k (automatically tune k if omitted)

Execution flow

- i. Execute query for given cube, measures, predicate, level
- ii. Apply models (e.g., clustering, top-k) with given k (e.g., how many clusters)
- iii. Estimate interestingness
- iv. Pick effective charts

with sales describe quantity by month using top-k size 2

Model

Information-rich patterns

- Computed on levels/measures
- Partition cube cells into components
- We consider: Top/Bottom-k, Skyline, Outliers [2], Clustering [3]

Tuning k

- Clustering: k clusters
 - Find *knee* in a curve
 - L-method [4]: slower, shift the knee
 - Kneedle [5]: faster, consistent results
- Top/Bottom-k: k points with higher/lower values
- Outliers: k points with higher outlierness

cluster

[2] Liu, F. T., Ting, K. M., & Zhou, Z. H.: Isolation forest. In: *Proc. ICDM.* pp. 413-422 (2008)
[3] S. Lloyd.:, Least squares quantization in PCM. In. IEEE Trans. Inf. Theory, vol. 28, pp. 129-137 (1982)
[4] Salvador, S., Chan, P.: Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms. In: Proceedings of ICTAI. pp. 576–584 (2004)
[5] Satopaa, V., Albrecht, J.R., Irwin, D.E., Raghavan, B.: Finding a "kneedle" in a haystack: Detecting knee points in system behavior. In: Proceedings of ICDCS. pp.166–171 (2011)

with sales describe quantity by month using top-k size 2

Month

Jan

Feb

Mar

Apr

May

sum(quantity)

isTop

notTop

125

132

12

15

50

- We consider: Top/Bottor

5

Interestingness

Enhance cube with highlights

- Cells in *most-interesting* component

Interestingness [6]: average component surprise

- Surprise: change in belief before (C) after (C') applying intention
 - z-score of current cell avg z-score of *corresponding cells*
- Corresponding cells
 - Intention either changes group-by set/selection predicate
 - If GBS changes, determined via part-of order
 - If P changes, same cell if part of C, whole cube otherwise

[6] Vassiliadis, P., Marcel, P., Rizzi, S.: Beyond rollup's and drill-down's: An intentional analytics model to reinvent OLAP. Information Systems 85, 68–91 (2019)

Visualization

Pivot table and graphical representation

- Color code links data/component

Guidelines:

- Visualizations from multiple points of view
- Visualizations for lay and skilled users

Choose charts depending on:

- Cardinality (e.g., grouped column chart for low cardinality)
- Dimensionality (e.g., scatter plot requires 2 levels)
- Data type (e.g., line chart for time series)

Describe in action

http://semantic.csr.unibo.it/describe/

with Sales describe storeCost by month

Measures sum(storeCost) month Rows Columns 1997-01 20327.421 1997-02 18999.6688 1997-03 20674.0791 1997-04 19151.8369 1997-05 18880.6687 1997-06 22219.969 1997-07 21605.791 1997-08 20235,9608 1997-09 20310.8052 1997-10 18449.466 1997-11 25055.393 1997-12 27693.78 component interest properties cluster 1 1.994 centroid: 26374.59 1.467 avgZscore: 1.47 top sum(storeCost) outlierness: -1.0 0.845 outliers not bottom sum(storeCost) 0.299 avgZscore: 0.3 cluster 0 -0.399 centroid: 20085.57 not outliers -0.423 outlierness: 1.0 not top sum(storeCost) avgZscore: -0.49 -0.489 -0.897 avgZscore: -0.9 bottom sum(storeCost)

Describe in action

http://semantic.csr.unibo.it/describe/

Measures	s sum(stor	reCost)							
Rows	month								₁₉₉₇₋₀₁ month
Columns	category	,							1997-02 -
	Baking Goods	Bathroom Products	Beer and Wine	Bread	Breakfast Foods	Candles	Candy	Canned Anchovies	1997-03 -
1997-01	55 <mark>6.4</mark> 229	421.3061	2389.5654	520.7016	520.7085	40.7027	464.4884	48.8279	1997-04 -
1997-02	476.3389	354.9201	1365.8729	519.3708	459.4693	24.7807	458.2083	57.2324	1997-05 -
1997-03	582.483	500.8205	968.3671	569.7393	57 6 .8542	49.1184	517.756	92.5708	
1997-04	433.3722	344.8056	2452.5 6 47	446.2024	475.4528	41.999	472.336	74.5717	1997-06 -
1997-0 5	567.4029	459.0977	1441.135	50 6 .5075	434.8817	55.5834	380.0482	58.3223	1997-07 -
1997-06	430.5314	445.1673	4495.5083	500.7004	472.7688	60.638	401.1508	87.1755	1997-08 -
1997-07	470.786	441.0914	2011.4115	592.2087	535.182	47.113	498.1104	73.5137	1997-09 -
1997-08	477.8445	407.8353	1909.6441	562.7974	514.1978	44.5676	484.1587	64.2519	1007.10
1997-09	519.8787	380.2993	2942.8915	514.9472	464.9874	61.7509	52 <mark>6</mark> .0353	80.3315	1997-10
1997-10	446.2016	443.3619	1975.2111	458.3914	457.0872	29.1627	457.3782	61.37	1997-11 -
1997-11	508.7303	464.7854	4045.0889	656.4131	663.5032	36.7406	589.9359	112.641	1997-12 -
199 7-12	653.3319	533.0684	5079.5247	716.1121	596.7529	48.1042	577. 9768	103.0699	88888
<								>	8 2 2 4 4

7 0768	103 0600	+		1 1 1			1 1	1 1	1 1	1 1	1 1					1		1 1	1 1
7.5700	105.0055	Å		to all all all all all all all all all al	Clarks Ster	the s	20 E	Solles .	Being Coles	Star I	Se Les	2.00	W are	leller Person	2 hors	in the second	ables	olucr's	A Star
		J.	ar and	૾૾ૼૻ૾૾ૢ	00	100	2	50	Å	~	4 4	47		Î P A	1	Cellar	ê ê	¢	5
		a B		je c		ËČ	و کر ک	8	å		No the		Į,	lans Éche	-	NS. Sec	đ d	į,	le st
		Bar	49	ర్	00		å G				4.			γĘ		ac fe			
							ē.									<i>q</i> -			a~
									_										
		4007.04	month			•••	•••	••	• 🔴 (• •	• •	• • •					••
		1997-017						••				• •	• •	• • •					• •
		1997-02 -										_							
_		1007 03				•••	•••	••	•			• •	• •	• • •					••
2		1337-03						••	• •			• •	• •	• • •					• •
)		1997-04 -																	
		1007.05				•••	•••	••	• • •			• •	• •	• • •					••
5		1007-00						••				• •	• •	• • •					••
		1997-06 -						_						_				_	_
		1997-07 -				•••	•••	••	•			• •	••	• • •					••
5		1007-07						••				••	• •	• • •					• •
		1997-08 -	ŏ														_		
		1997-09 -				•••	•••	••	• • •			• •	••	• • •					••
2								••	• •			• •	• •	• • •	•	•			• •
,		1997-10 -										-		_					
		1997-11 -				•••	•••	•••	•••			•••	••	• • •					•••
			•			• • •		• •	•			•	• •	• • •	•				• •
		1997-12 -																	
		+																	

month

category sum(storeCost)

cluster

outliers

top sum(storeCost)

bottom sum(storeCost)

1997-04

Beer and Wine

2452.5647

2

True

True

False

component	interest	properties			
cluster 2	3.296	centroid: 2583.35			
outliers	1.425	outlierness: -1.0			
top sum(storeCost)	1.028	avgZscore: 1.2			
cluster 1	0.537	centroid: 965.33			
not bottom sum(storeCost)	0.179	avgZscore: 0.21			
cluster 0	-0.315	centroid: 247.06			
not outliers	-0.32	outlierness: 1.0			
not top sum(storeCost)	-0.342	avgZscore: -0.4			
bottom sum(storeCost)	-0.538	avgZscore: -0.63			

category

Conclusion & research directions

Describe intentional operator

- Extract interesting patterns from cube measures
- Feasibility (Sales from FoodMart, all models computed)

Cardinality	Query (s)	Model (s)	Interestingness (s)	Pivot (s)	Total (s)
323	0.88	1.45	0.03	0.03	2.39
77832	0.64	3.61	0.39	0.51	5.14
86829	0.69	3.66	0.48	1.56	6.38

Main research directions:

- Scale up to big cubes
 - As in Auto-ML [7], time-budget for optimal model computation
- Assess effectiveness with real data scientists
 - Understand if all meaningful visualizations are covered
 - Estimate how highlights correlate with user's insights
- Extend the approach to other intention operators

Thank you. Questions?

Matteo Francia – University of Bologna

ABDIS 2020