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Teaser!
● QA is widely researched topic
● Different techniques and technologies
● General domain knowledge
● No scholarly-oriented adoption
● No datasets, and no graphs

● Comes in JarvisQA
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Introduction (1/2)
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Introduction (2/2)
Why Scholarly knowledge is much more complicated to do QA on?

● Represented in unstructured manner
● Ambiguous
● Not FAIR
● Not machine actionable
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Proposed Solution
Our proposed solution is JarvisQA

● BERT based system to answer questions on tabular views of scholarly 
knowledge graphs.

● Implemented on the ORKG1 [1] scholarly knowledge graph

1. https://orkg.org
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https://orkg.org


Related work
A plethora of work is done in the question answering domain.

● Frankenstein [2]
● QAnswer [3]
● ALBERT [4]
● Cheng et al. [5]
● TableQA [6]
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JarvisQA
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How?
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Data (1/2)
We created the ORKG-QA dataset

● Compiled from data within the ORKG infrastructure
● Source of tables is ORKG comparisons
● 13 tables spanning 100+ publications
● 80 questions in English

○ Normal questions (one answer, one cell) ≈39%
○ Aggregation questions (min, avg, most common, …) ≈20%
○ Ask questions (True, false)
○ Listing questions (multiple results)
○ No answer questions (empty result)
○ Complex questions (combining information) ≈11%
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Data (2/2)
For evaluation purposes, another dataset is used

● TabMCQ [7]
● “regents” tables
● Collected from 4th grader MCQ science exams
● 39 tables & 3745 questions
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Evaluation (1/5)
Metrics used:

● Precision @k
● Recall @k
● F1-score @k
● Global Precision
● Global Recall
● Global F1-score
● Execution time
● Memory usage
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Baselines used:

● Random
● Lucene2

2.  https://lucene.apache.org/

https://lucene.apache.org/


Evaluation (2/5)
Experiment 1 (JarvisQA performance on the ORKG-QA dataset):

●
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Evaluation (3/5)
Experiment 2 (Different QA Models):
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Evaluation (4/5)
Experiment 3 (metrics trade-off):
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Evaluation (5/5)
Experiment 4 (performance on TabMCQ):
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Discussion & Future Work
● Usual IR methods fail to find answers to questions
● JarvisQA outperforms other methods
● JarvisQA is a BERT-based system

○ Answers across multiple cells are an issue
○ True/False answers are an issue
○ Answers can be only as is in the text

● Future Work
○ Extend ORKG-QA dataset
○ Better answer selection
○ More question types support
○ Supplement tables with background knowledge
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