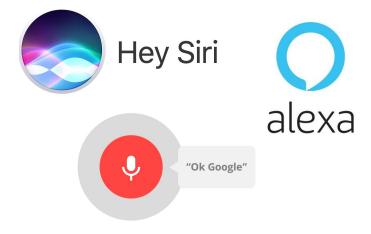


Question Answering on Scholarly Knowledge Graphs

<u>Mohamad Yaser Jaradeh</u>, Markus Stocker, Sören Auer

TPDL 2020 (Virtual), Full paper


Teaser!

- QA is widely researched topic
- Different techniques and technologies
- General domain knowledge
- No scholarly-oriented adoption
- No datasets, and no graphs

• Comes in JarvisQA

Introduction (1/2)

Introduction (2/2)

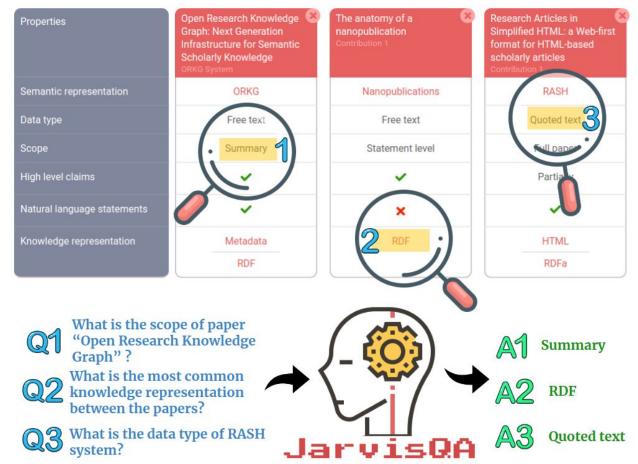
Why Scholarly knowledge is much more complicated to do QA on?

- Represented in unstructured manner
- Ambiguous
- Not FAIR
- Not machine actionable

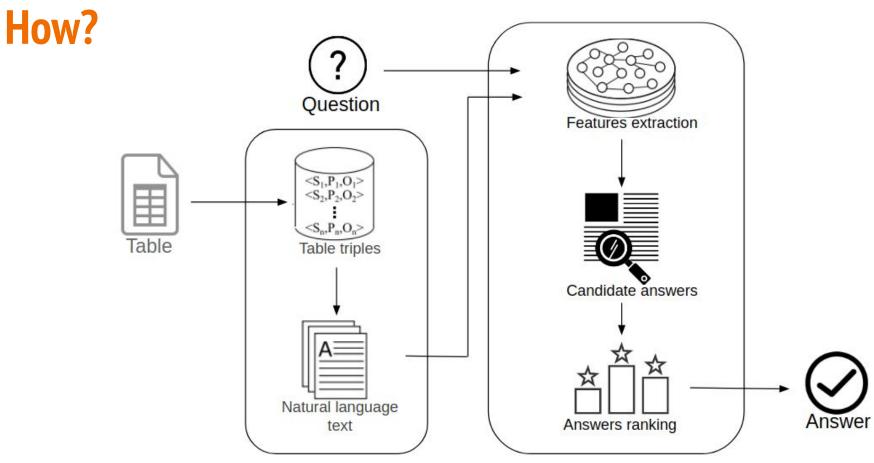
Proposed Solution

Our proposed solution is JarvisQA

- BERT based system to answer questions on tabular views of scholarly knowledge graphs.
- Implemented on the ORKG¹ [1] scholarly knowledge graph


Related work

A plethora of work is done in the question answering domain.


- Frankenstein [2]
- QAnswer [3]
- ALBERT [4]
- Cheng et al. [5]
- TableQA [6]

JarvisQA

Data (1/2)

We created the ORKG-QA dataset

- Compiled from data within the ORKG infrastructure
- Source of tables is ORKG comparisons
- 13 tables spanning 100+ publications
- 80 questions in English
 - Normal questions (one answer, one cell) **≈39%** Ο
 - Aggregation questions (min, avg, most common, ...) **≈20%** Ο
 - Ask questions (True, false) Ο
 - Listing questions (multiple results) Ο
 - No answer questions (empty result) 0
 - Complex questions (combining information) **≈11%** Ο

Data (2/2)

For evaluation purposes, another dataset is used

- TabMCQ [7]
- "regents" tables
- Collected from 4th grader MCQ science exams
- 39 tables & 3745 questions

Evaluation (1/5)

Metrics used:

- Precision @k
- Recall @k
- F1-score @k
- Global Precision
- Global Recall
- Global F1-score
- Execution time
- Memory usage
- 2. <u>https://lucene.apache.org/</u>

Baselines used:

- Random
- Lucene²

Evaluation (2/5)

Experiment 1 (JarvisQA performance on the ORKG-QA dataset):

Questions	Basolino	Precision @K				Ι	Reca	11 @2	K	F1-Score @K			
$_{\mathrm{type}}$	Dasenne						#3	#5	#10	#1	#3	#5	#10
All	Random	0.02	0.06	0.08	0.16	0.02	0.07	0.09	0.18	0.02	0.06	0.08	0.17
All	Lucene	0.09	0.19	0.20	0.25	0.09	0.18	0.19	0.24	0.09	0.18	0.19	0.24
Normal	JarvisQA	0.41	0.47	0.55	0.61	0.41	0.47	0.53	0.61	0.41	0.47	0.54	0.61
Aggregation	JarvisQA	0.45	-	-	÷	0.45	-	-	-	0.45	-	-	-
Related	JarvisQA	0.50	0.50	1.00	1.00	0.50	0.50	1.00	1.00	0.50	0.500	1.00	1.00
Similar	JarvisQA	0.11	0.25	0.67	-	0.11	0.25	0.67	-	0.11	0.25	0.67	-
All	JarvisQA	0.34	0.38	0.46	0.47	0.35	0.38	0.46	0.48	0.34	0.38	0.45	0.47

Evaluation (3/5)

Experiment 2 (Different QA Models):

	$\begin{array}{c} { m Questions} \\ { m type} \end{array}$	Precision @K]	Reca	ll @K	C	F1-Score @K			
		#1	#3	#5	#10	#1	#3	#5	#10	#1	#3	#5	#10
	Normal	0.41	0.47	0.55	0.61	0.41	0.47	0.54	0.61	0.41	0.47	0.54	0.61
DEDT	Aggregation	0.45	#1 $#3$ $#5$ $#10$ $#1$ $#3$ $#5$ $#10$ $#1$ $#3$ $#5$.410.470.550.610.410.470.540.610.410.470.54.450.450.45500.501.00-0.500.501.00-0.500.501.00.110.250.67-0.110.250.67-0.110.250.67.350.380.460.480.350.380.460.480.340.380.46.340.470.51-0.340.470.51-0.340.470.51.450.450.52-0.450.450.52-0.450.450.52	_									
BERT	Related		0.50	1.00	-	0.50	0.50	1.00	2	0.50	0.50	1.00	-
L/U/S2	Similar	0.11	0.25	0.67	÷ _	0.11	0.25	0.67	-	0.11	0.25	0.67	-
0	All	0.35	0.38	0.46	0.48	0.35	0.38	0.46	0.48	0.34	0.38	#5 0.54 - 1.00 0.67 0.46 0.51 0.52 - 0.67	0.48
	Normal	0.34	0.47	0.51	2	0.34	0.47	0.51	120	0.34	0.47	0.51	12
ALDED	Aggregation	0.45	0.45	0.52	-	0.45	0.45	0.52	17.1	0.45	0.45	0.52	-
ALBERT	Related	1.00		-		1.00	-	-	-	1.00	-	-	-
$\rm XL/S2$	Similar	0.43	0.43	0.67	12	0.43	0.43	0.67	-	0.43	0.43	$\begin{array}{c} 3 & \#5 \\ 7 & 0.54 \\ \hline 0 & 1.00 \\ 5 & 0.67 \\ 8 & 0.46 \\ \hline 7 & 0.51 \\ 5 & 0.52 \\ \hline - \\ 3 & 0.67 \end{array}$	-
	All	0.36	0.42	0.46	-	0.37	0.43	0.47	-	0.36	0.42		-

B=Base; L=Large; XL=X-Large; C=Cased; U=Uncased; S1=Finetuned on SQuAD1; S2=Finetuned on SQuAD2

Evaluation (4/5)

Experiment 3 (metrics trade-off):

Evaluation (5/5)

Experiment 4 (performance on TabMCQ):

System		F	recisi		К		Reca	ll @K		F1-Score @K				
					#10	11	#3				#3			
Random	TabMCQ	0.006	0.010	0.020	0.030	0.010	0.020	0.030	0.040	0.007	0.010	0.024	0.030	
	ORKG	0.020	0.060	0.080	0.160	0.020	0.070	0.090	0.180	0.020	0.060	0.080	0.017	
Lucene	TabMCQ													
	ORKG	0.090	0.190	0.200	0.250	0.090	0.180	0.190	0.240	0.090	0.180	0.190	0.240	
Jarvis	TabMCQ	0.060	0.090	0.100	0.110	0.070	0.090	0.110	0.120	0.060	0.080	0.100	0.110	
Jarvis	ORKG	0.340	0.380	0.460	0.470	0.350	0.380	0.460	0.480	0.340	0.380	0.450	0.470	

Discussion & Future Work

- Usual IR methods fail to find answers to questions
- JarvisQA outperforms other methods
- JarvisQA is a BERT-based system
 - Answers across multiple cells are an issue
 - True/False answers are an issue
 - Answers can be only as is in the text
- Future Work
 - Extend ORKG-QA dataset
 - Better answer selection
 - More question types support
 - Supplement tables with background knowledge

References

[1] M. Y. Jaradeh et al., "Open Research Knowledge Graph," in Proceedings of the 10th International Conference on Knowledge Capture, 2019, doi: 10.1145/3360901.3364435.

[2] K. Singh et al., "Why Reinvent the Wheel," in Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW '18, 2018, doi: 10.1145/3178876.3186023.

[3] D. Diefenbach et al., "QAnswer: A Question Answering prototype bridging the gap between a considerable part of the LOD cloud and end-users," in The World Wide Web Conference on - WWW '19, 2019, doi: 10.1145/3308558.3314124.

[4] Z. Lan et al., "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations" https://arxiv.org/abs/1909.11942

[5] J. Cheng et al., "Learning Structured Natural Language Representations for Semantic Parsing," in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2017.

[6] S. Vakulenko, V. Savenkov: TableQA: Question Answering on Tabular Data" (5 2017) https://arxiv.org/abs/1705.06504

[7] S.K. Jauhar et al. "TabMCQ: A Dataset of General Knowledge Tables and Multiple-choice Questions" (2 2016) https://arxiv.org/abs/1602.03960

Contact: <jaradeh@l3s.de>