CrEx-Wisdom Framework for fusion of crowd and experts
In crowd voting environment — machine learning approach
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Motivation

* Crowd-voting and Crowd-sourcing are used in:

* Important societal problems
* Participatory budgeting

 Many industry problems
* Sentiment analysis
e Data labeling
* Ranking and selection



Main idea

* Exploit expert knowledge
e Use "wisdom of crowd “

*Goal: satisfy crowd while selecting "good quality”
alternatives

* Possible solution: Framework for fusion expert/crowd
voting



Framework for expert-crowd voting:
CrEx-Wisdom

Sparse space Dense, latent space Density (clusters) Crowd
(ranks/scores/selection) (embeddings) and outlier estimates weights
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CrEx framework- Factorization

* Latent features identification phase matrix factorization algorithm
Alternating Least Squares (ALS) is used
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* Loss function that we used is minimizing the square of the difference
between all points in our data (D).
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* Calculate user weights as similarities to experts



Crex framework— Clustering

K-means algorithm (clustering)

e Cluster quality measure - Silhouette index
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CrEx framework — Outlier detection

Isolation forest (outlier detection) for estimation of voters agreement (density, variance)
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Data

* Euro Song Contest

* Every county has Expert voting and Crowd voting

* Three years included (2016, 2017, 2018)

* Three different types of events (grand final, and two semifinal)

Crows voting Expert voting
----- -----
Serbia Serbia
Germany 10 8 Germany 8 10 12
Italy 8 10 12 ltaly 12 10 8

Finland Finland



Experimental setup

e Two benchmarks:

1. Current Eurovision weighting method
* Crowd votes and expert votes are aggregated separately
e Points are summarized and implicitly evenly weighted (50% each)

2. Simple “Single Weighting Crowd” method
* Calculate similarity for each crowd participant to every expert,
* Find maximum similarity value and use it as the weight of a particular voter
* Multiplied votes with its calculated weight,

* Weighted crowd data is summarized together with expert votes in order to
get final winning ranking



Evaluation

* Satisfaction can be defined as Average difference in points .

1 m n
avg PD = azz Xywj — Xij
:1 =1

Where:

m — number of voters

n — number of alternatives

Xwj- Winning alternative points at rank j

xij- alternative points of i-th user at rank j



Results
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Results

Year  Event type OVERLAP  FACTORIZATION AAoks OUTLIERS
2016  first-semi-final 1.13 1.13 1.13 1.13
2016  grand-final 9.90 1.15 12.64 1.15
2016 second-semi-final 0.89 0.87 1.17 0.87
2017  first-semi-final 3.33 1.09 1.57 1.09
2017  grand-final 4.59 2.53 3.54 2.53
2017  second-semi-final 2.08 0.74 1.89 0.74
2018  first-semi-final 17.00 4.03 3.50 4.03
2018 grand-final 2.50 1.39 1.72 1.61
2018 second-semi-final 1.72 0.13 2.90 0.13




Conclusion

* Proposed CrEx framework for integration of expert and
crowd votes
* Weighting of crowd voters on the individual level,
* Representation of votes in latent space,

e Estimation of consensus level between voters (clustering and
outlier detection)

 Compromise between crowd and experts



Future work

* Evaluate more machine learning methods for embedding of
votes in latent spaces, clustering and outlier detection.

* Validate approach against different voting data (e.g.
curriculum creation, best paper awards etc.) where we
expect less bias and more consistent voting from experts.



Thank you!



