Towards an inference detection system against multi-database attacks

27 August 2020

Authors: Paul Lachat^{1,2} paul.lachat@insa-lyon.fr Veronika Sonigo³ Nadia Bennani¹

Name	Rank	Salary
John	Clerk	38,000
Mary	Secretary	28,000
Chris	Secretary	28,000
Joe	Manager	45,000
Sam	Clerk	38,000
Eve	Manager	45,000

Functional Dependency Rank ⇒ Salary

Security rule

Xame and Salary

Q₁ SELECT Rank, Salary FROM Employee Q₂ SELECT Name, Rank FROM Employee

Name	Rank	Salary
John	Clerk	38,000
Mary	Secretary	28,000
Chris	Secretary	28,000
Joe	Manager	45,000
Sam	Clerk	38,000
Eve	Manager	45,000

Rank \Rightarrow Salary

Security rule

Xame and Salary

Q1 SELECT Rank, Salary FROM Employee Q₂ SELECT Name, Rank FROM Employee

Name	Rank	Salary
John	Clerk	38,000
Mary	Secretary	28,000
Chris	Secretary	28,000
Joe	Manager	45,000
Sam	Clerk	38,000
Eve	Manager	45,000

Rank ⇒ Salary

Security rule

X Name <u>and</u> Salary

Q1 SELECT Rank, Salary FROM Employee Q₂ SELECT Name, Rank FROM Employee

Name	Rank	Salary
John	Clerk	38,000
Mary	Secretary	28,000
Chris	Secretary	28,000
Joe	Manager	45,000
Sam	Clerk	38,000
Eve	Manager	45,000

 $Rank \Rightarrow Salary$

Security rule

✗ Name and Salary

Q1 SELECT Rank, Salary FROM Employee Q₂ SELECT Name, Rank FROM Employee

Name	Rank	Salary
John	Clerk	38,000
Mary	Secretary	28,000
Chris	Secretary	28,000
Joe	Manager	45,000
Sam	Clerk	38,000
Eve	Manager	45,000

Functional Dependency Rank ⇒ Salary

Security rule

Xame and Salary

Q1 SELECT Rank, Salary FROM Employee

Name	Rank	Salary
John	Clerk	38,000
Mary	Secretary	28,000
Chris	Secretary	28,000
Joe	Manager	45,000
Sam	Clerk	38,000
Eve	Manager	45,000

 $Rank \Rightarrow Salary$

Security rule

Xame and Salary

Q1 SELECT Rank, Salary FROM Employee Q₂ SELECT Name, Rank FROM Employee

Inference detection system

Inference detection system

Inference detection system

Protect a single database against inference attacks.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Chen et al. 2006 - Solution

Chen et al. 2006 - Solution

Chen et al. 2006 - Solution

Chen et al. 2006 - Illustration

Inference channels within a database: Example of a SIG

Inference threshold set to 70%.

Dependencies between **instances** of the Los Angeles airport database.

LAX is an airport, R1 a runway, and C5 an aircraft.

Chen et al. 2006 - Illustration

Inference channels within a database: Example of a SIG

Inference threshold set to 70%.

Dependencies between instances of the Los Angeles airport database.

LAX is an airport, R1 a runway, and C5 an aircraft.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

- Data controllers collaborate with our system.
- The system is centralised to extend the solution of Chen et al. 2006.

Conclusion & Future work

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

Next steps

- Optimise the GIG computation.
- Take databases updates into account.

Conclusion & Future work

Challenges

- Identify similar instances.
- The system can have an honest-but-curious behavior.

Next steps

- Optimise the GIG computation.
- Take databases updates into account.