

Dynamic k-NN Classification Based on Region Homogeneity

24th European Conference on Advances in Databases and Information Systems

Stefanos Ougiaroglou

stoug@ihu.gr Dept. of Information and Electronic Engineering International Hellenic University

Georgios Evangelidis

gevan@uom.edu.gr Dept. of Applied Informatics University of Macedonia

Konstantinos Diamantaras

kdiamant@ihu.gr Dept. of Information and Electronic Engineering International Hellenic University

k-NN Classification

k-NN classifier works by searching the available training data for the k nearest items to the unclassified item. Then, these neighbors determine the class where the new item belongs to.

- Accuracy depends on the selection of k. Tedious cross-validation tasks are performed to determine "best" k. It is unique and constant for all unclassified instances
- A large k value renders the classifier more noise tolerant since it examines larger neighbourhoods.
 It has to be used when the classes are not well separated and when the data contains noise.
- A small k renders the classifier noise sensitive and should be used on training sets with wellseparated classes

Motivation

- Even the "best" *k* value can not be optimal. Real-life datasets may have quite different structure in different regions of the metric space.

 A classifier that uses a fixed k value may be less accurate than a classifier that utilizes a different k value for each instance x that needs to be classified depending on the region where x lies.

Contribution

Region Homogeneity based Dynamic k-NN classifier (rhd-kNN)

- A parameter free k-NN classifier that it uses a dynamic k value depending on nature of the region where the instance to be classified lies.
- rhd-kNN utilizes heuristics that dynamically adjust the k value.
- The heuristics are based on a data structure constructed k-means clustering pre-processing task that builds homogeneous clusters. The data structure (SHC) holds the cluster centroids and information about the region of each centroid.
- When a new instance x needs to be classified, the nearest centroid c from SHC is retrieved. Then based on c, k is appropriately adjusted and x is classified by searching the k nearest neighbours in the training set.

rhd-kNN: SHC Construction

5

rhd-kNN: Heuristics (1/2)

- When a new instance *x* needs to be classified, rhd-kNN finds the 1-nearest centroid *c* in SHC and its corresponding *d*.
- Then, one heuristic is employed to determine *k* based on *d*. rhd-kNN classifies *x* by finding the *k* nearest neighbours in the training set.
- We expect that rhd-k-NN will outperform the k-NN classifiers that use fixed k for datasets that contain a mixture of well-separated and not well-separated classes

rhd-kNN: Heuristics (2/2)

- *k=d*: It defines *k* to be equal to the depth of the 1-nearest centroid in SHC. This heuristic is used as a baseline
- $k=2^{d}$: This heuristic tends to examine an extremely large number of nearest neighbours, especially when *d* is greater than 9. Thus, in our experiments, we manually set $k = 2^{9}$ when d > 9.

- $k=d^2$: This heuristic is a trade-off between the above two heuristics

- $k=(d\times(d+1))/2$: This heuristic determines k by mapping values of d to the following arithmetic sequence: 1, 3, 6, 10, 15, 21, 28, ...
- k= $\lfloor e^{\sqrt{d}} \rfloor$:
- This is a more conservative heuristic than the previous one. It uses the 2, 4, 5, 7, 9, 11, 14, \ldots sequence for determining *k*

Experiments (1/4)

Dataset	Size	Attributes	Classes
Balance (bl)	625	4	3
Banana (bn)	5300	2	2
Ecoli (ecl)	336	7	8
Iris	120	4	3
Letter Recognition (lir)	20000	16	26
Landsat Satellite (ls)	6435	36	6
Magic G. Telescope (mgt)	19020	10	2
Pen-Digits (pd)	10992	16	10
Phoneme (ph)	5404	5	2
Pima (pm)	615	8	2
Shuttle (sh)	58000	9	7
Twonorm (tn)	7400	20	2
Texture (txr)	5500	40	11
Yeast (ys)	1484	8	10

We built two additional "noisy" versions (e.g., txr30) of the 14 datasets by adding 10% and 30% random uniform noise

We compared the performance of rhdkNN against 6 k-NN classifiers that use fixed k values:

- The widely used 1-NN
- The 5-NN and the 10-NN classifiers

The commo	n rule	-of-thumb approaches:
$k=\sqrt{N}$	and	$k = \sqrt{\frac{N}{2}}$

The k-NN classifier with the "best" tuned *k* (by applying a 5-fold cross validation)

Experiments (2/4)

Accuracy measurements

- Almost in all cases an rhd-kNN classifier can achieve higher accuracy than the accuracy achieved by k-NN with k=1, k=5, k=10
- rhd-kNN classifiers almost always outperform RoT classifiers
- The comparison between the "best" k-NN and rhd-kNN reveals that at least one of the rhdkNN classifiers can achieve higher accuracy than that of the best k-NN classifier in 18 datasets, while in 2 datasets, a rhd-kNN approach is as accurate as the "best" k-NN.
- Contrary to the best k-NN classifier, rhd-kNN achieves that performance without the need of any input parameter and tedious and costly parameter tuning procedures
- The $k=(d\times(d+1))/2$ heuristic seems to be an ideal approach since it achieves high accuracy even when the dataset contains noise. In 9 datasets it is more accurate than best k-NN

Data	Best	Best	1-NN	5-NN	10-N N	RoT	RoT	rhd-kN	NN			
	$k \ value$	k-NN				$k = \sqrt{N}$	$k = \sqrt{\frac{N}{2}}$	k = d	$k=2^{d}$	$k=d^2$	$k = (d \times$	$k = \lfloor e^{\sqrt{d}} \rfloor$
							v 2				(d+1))/2	
AVG:	19.42	87.63	76.77	84.33	86.72	85.33	86.15	84.63	86.19	86.82	87.02	86.70

Experiments (3/4)

Dete	Deet	Deet	1 NINT	E NINT	10 MM	D oT	D oT					
Data	Best	Best	I-ININ	NI NI-G	10-N N	ROI	R01	rhd-kinin				
	$k \ value$	k-NN				$k = \sqrt{N}$	$k = \sqrt{\frac{N}{2}}$	k = d	$k = 2^{d}$	$k = d^{2}$	$k = (d \times$	$k = \lfloor e^{\sqrt{d}} \rfloor$
											(d+1))/2	
ы	42	89.60	79.20	86.40	89.60	89.60	89.60	84.80	88.80	89.60	90.40	89.60
bl10	43	88.80	68.80	86.40	87.20	89.60	89.60	88.00	91.20	89.60	90.40	87.20
Ы30	32	88.00	59.20	69.60	79.20	83.20	83.20	73.60	83.20	87.20	82.40	76.80
bn	29	90.66	87.26	89.81	90.19	90.57	90.47	89.81	88.68	90.38	90.28	90.47
ecl	6	91.05	83.58	89.55	92.54	86.57	92.54	88.06	88.06	86.57	86.57	89.55
ecl10	6	89.55	77.61	88.06	92.54	88.06	89.55	86.57	91.05	92.54	91.05	91.05
ec130	14	85.08	61.19	82.09	85.08	85.08	85.08	76.12	85.08	88.06	88.06	85.08
iris	11	93.33	90.00	93.33	93.33	93.33	93.33	93.33	93.33	93.33	96.67	93.33
lir	4	95.78	95.70	95.40	95.03	81.05	84.20	95.65	95.28	93.83	95.05	95.43
ls	8	91.53	89.98	91.53	91.14	86.09	87.34	91.22	90.68	89.59	90.99	90.83
ls10	8	91.30	81.66	90.52	90.99	86.09	87.10	90.75	90.37	89.90	89.98	90.75
ls30	13	88.27	61.23	82.21	89.04	86.25	86.79	82.98	88.58	89.36	88.81	87.72
mgt	10	83.57	80.13	82.97	83.57	80.97	81.65	83.36	78.97	80.86	81.86	83.39
mgt10	20	83.10	73.32	80.97	82.76	81.13	81.55	82.89	78.68	80.81	81.84	82.99
pd	1	99.05	99.05	99.09	98.73	95.04	96.13	99.09	98.59	98.32	98.54	98.91
pd10	8	98.86	89.40	98.95	98.73	95.13	96.36	98.91	98.73	98.36	98.64	98.91
pd30	12	98.68	69.75	94.18	98.45	94.90	96.36	92.58	98.04	98.23	98.41	97.59
ph	1	88.70	88.70	86.94	86.30	82.04	83.52	85.74	78.98	81.30	81.94	84.44
ph10	8	86.67	81.39	86.02	86.02	81.76	83.89	84.35	78.80	81.11	81.48	84.26
ph30	48	80.19	65.46	72.32	75.28	80.93	80.65	77.96	79.07	80.28	80.93	79.44

Experiments (4/4)

Data	Best	Best	1-NN	5-NN	10-NN	RoT	RoT	rhd-kNN				
	$k \ value$	k-NN				$k = \sqrt{N}$	$k = \sqrt{\frac{N}{2}}$	k = d	$k = 2^d$	$k = d^2$	$k = (d \times$	$k = \lfloor e^{\sqrt{d}} \rfloor$
							· · -				(d+1))/2	
ph	1	88.70	88.70	86.94	86.30	82.04	83.52	85.74	78.98	81.30	81.94	84.44
ph10	8	86.67	81.39	86.02	86.02	81.76	83.89	84.35	78.80	81.11	81.48	84.26
ph30	48	80.19	65.46	72.32	75.28	80.93	80.65	77.96	79.07	80.28	80.93	79.44
pm	48	76.47	77.12	78.43	81.05	75.16	77.78	80.39	72.55	74.51	73.86	82.35
pm10	18	78.43	72.55	76.47	78.43	75.16	78.43	75.82	77.12	77.78	79.09	77.78
pm30	47	73.86	64.05	64.71	69.94	71.90	71.24	71.24	73.86	71.90	73.20	76.47
$^{\rm sh}$	1	99.96	99.96	99.91	99.86	99.44	99.36	99.89	99.72	99.67	99.83	99.85
$_{\mathrm{tn}}$	49	97.97	95.54	97.70	97.77	97.77	98.04	97.77	98.11	97.70	97.91	98.04
${ m tn}10$	47	97.77	84.39	95.47	97.10	97.57	97.50	97.10	97.91	97.43	97.70	97.70
tn30	50	97.77	67.23	79.19	86.08	97.43	97.57	86.69	97.77	97.03	97.57	94.73
$_{\rm txr}$	1	98.73	98.73	98.09	97.82	94.73	95.82	98.36	98.09	97.55	98.00	98.09
txr10	5	97.91	90.55	97.91	97.82	94.55	95.55	98.09	97.73	97.46	97.64	97.73
txr30	10	97.55	69.73	93.55	97.55	94.82	94.91	91.09	96.55	97.00	97.55	96.64
ys	14	58.45	49.32	57.10	59.12	61.15	60.14	55.41	61.15	60.14	61.49	57.43
ys10	13	58.45	44.93	52.37	58.11	60.14	58.11	51.01	59.46	59.80	57.43	57.43
ys30	14	56.76	36.82	45.61	55.41	58.78	59.46	44.26	50.00	57.77	56.08	48.99

THANK YOU FOR YOUR ATTENTION

Stefanos Ougiaroglou

stoug@ihu.gr https://www.iee.ihu.gr/~stoug

12

