Your Age Revealed by Facebook Picture Metadata

Sanaz Eidizadehakhcheloo ¹, **Bizhan Alipour Pijani** ², Abdessamad Imine ² & Michaël Rusinowitch ²

Sapienza University of Rome, Italy $^{\rm 1}$ Lorraine University, Cnrs, Inria Nancy Grand Est, France $^{\rm 2}$

July 13, 2020

Problem description

Existing works

6 Analysis process

6 Experiments

Inference attack

An Inference Attack is a data mining technique performed by analyzing data in order to illegitimately gain knowledge about a subject [Wikipedia].

Sources of inference attacks

- Behavioral records (liked pages, joined groups)
 - You are how you behave
- Based on your vicinity (friends list)
 - Your friends shape who you are
- Writing style (word and emoji usage)

Problem description

Existing works

6 Analysis process

6 Experiments

Objectives of our work

- Raising awareness of Facebook users about their privacy
- Inference attacks based on seemingly innocent data

Picture alt-text, and comments

- Facebook attempted to involve blind people by launching automatic alt-text (AAT)
- People use comments to insert thoughts and feelings about the picture

Problem description

- Existing works
- 6 Analysis process

6 Experiments

Problem description

Difficulty

Picture metadata have been added at different moments of the target lifetime and therefore relate to different age categories

Solution

Create different profiles with different age categories

2 Motivation

Problem description

Existing works

6 Analysis process

6 Experiments

Existing works

Age inference attack on social media

- Private Traits and Attributes are Predictable from Digital Records of Human Behavior [kosinski2013private].
- Analyzing Biases in Human Perception of User Age and Gender from Text [flekova2016analyzing].
- Author Age Prediction from Text using Linear Regression [nguyen2011author].

Advantages over previous works

- Target user personality does not affect the performance
- The attack is still possible even when the entire personal data is unavailable
- The attack is suitable for online mode

Picture metadata

- Gender Inference for Facebook Picture Owners [Alipour2019gender].
- You are What Emojis Say About Your Pictures: Language-Independent Gender Inference Attack on Facebook [Alipour2020you].

2 Motivation

Problem description

Existing works

6 Analysis process

6 Experiments

Data crawling and Pre-processing

Data crawling

- Collecting picture metadata, alt-text and comments from the HTML part of the picture
- Let U be the set of all users
- each user $u \in U$ a triple (age_u, A_u , C_u) where:
 - ▶ age_u is the age group of u
 - A_u is the alt text
 - C_u is comments from commenters

Pre-processing

- Picture distribution
 - ${}^{\blacktriangleright}$ We consider the picture publishing time to avoid assigning a picture to a wrong age group
- Cleansing comments
 - Applying lemmatization (loves, loving, lovely → love)
 - Changing shape of words (Heeeelloooo, love u)
 - Eliminating stop words (the, a, an , in)

Feature selection and Feature extraction

Spearman rank-order correlation coefficient

$$r_{s} = 1 - \frac{6 \sum d_{i}^{2}}{n^{3} - n} \ \left(-1 \le r_{s} \le 1\right)$$

- d_i is the difference between two ranked variables
- *n* is the age interval size (in our case 32 as the age interval is [18,50])

To be significant, the observed *spearman* value must be greater than the critical value (two-side $r_s \ll 0.001$, degree of freedom is 32)

Spearman rank-order correlation coefficient advantages

- It is a non-parametric technique
- It is insensitive to outliers
- It can be applied to any sample size

Spearman rank-order correlation coefficient result

Responses	spearman's rank correlation coefficient
Wow reaction 😵	-0.806
Received comments	-0.756
Emoji usage in comments	-0.746
Love reaction \bigcirc	-0.686

(a)

Comments	$spearman's \ rank \ correlation \ coefficient$
pretty	-0.795
9	-0.791
Ŷ	-0.789
•	-0.786
9	-0.780
<u>(</u>	-0.773
gorgeous	-0.729
love	-0.712
nice	-0.678
beautiful	-0.636
gorgeous love nice beautiful	-0.773 -0.729 -0.712 -0.678 -0.636

	Alt-text	spearman's rank correlation coefficient
	closeup	-0.791
	1 person	-0.750
	2 people	-0.740
	smiling	-0.723
	2 people smiling	-0.720
	selfie	-0.706
	outdoor	-0.693
	ocean	-0.640
(b)	child	0.625
\~ <i>/</i>		

	Comments	$spearman's \ rank \ correlation \ coefficient$
	selfie 💚	-0.829
	1 person 🙂	-0.819
	selfie 🙂	-0.817
	closeup 🙂	-0.792
	selfie 💙	-0.794
	1person 💞	-0.780
	1 person cute	-0.780
	1 person beautiful	-0.770
	selfie beautiful	-0.779
(d)	1 person 🤒	-0.769
· · /		

(c)

Feature selection

By patterns

- Non-textual
 - Single emoji
 - Repeated emoji
- Textual
 - Single emoji
 - single repeated emoji
 - Several repeated/non-repeated emojis

By linguistic

Word, emoji, phrase, and alt-text tags occurrences (*n-grams* in a window of size $n \in 1,2,3$)

By correlational analysis

Co-occurrence network of alt-text and comments (containing emoji, word, GIF)

C

LIME

A technique that explains a classification by ranking features according to their contribution to predict the final result

Feature	Value
<bias></bias>	1.000
ulook	1.000
u0001f602u0001f602	1.000
youre	1.000
loveit	0.000
u0001f495	1.000
sopretty	0.000
lovethe	0.000
u2764	0.000
hahaha	1.000
goodpicture	0.000
greatpicture	0.000
sohappy	0.000
u0001f923u0001f923	0.000
youhave	1.000
socute	0.000
	Feature <bias> ulook u0001f602u0001f602 youre loveit u0001f495 sopretty lovethe u2764 hahaha goodpicture greatpicture sohappy u0001f923u0001f923 youhave socute</bias>

Univariate feature selection

Selects features that have a statistically significant relationship to the final result

Bizhan Alipour Pijani

2 Motivation

Problem description

Existing works

6 Analysis process

6 Experiments

Dataset and Machine Learnings

Dataset

- 8,922 pictures; 6184 pictures received complete metadata, 1762 pictures received no comments.
- Facebook was unable to generate alt-text for 976 pictures.

Machine Learning

- Logistic Regression classifier by using python library scikit-learn
- 80% of it to train the classifier and 20% to testing
- 5-fold cross-validation on our training dataset
- AUC-ROC curve for evaluating the learning model

Age categories

- Class $0 \rightarrow 18$ to 20
- Class $1 \rightarrow 20$ to 30
- Class 2 → *30* to *40*
- Class $3 \rightarrow 40$ to 50

Age identification with best features

Experiments

Age identification without best features

2 Motivation

Problem description

Existing works

6 Analysis process

6 Experiment

Conclusion

- We identify that commenters react differently to younger and older owner pictures
- We have shown the possibility of age inference attack from limited available data

Advantages of this work

- Exploits data that are easily available
- Image processing is needless
- · Words, emojis, and GIF handle all possible received comments

Perspectives

- Automatically extract features by using a Random Walk approach
- Adjust the age groups to infer the owner exact age
- Enrich the dataset to compare the result of deep learning approaches

Conclusion

Questions

