

Towards the detection of Promising Processes by Analysing the Relational Data

Belén Ramos Gutiérrez, Luisa Parody, María Teresa Gómez-López IDEA Research Group Universidad de Sevilla www.idea.us.es – brgutierrez@us.es @belenramgut

1. Work motivation

Business Process Management System (BPMS) Process Mining

Inferred behaviour of the process

1. Work motivation

What if there is not a Business Process Management System?

Business Process Management System (BPMS) Process Mining

Inferred behaviour of the process

Data Sources

A <u>big</u> challenge

Automate the detection of promising traces in relational data sources.

2. Context of the problem

promising traces

3. Discover Business Process

IDENTIFY THE POSSIBLE CASE_ID

11

Complexity

Average number of events per trace.

<u>5</u> 3 = 1.66

A, B, C

A, D, C

Complexity Average number of

events per trace.

Diversity

Density of different events that occur in all the traces among all the events that are presented in the log

Complexity Average number of events per trace.

Diversity

Density of different events that occur in all the traces among all the events that are presented in the log Average of events that only occur once in the whole log among all the events inside of it

Noise

Complexity

Average number of events per trace.

 $C_n(C_i) = \begin{cases} C_i < C_{q1} & (\frac{1}{C_{q1}}) \cdot C_i \\ C_{q1} < C_i < C_{q3} & 1 \\ C_i > C_{q3} & (\frac{-C_i + C_{q3}}{2}) + 1 \end{cases}$

Diversity

Density of different events that occur in all the traces among all the events that are presented in the log

Noise

traces

3. Discover Business

Process

Average of events that only occur once in the whole log among all the events inside of it

$$D_n(D_i) = \begin{cases} D_i < D_{mean} & (\frac{1}{D_{mean}}) \cdot D_i \\ D_i > D_{mean} & (\frac{-D_i + D_{mean}}{1 - D_{mean}}) + 1 \end{cases}$$

$$N_n(N_i) = -N_i + 1$$

4. Assessment of

Process Quality

2 E

EVENT LOG EXTRACTION

3

XES

The mean of possible tasks that can be selected in each step acording to the process model, divided into the number of total tasks of the process.

metric

Translate the BPMN model into a graph

The mean of possible tasks that can be selected in each step acording to the process model, divided into the number of total tasks of the process.

metric

The mean of possible tasks that can be selected in each step acording to the process model, divided into the number of total tasks of the process.

Will Level

metric

4. Evaluation

4 TABLES

A very small portion of the database

1 CASE_ID

Further reduction of data

58 POSSIBLE EVENT TYPES

5. Conclusions and future work

CONCLUSIONS

A method to speed up the process

A set of metrics to profile log and process quality

P Although it is automated it still needs expert knowledge

FUTURE WORK

- New metrics and indicators
- Further analysis on the database structure

ANY QUESTIONS?

You can find me at @belenramgut & brgutierrez@us.es

27