





# Ontology Design for Pharmaceutical Research Outcomes

### **AUTHORS:**

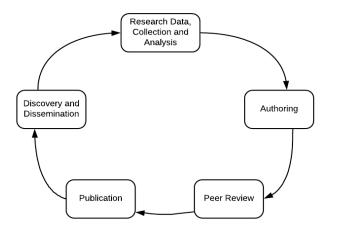
- Zeynep Say,
- Said Fathalla,
- Sahar Vahdati,
- Jens Lehmann,
- Sören Auer.





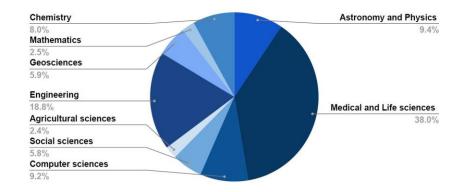
- I. Introduction
- II. Approach
- III. Development
- **IV.** Evaluation
- V. Related Work
- VI. Conclusion




3

### Introduction

### Lifecycle of Scholarly Communication:


" The system that scholarly and research writings are generated, assessed, disseminated to the scholarly community, and maintained for future use."

#### The Publication Lifecycle

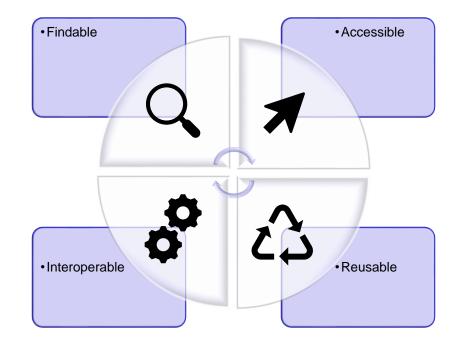


National Science Foundation (NSF) Science and Engineering Statistics:

- Publications output: 2.4 million articles in 2017.
- Medical science and life sciences have the highest percentage %38.0.



Scientific publication output percentages by field in the world for the year 2017






### Introduction

### Main Problems:

- · Lack of fully Findable, Accessible, Interoperable, and Reusable (FAIR) data resources,
- Paper documents and their electronic versions, •
- Interpreting meaning from unstructured data,
- Research products are scattered across several ٠ repositories, journals, or search engines (e.g., Google Scholar, Microsoft Academic, Nature).



FAIR Data Priniples





- i. How can the scholarly pharmaceutical knowledge be supported with a machine-readable and interoperable domain model?
- ii. How can we increase the reusability and accessibility of pharmaceutical research data more effectively?



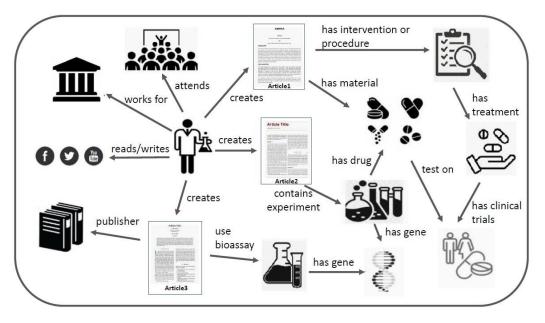


### **Goal and Objective**

A model for pharmaceutical research, PharmSci Ontology:

- Facilitating knowledge discovery and management,
- Increasing the reproducibility and reusability of pharmaceutical research,
- Acquire, represent, curate, and integrate knowledge from unstructured web,
- Find out reliable reference materials, sufficient details of experiments or procedures, and re-investigate experiment results.






### Methodology

### Structure of Knowledge Graphs:

Google introduced Knowledge Graphs as " Things, not strings ".

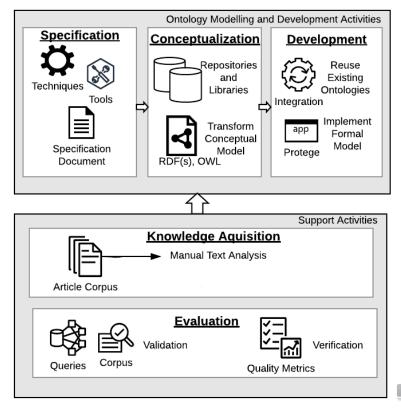
- Ontologies are employed to create KGs
- Entities are the nodes of the graph
- Relations are the edges of the graph



A knowledge graph of the pharmaceutical research process






### Methodology

### **Ontological Engineering Aspects**

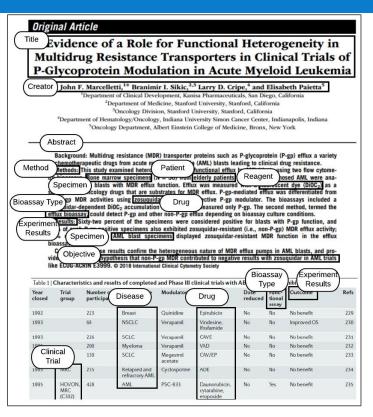
- Specification
- Conceptualization
- Development
- Knowledge Acquisition
- Evaluation

### Specification:

- Domain: Pharmaceutical Research
- Purpose: Relevant research results
- Data coverage: Pharmaceutical Research Publications
- Tools: Graffoo, Protégé,...






### Methodology

### **Knowledge Acquisition**

- · Text analysis as a knowledge acquisition technique.
- Corpus: `multidrug resistance and ABC transporters in cancer
- 25 articles are chosen with a systematic review from pharmaceutical journals in Google Scholar and ScienceDirect

### Conceptualization

- · Informal view of a domain into a semiformal representation
- Complete Glossary of Terms (GT)
- Concept-classification trees
- Subject-predicate-object expressions
- Repositories and open libraries

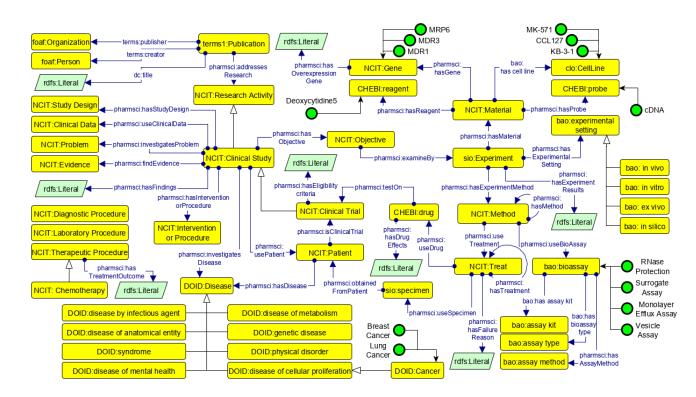




### PharmSci Ontology Overview:

- Formalised by using OWL.
- Formalised ontology is drawn by Graffoo.
- Developed by Protégé v5.5.0

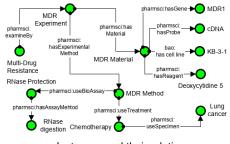
### Integrating Reusable Domain Ontologies:


Bioportal - https://bioportal.bioontology.org/obofoundry.org OntoBee - http://www.ontobee.org/ OBOFoundry - http://www.obofoundry.org/ Linked Open Vocabularies (LOV) - https://lov.linkeddata.es/dataset/lov/

| Vocabulary Name:                                       | prefixIRI | URL                                      |
|--------------------------------------------------------|-----------|------------------------------------------|
| The National Cancer Institute's Thesaurus and Ontology | NCIT      | http://purl.obolibrary.org/obo/ncit.owl  |
| Human Disease Ontology                                 | DOID      | http://purl.obolibrary.org/obo/doid.owl  |
| BioAssay Ontology                                      | bao       | http://www.bioassayontology.org/bao      |
| Chemical Entities of Biological Interest               | СНЕВІ     | http://purl.obolibrary.org/obo/chebi.owl |
| Cell Line Ontology                                     | CLO       | http://www.ebi.ac.uk/cellline/           |
| Nature Publishing Group Ontologies                     | terms1    | http://ns.nature.com/terms/              |
| FOAF Vocabulary                                        | foaf      | http://xmlns.com/foaf/0.1/               |
| The Semanticscience Integrated Ontology                | sio       | http://semanticscience.org/resource/     |
| The Dublin Core Metadata Initiative                    | terms     | https://www.dublincore.org/              |






### **Development of PharmSci Ontology**



The integration between the existing ontological entities, subclass hierarchies, object/data properties, and instances in PharmSci Ontology.

#### Main entities:

Publication, Research Activity, Clinical Study, Experiment, Material, Method, and Intervention or Procedure.



Instances and their relations





# **Development** - Reasoning and Inference

- Reasoning support with SWRL
- SWRL rules to infer new relations
- The rules have been applied with Drools reasoner in Protégé.

 $Rule 1: ClinicalStudy(?x) \land hasObjective(?x,?z) \land examinedBy(?z,?y) \rightarrow hasExperiment(?x,?y) \land hasExperiment(x,y) \land hasExperiment(x,y) \land hasExperiment(x,y) \land hasExperiment(x,y) \land hasExperiment(x,y) \land hasExp$ 

Rule 2: ClinicalStudy(?x)  $hasPatient(?x,?z) hasDisease(?z,?y) \rightarrow investigatesDisease(?x,?y)$ 

 $Rule \ 3: Experiment (?x) \land has Method (?x,?y) \land use Drug (?y,?z) \rightarrow has Material (?x,?z)$ 

Rule 4: hasMethod(?x,?z) $\land$ hasMethod(?z,?y) $\rightarrow$ hasMethod(?x,?y)

Rule 5: hasTreatment( $(x, 2) \land hasTreatment(z, 2) \rightarrow hasTreatment(x, 2)$ 





# Evaluation - Validation of Ontology

### **Competency Questions:**

- Knowledge base should be able to answer
- · Determine the coverage of the model
- 25 competency questions
- Single SPARQL query for each question

#### Query Text Which Objective examined by Experiment Y for Clinical Study Z? Q1 Q2 Clinical Study use the Experiment Method Y for Experimental Material X by using Gene as material? Which Cancer type X is studied by the Clinical Study Y? Q3 Q4 Which Drugs are used in Therapeutic Procedure X that is used in Clinical Study Y for Disease 7? Q5 What is title of the Publications that use the BioAssay Y as an Experiment Method? Q6 Which Cell Lines, Genes, Drugs, Probes are used in the Research Activity X? Q7 Give Publications that uses Chemotherapy X with drug Y for cancer type Z? Give Publication with Experiment Setting In vitro for experiment material Y and Clinical Q8 Study X? Q9 Which Drugs are used in Experiment Y of Clinical Study X? Q10 What kind of Drugs are used in Clinical Study Y for the Treatment Z?

### **Query Execution of Competency Questions:**

**Q5**: ""What is the title of the Publications use the BioAssay 'Efflux Bioassay' as experiment method?"

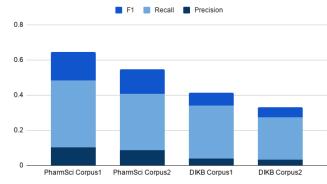
**Query answer**: "Different Efflux Transporter Affinity and Metabolism of 99mTc-2-Methoxyisobutylisonitrile and 99mTc-Tetrofosmin for Multidrug Resistance Monitoring in Cancer".

| SELECT DISTIN | CT ?title                   |                      |
|---------------|-----------------------------|----------------------|
| ?publication  | pharmsci:addressesResearch  | ?study.              |
| ?publication  | terms:title                 | ?title.              |
| ?publication  | terms:creator               | ?creator.            |
| ?study        | pharmsci:hasExperiment      | ?experiment.         |
| ?experiment   | pharmsci:hasMethod          | ?method.             |
| ?method       | pharmsci:useBisoassay pharm | sci:Efflux_Bioassay. |
| }             |                             |                      |





# Evaluation - Validation of Ontology


#### **Comparative Analysis:**

- Compared with Drug Interaction Knowledge Base (DIKB)
- CORPUS 1: "multidrug resistance in cancer"
- CORPUS 2: "in vitro evaluation in drug delivery"

#### Latent Semantic Analysis:

- Semi-automatic detection of data
- TF-IDF weight calculation

#### Comparative Analysis Results



Precision, Recall, F1 values for PharmSci Ontology and DKIB Ontology

| Corpus   | Ontology | Class | Keywords | Hits | Precision | Recall | F1   |
|----------|----------|-------|----------|------|-----------|--------|------|
| Corpus-1 | PharmSci | 181   | 50       | 19   | 0.10      | 0.38   | 0.16 |
|          | DIKB     | 360   | 50       | 15   | 0.04      | 0.3    | 0.07 |
| Corpus-2 | PharmSci | 181   | 50       | 16   | 0.09      | 0.32   | 0.14 |
|          | DIKB     | 360   | 50       | 12   | 0.03      | 0.24   | 0.06 |





# Evaluation - Verification of Ontology

### FOCA Methodology: Ontology Type and Questions Verification:

• Goal, metrics, and questions (GQM) approach,

| Goal                                                           | Question                                                                                                                                                                                    | Metric                                                                                   |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 1. Check if the ontology<br>complies with<br>Substitute.       | Q1. Were the competency questions defined?<br>Q2. Were the competency questions answered?<br>Q3. Did the ontology reuse other ontologies?                                                   | <ol> <li>Completeness.</li> <li>Completeness.</li> <li>Adaptability</li> </ol>           |
| 2. Check if the ontology complies Ontological Commitments.     | Q4. Did the ontology impose a minimal ontological commitment?<br>Q5. Did the ontology impose a maximum ontological commitment?<br>Q6. Are the ontology properties coherent with the domain? | <ol> <li>Conciseness.</li> <li>Conciseness.</li> <li>Consistency.</li> </ol>             |
| 3. Check if the ontology complies with Intelligent Reasoning.  | Q7. Are there contradictory axioms?<br>Q8. Are there redundant axioms?                                                                                                                      | <ol> <li>Consistency.</li> <li>Conciseness.</li> </ol>                                   |
| 4. Check if the ontology<br>complies Efficient<br>Computation. | Q9. Did the reasoner bring modelling errors?<br>Q10. Did the reasoner perform quickly?                                                                                                      | <ol> <li>Computational<br/>efficiency.</li> <li>Computational<br/>efficiency.</li> </ol> |
| 5. Check if the ontology<br>complies with Human<br>Expression. | Q11. Is the documentation consistent with modelling?<br>Q12. Were the concepts well written?<br>Q13. Are there annotations in the ontology that show the<br>definitions of the concepts?    | <ol> <li>6. Clarity.</li> <li>6. Clarity.</li> <li>6. Clarity.</li> </ol>                |

### **Quality Verification:**

• Calculated by the beta regression model. Result: 0.99423.

$$\begin{split} f(x) &= \exp\left\{-0.44 + 0.03(Cov_S*Sb)_i + 0.02(Cov_C*Co)_i + 0.01(Cov_R*Re)_i + \\ &\quad 0.02(Cov_{C*}*Cp)_i - 0.66LExp_i - 25(0.1*Nl)_i\right\} \end{split}$$

$$\begin{split} q(x) &= 1 + \exp{\{-0.44 + 0.03(Cov_S*Sb)_i + 0.02(Cov_C*Co)_i + \\ 0.01(Cov_R*Re)_i + 0.02(Cov_{Cp}*Cp)_i - 0.66LExp_i - 25(0.1*Nl)_i\}} \end{split}$$





15

Reference: Foca Methodology, Bandeira, J., Bittencourt, I.I., Espinheira, P., Isotani, S.: Foca: A methodology for ontology evaluation. arXiv preprint arXiv:1612.03353 (2016)



# Related Work - Vocabularies and Platforms

### **Scholarly Domain:**

- The Open Research Knowledge Graph (ORKG)
- The Semantic Survey Ontology (Semsur)
- SN SciGraph
- SPAR (Semantic Publishing and Referencing)
- CSO Classifier

| 019           | ystems ▲ Andreas Rücklé ▲ Nafise Sadat Moosavi ▲ Iryna Gurevych DOI: 10.18653/v1/d1 |
|---------------|-------------------------------------------------------------------------------------|
|               | DOI: 10.18653/v1/d1                                                                 |
|               |                                                                                     |
|               |                                                                                     |
|               |                                                                                     |
| ontribution 1 | Research problems Add to comparison                                                 |
|               | Generating labeled data for duplicate question detection in online cQA forums       |
| ontribution 2 |                                                                                     |
|               | Contribution data                                                                   |
|               | Has method: 2 values                                                                |
|               |                                                                                     |
|               | Similar contributions                                                               |
|               |                                                                                     |

Open Research Knowledge Graph UI

### Life Science Domain:

- The Open Biomedical Ontologies (OBO) Foundry
- Medical Subject Headings (MeSH)
- The pharmaceutical research domain ontologies (DIO, DINTO, DIDEO, DIKB, and DDI.)

| Vocabulary             | URL                                         |  |
|------------------------|---------------------------------------------|--|
| Cell Ontology (CL)     | http://www.obofoundry.org/ ontology/cl.html |  |
| Gene Ontology (GO)     | http://www.geneontology.org                 |  |
| Protein Ontology (PRO) | http://pir.georgetown.edu/ pro              |  |
| RNA Ontology (RnaO)    | http://obofoundry.org/ ontology/rnao.html   |  |
| Disease Ontology (DO)  | http://diseaseontology.sf. net              |  |
| OBO Foundry Ontologies |                                             |  |



### Statement of Result:

- · A domain model by using Semantic Web-based solutions,
- · Represents rich metadata and machine-interpretable information,
- PharmSci Ontology is one of the Science Knowledge Graph Ontologies (SKGO) Suite ontologies<sup>1</sup>.
- · As a future work, ontology will be implemented to ORKG and other scientific fields will be covered.
- The documentation of PharmSci Ontology can be found on https://w3id.org/skgo/pharmsci#,
- Prefix(pharmsci) is registered in <a href="https://prefix.cc/">https://prefix.cc/</a>, a name-space lookup service.

PharmSci Ontology Documentation:

PharmSci Ontology Github Repository: SKGO Github Repository:









# Thanks.

