
Towards Proximity Graph
Auto-Configuration: an Approach

Based on Meta-learning
Rafael S. Oyamada, Larissa C. Shimomura, Sylvio Barbon Junior, and

Daniel S. Kaster.

Summary

● Introduction and Concepts
○ Similarity Searches
○ Proximity Graphs
○ Meta-learning

● Contribution
● Experimental results
● Conclusion

Retrieving complex data (image, video, audio, etc)
through its similarities.

Busca por similaridade

Distance functions

● Distance functions to measure the similarity between
a pair of feature vectors.

● Lp norms: Manhattan (L1), Euclidean (L2)

Similarity Queries

Range query k-NN query (k=3)

Index structures for similarity searching

● Tree-based methods;
● Hash-based methods;
● Permutation-based methods;
● Graph-based methods.

Proximity Graphs

● A proximity graph is a graph G=(V, E), in which each
pair of vertices (u, v) ∈ V is connected by an edge
e=(u, v) iff u and v satisfy a given property P;

Proximity Graphs

● Popular approaches are based on k-NN graphs or
navigable small-world graphs (NSW);

● Sensible to construction and search parameters.

Parameters of major impact

● Construction: number of nearest neighbors (NN)
● Query: number of restarts (R)

○ Regarding the GNNS algorithm

Usually chosen through grid search steps

Example: impact of parameters

● Choosing the best graph type and its configuration for
a given dataset for achieving a minimum recall rate
(0.95)

● Considering different optimization criteria
○ Memory usage, or
○ Query time

R (left) and Query Time (right) varying NN

Smallest number of restarts (left) for each graph that
reached recall 0.95 and its respectives query times (right).

“No winner”.

Contribution

An intelligent system, based on meta-learning techniques,
capable of recommending a suitable proximity graph,
together with its settings for a given dataset.

Meta-learning

● “Learning accross experiences”;
○ Gathering knowledge from several problems to learn how to

provide suitable solutions in future.

● Algorithm selection, parameter recommendation,
performance prediction, and etc;
○ Popular in machine learning community.

Proposal

Experiments

Datasets

Experimental setup
● C++ NMSLib for performance measurements

○ Brute Force k-NNG, NNDescent, and NSW

● k-NN queries using the Euclidean distance
● One meta-model for each performance measurement

(recall and query time)
● Random Forests for meta-model induction

○ Scikit-learn default parameters

Tuning strategies: generic (no tuning)

Generic meta-model

Tuning strategies: add grid search

Tuned meta-model:

Grid Search

Tuning strategies: add grid search on subsets

Tuned meta-model:

Subsets

Accuracy evaluation: r-squared and RMSE

Recommendations

● Optimal: best graph configuration achieved from all
results

● Grid search: best graph configuration achieved from a
reduced parameter space
○ NN = {1, 25, 70, 150}
○ R = {1, 10, 40, 120}

Recommendation according to different criteria

Predictions per interval

Conclusion and future works

● Overall, our approaches overcome the grid search
method

● The TMM-S is able to reach optimal results in most
cases

● Explore more dataset descriptors
● Increase the meta-dataset with more image datasets

Thank you!

Contact: rseidi.oyamada@uel.br

