# Towards Proximity Graph Auto-Configuration: an Approach Based on Meta-learning

Rafael S. Oyamada, Larissa C. Shimomura, Sylvio Barbon Junior, and

Daniel S. Kaster.



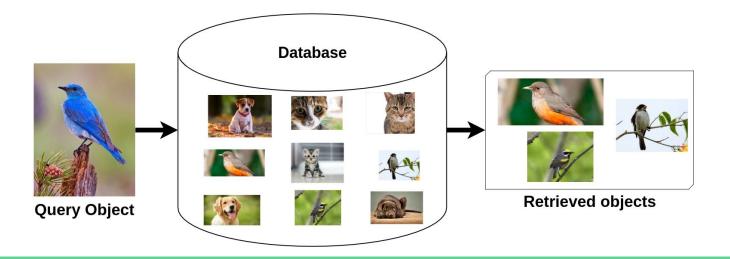
# Summary

- Introduction and Concepts
  - Similarity Searches
  - Proximity Graphs
  - Meta-learning
- Contribution
- Experimental results
- Conclusion



#### **Busca por similaridade**

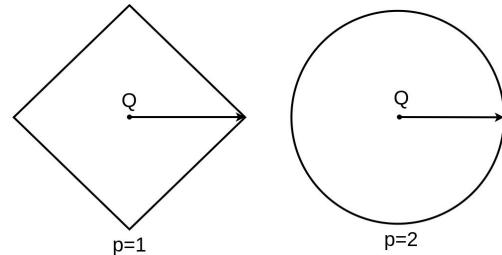
Retrieving complex data (image, video, audio, etc) through its similarities.





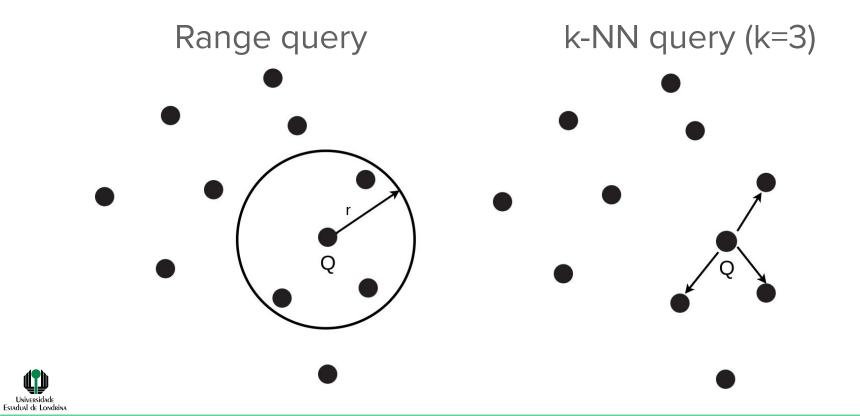
#### **Distance functions**

- Distance functions to measure the similarity between a pair of feature vectors.
- Lp norms: Manhattan (L1), Euclidean (L2)





### **Similarity Queries**



# Index structures for similarity searching

- Tree-based methods;
- Hash-based methods;
- Permutation-based methods;
- Graph-based methods.



# **Proximity Graphs**

• A proximity graph is a graph G=(V, E), in which each pair of vertices  $(u, v) \in V$  is connected by an edge e=(u, v) iff u and v satisfy a given property P;



# **Proximity Graphs**

- Popular approaches are based on *k*-NN graphs or navigable small-world graphs (NSW);
- Sensible to construction and search parameters.



### **Parameters of major impact**

- Construction: number of nearest neighbors (NN)
- Query: number of restarts (R)
  - Regarding the *GNNS* algorithm

Usually chosen through grid search steps

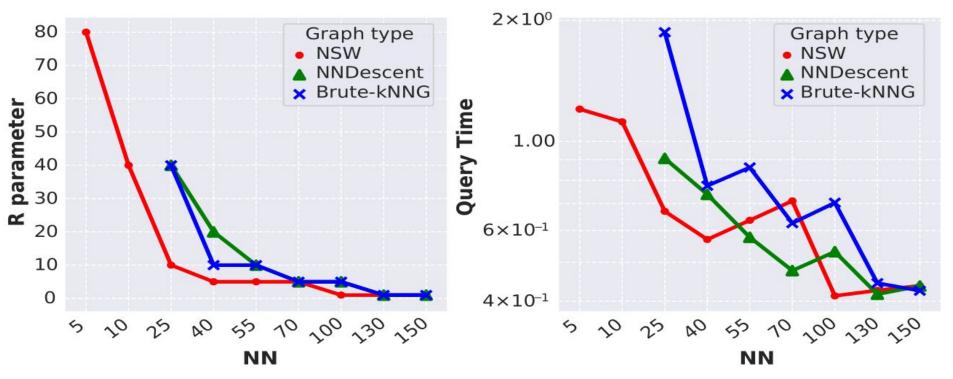


# **Example: impact of parameters**

- Choosing the best graph type and its configuration for a given dataset for achieving a minimum recall rate (0.95)
- Considering different optimization criteria
  - Memory usage, or
  - Query time



# R (left) and Query Time (right) varying NN





# Contribution

An intelligent system, based on meta-learning techniques, capable of recommending a suitable proximity graph, together with its settings for a given dataset.



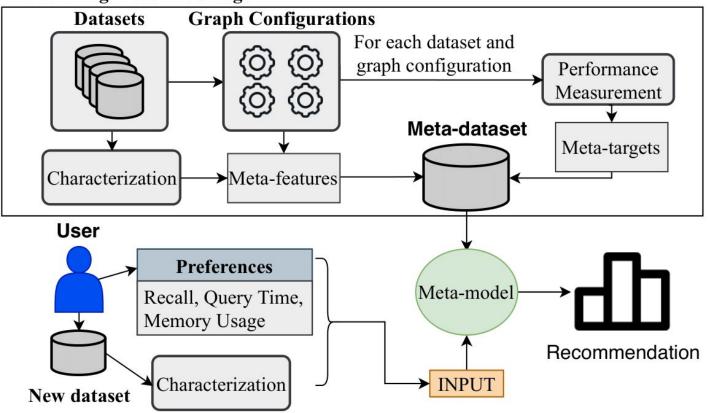
# **Meta-learning**

- "Learning accross experiences";
  - Gathering knowledge from several problems to learn how to provide suitable solutions in future.
- Algorithm selection, parameter recommendation, performance prediction, and etc;
  - Popular in machine learning community.



## Proposal

Gathering meta-knowledge





#### **Experiments**



#### **Datasets**

|                 | Title                 | Size              | Dimensions |  |
|-----------------|-----------------------|-------------------|------------|--|
|                 | Color Moments         | 68,040            | 9          |  |
| $\mathbf{Real}$ | Texture               | $68,\!040$        | 16         |  |
|                 | Color Histogram       | $68,\!040$        | 32         |  |
|                 | MNIST                 | 70,000            | 784        |  |
|                 | ANN-SIFT1M            | 1,000,000         | 128        |  |
|                 | Properties            | Values            |            |  |
| Synthetic       | Size                  | $\{10^4, 10^5, 1$ | $\{0^6\}$  |  |
|                 | Dimensionality        | $\{8, 32, 128\}$  |            |  |
|                 | Gaussian distribution | $\{1, 5, 10\}$    | )          |  |
|                 | Number of clusters    | $\{1, 10, 100\}$  | )}         |  |



# **Experimental setup**

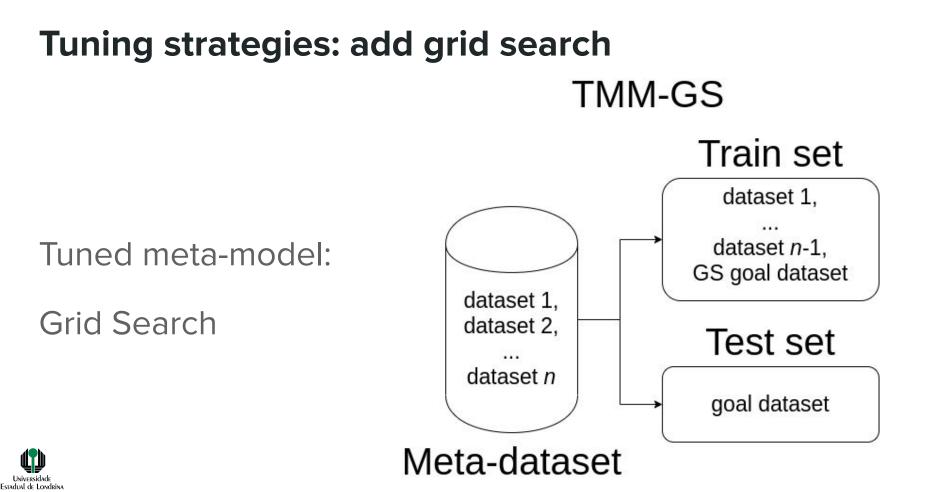
- C++ NMSLib for performance measurements
  o Brute Force *k-NNG, NNDescent,* and *NSW*
- k-NN queries using the Euclidean distance
- One meta-model for each performance measurement (recall and query time)
- Random Forests for meta-model induction
  - Scikit-learn default parameters

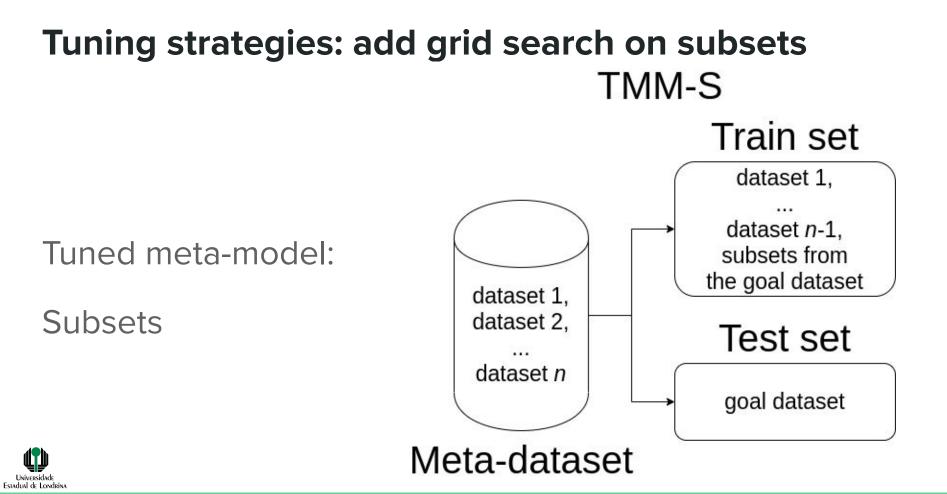


#### **Tuning strategies: generic (no tuning)** GMM Train set dataset 1, ... dataset n-1 Generic meta-model dataset 1, dataset 2, Test set ... dataset n goal dataset

Meta-dataset







#### Accuracy evaluation: r-squared and RMSE

|              | GMM            |       |                | TMM-GS    |                |        | TMM-S          |           |                |        |                |           |  |
|--------------|----------------|-------|----------------|-----------|----------------|--------|----------------|-----------|----------------|--------|----------------|-----------|--|
| Goal Dataset | Recall C       |       | Quer           | QueryTime |                | Recall |                | QueryTime |                | Recall |                | QueryTime |  |
|              | $\mathbf{r}^2$ | RMSE  | $\mathbf{r}^2$ | RMSE      | $\mathbf{r}^2$ | RMSE   | $\mathbf{r}^2$ | RMSE      | $\mathbf{r}^2$ | RMSE   | $\mathbf{r}^2$ | RMSE      |  |
|              | 0.350          | 0.135 | 0.980          | 0.249     | 0.605          | 0.130  | 0.961          | 0.338     | 0.996          | 0.012  | 0.998          | 0.068     |  |
| MNIST        | 0.765          | 0.111 | 0.694          | 1.097     | 0.617          | 0.173  | 0.920          | 0.559     | 0.997          | 0.014  | 0.998          | 0.068     |  |
| Moments      | 0.955          | 0.034 | 0.989          | 0.179     | 0.973          | 0.031  | 0.979          | 0.241     | 0.991          | 0.019  | 0.998          | 0.065     |  |
| SIFT         | 0.807          | 0.132 | 0.932          | 0.524     | 0.568          | 0.247  | 0.803          | 0.932     | 0.983          | 0.049  | 0.984          | 0.260     |  |
| Texture      | 0.978          | 0.024 | 0.962          | 0.344     | 0.990          | 0.022  | 0.951          | 0.378     | 0.996          | 0.012  | 0.998          | 0.058     |  |



### Recommendations

- Optimal: best graph configuration achieved from all results
- Grid search: best graph configuration achieved from a reduced parameter space

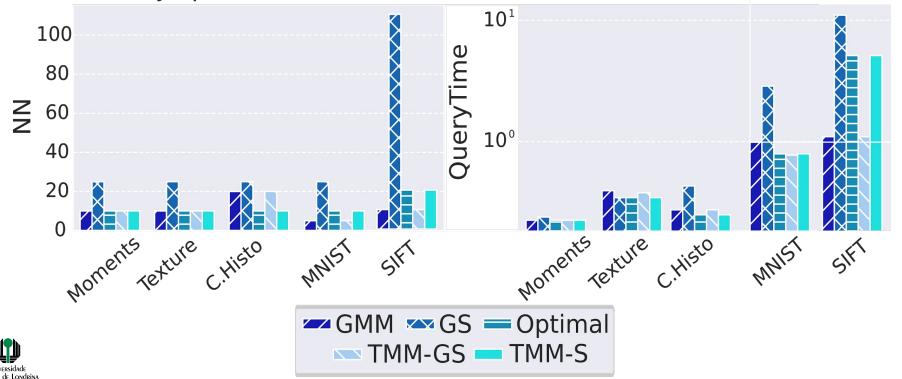
 $\circ$  R = {1, 10, 40, 120}



# **Recommendation according to different criteria**

Memory optmization

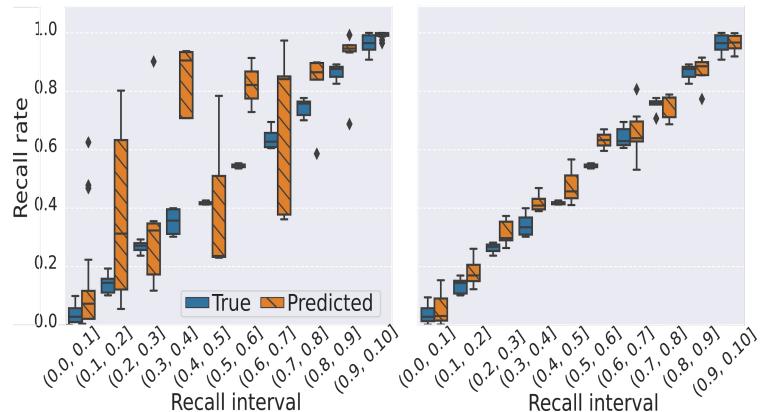
Query time optimization



# **Predictions per interval**

SIFT - GMM

Universidade Estadual de Londrina



SIFT - TMM-S

# **Conclusion and future works**

- Overall, our approaches overcome the grid search method
- The TMM-S is able to reach optimal results in most cases
- Explore more dataset descriptors
- Increase the meta-dataset with more image datasets



# Thank you!

Contact: rseidi.oyamada@uel.br

