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Retrieving complex data (image, video, audio, etc) 
through its similarities.

Busca por similaridade



Distance functions

●  Distance functions to measure the similarity between 
a pair of feature vectors.

● Lp norms: Manhattan (L1), Euclidean (L2)



Similarity Queries

Range query k-NN query (k=3)



Index structures for similarity searching

● Tree-based methods;
● Hash-based methods;
● Permutation-based methods;
● Graph-based methods.



Proximity Graphs

● A proximity graph is a graph G=(V, E), in which each 
pair of vertices (u, v) ∈ V is connected by an edge 
e=(u, v) iff u and v satisfy a given property P;



Proximity Graphs

● Popular approaches are based on k-NN graphs or 
navigable small-world graphs (NSW);

● Sensible to construction and search parameters.



Parameters of major impact

● Construction: number of nearest neighbors (NN)
● Query: number of restarts (R)

○ Regarding the GNNS algorithm

Usually chosen through grid search steps



Example: impact of parameters

● Choosing the best graph type and its configuration for 
a given dataset for achieving a minimum recall rate 
(0.95)

● Considering different optimization criteria
○ Memory usage, or
○ Query time



R (left) and Query Time (right) varying NN

Smallest number of restarts (left) for each graph that 
reached recall 0.95 and its respectives query times (right).

“No winner”.



Contribution

An intelligent system, based on meta-learning techniques, 
capable of recommending a suitable proximity graph, 
together with its settings for a given dataset.



Meta-learning

● “Learning accross experiences”;
○ Gathering knowledge from several problems to learn how to 

provide suitable solutions in future.

● Algorithm selection, parameter recommendation, 
performance prediction, and etc;
○ Popular in machine learning community. 



Proposal



Experiments



Datasets



Experimental setup
● C++ NMSLib for performance measurements

○ Brute Force k-NNG, NNDescent, and NSW

● k-NN queries using the Euclidean distance
● One meta-model for each performance measurement 

(recall and query time)
● Random Forests for meta-model induction

○ Scikit-learn default parameters



Tuning strategies: generic (no tuning)

Generic meta-model



Tuning strategies: add grid search

Tuned meta-model:

Grid Search



Tuning strategies: add grid search on subsets

Tuned meta-model:

Subsets



Accuracy evaluation: r-squared and RMSE



Recommendations

● Optimal: best graph configuration achieved from all 
results

● Grid search: best graph configuration achieved from a 
reduced parameter space
○ NN = {1, 25, 70, 150}
○ R = {1, 10, 40, 120}



Recommendation according to different criteria



Predictions per interval



Conclusion and future works

● Overall, our approaches overcome the grid search 
method

● The TMM-S is able to reach optimal results in most 
cases

● Explore more dataset descriptors
● Increase the meta-dataset with more image datasets
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