IT UNIVERSITY OF COPENHAGEN

Scientific careers: interdisciplinarity, gender, and the chaperone effect

Roberta Sinatra

ISI Foundation

Performance

Success

Performance is about you

Why is this important?

Simkin and Roychowdhury, Journal of Mathematical Sociology, 32(2), pp.129-141.(2006) Salganik, Dodds, Watts, Science, 311, 5762:854-6 (2006)

How does success

evolve in scientific careers?

Two findings: Random Impact Rule and Q-model

$c_{j,\alpha} = p_{\alpha}Q_j$ impact of j's paper = luck * researcher Q

Video and interactive visualization are online

Nature video: Is a scientific career predictable?

RESEARCH ARTICLE

SCIENCE COMMUNITY

Quantifying the evolution of individual scientific impact

Roberta Sinatra,^{1,2} Dashun Wang,^{3,4} Pierre Deville,^{1,5} Chaoming Song,⁶ Albert-László Barabási^{1,7,8,9}*

Despite the frequent use of numerous quantitative indicators to gauge the professional impact of a scientist, little is known about how scientific impact emerges and evolves in time. Here, we quantify the changes in impact and productivity throughout a career in science, finding that impact, as measured by influential publications, is distributed randomly within a scientist's sequence of publications. This random-impact rule allows us to formulate a stochastic model that uncouples the effects of productivity, individual ability, and luck and unveils the existence of universal patterns governing the emergence of scientific success. The model assigns a unique individual parameter Q to each scientist, which is stable during a career, and it accurately predicts the evolution of a scientist's impact, from the *h*-index to cumulative citations, and independent recognitions, such as prizes.

http://sciencepaths.kimalbrecht.com/

Do performance and success in science differ?

1. Interdisciplinarity

Interdisciplinary research is important but discriminated

Bromham et al., Nature 534, 684-687 (2016)

Interdisciplinary research is important but discriminated

What about awards?

Engineering 27%

Visualizing the interdisciplinary impact of Nobel prizes

Visualizing the interdisciplinary impact of Nobel prizes

Visualizing the interdisciplinary impact of high impact papers Top 10,000

Physics 130

Citations after 10 years 500 ۲ 2,000 5,000 10,000

High interdisciplinary papers

AI Network science Geology Signal processing Quantum dots

High interdisciplinary papers

AI Network science Geology Signal processing Quantum dots

2. Gender

How does productivity differ between female and male scientists?

How does impact differ between female and male scientists?

Scientific careers and gender

Scientific careers and gender

Data sets after processing

WEB OF SCIENCE

~1,5M careers 1,1M male, 400k female

~370k careers 300k male, 70k female

~8.4M careers 5.8M male, 2.6M female

~70% of scientific workforce

~70% of scientific workforce 30% more citations

~70% of scientific workforce 30% more citations 10% more career productivity (1950) 35% more career productivity (2000)

~70% of scientific workforce 30% more citations

10% more career productivity (1950)

35% more career productivity (2000)

Same annual productivity

Shorter career length

~70% of scientific workforce 30% more citations

10% more career productivity (1950)

35% more career productivity (2000)

Same annual productivity

Scientific careers and gender

We use a matched sample approach to simulate controlled experiments

...

25,033 female authors

Maria American physicist with a career of 10 years, mostly working at an institute ranked 200th ~ 250th

Angela Italian mathematician with a career of 15 years, mostly working at a top-20 institute

Christiana German psychologist with a career of 30 years, mostly working at an institute ranked 50th ~ 90th

25,033 male authors

Mario

American physicist with a career of 10 years, mostly working at an institute ranked 200th ~ 250th

Angelo

....

Italian mathematician with a career of 15 years, mostly working at a top-20 institute

Christopher German psychologist with a career of 30 years, mostly working at an institute ranked 50th ~ 90th

Gender affects dropout rate, productivity and impact

Gender affects dropout rate, productivity and impact

How does productivity differ between female and male scientists?

How does impact differ between female and male scientists?

How does productivity differ between female and male scientists?

Only by 9% if we take into account dropout rate

How does impact differ between female and male scientists?

How does productivity differ between female and male scientists?

Only by 9% if we take into account dropout rate

How does impact differ between female and male scientists?

Almost no difference if we take into account confounding factors

3. The role of chaperones in scientific publishing

Do you need to publish in Nature in order to publish in Nature?

We classify principal investigators based on their publication history in the journal

Time

We classify principal investigators based on their publication history in the journal

Time

31 May 2007

Life-history trade-offs favour the evolution of animal personalities

We classify principal investigators based on their publication history in the journal

Time

Proportion of new PIs is declining

Fields display the chaperone phenomenon with different magnitudes

Chaperoned PIs' papers have higher impact than new Pls' papers

Performance

Success

Team Science

Kim Albrecht

Federico Battiston

László Barabási

Junming Huang

Dan Larremore

Federico Musciotto

Giancarlo Ruffo

Vedran Sekara

Pierre Deville

Magda Fontana

Alex Gates

Sune Lehmann

Lu Liu

Yifang Ma

Marcella Tambuscio

Dashun Wang

Chaoming Song

Michael Szell

IT UNIVERSITY OF COPENHAGEN

Fondazione ISI ISI Foundation

Thank you

www.robertasinatra.com