An Efficient Index for Reachability Queries in Public
Transport Networks

Bezaye Tesfaye Nikolaus Augsten Mateusz Pawlik
Michael Bohlen Christian S. Jensen

ADBIS: Advances in Databases and Information Systems, August 2020

Motivation

(ST'vT)

(12, 13)

Path costs between stations depend on the start time

Motivation

Path costs between nodes depend on the start time

Reachability Query

Reachability query in a temporal graph
G:

e Which points of interst (POls) are
reachable given:
e start time
e start node
e cost budget
e Application areas:
e geomarketing
e recommender systems
e |ogistics, ...

Existing Approaches

1. No-index: expand edge by edge to find all reachable POls in the graph
e does not scale to large networks
2. Shortest-path index: issue a shortest path query for each POI

e expensive index construction
e does not scale to large numbers of POls

Goal: minimize the query time and the preprocessing time

Our Approach

e Preprocessing:
e design a reachability index based on graph partitioning
e Query Processing:

e apply cell by cell expansion using the reachability index

Preprocessing

e Building a reachability index
e Involves:
e graph partitioning
e construction of the index core

e computing index cost function
e inserting POls

Temporal
graph

Partitioning

)

N

Indexing

-

Graph Partitioning

e Given G = (V, E,c), we partition V into a set of disjoint cells
e border edges = edges that connect nodes from different cells
e border nodes = end points of border edges

Reachability Index R

e An index core stores:

e border nodes

e border edges

e an edge between each pair of border
nodes within a cell

e Reachability index R = index core +
PQls:
e all nodes and edges in the index core
e a set of POls
e an edge from each border node to
each POI within a cell

(b) Reachability index R

Query Processing

e Cell by cell expansion (similar to
Dijkstra’s algorithm)

e Expand in index R from a query node

at a specific start time within a given
cost budget
° RQ(Ra Vs, 87 6) = {V27 VlO}
e sp(vs,va,t) =4 and
sp(vs, vip,t) =5

Experiments

e GTFS datasets and Synthetic

Dataset #Nodes #Edges #Conn | #Part | #B-nodes Part. size #POls
sum avg avg min max | sum avg

Zurich 2,508 5,630 555,713 45 315 7.0 55 2 157 99 2.20

Berlin 12,984 34,791 1,348,070 50 | 1,241 2438 259 2 921 567 11.34

Synthetic | 145,188 433,272 31,042,468 44 | 1,245 283 |3,299 831 4,037 | 7,176 163.00

Comparision with respect to index size and number of expanded edges:
e No-index (NI): expand with temporal Dijkstra in original graph
e Shortest-path (SP): precompute shortest path to all POls (from each node)
e Reachability query (RQ): our solution

10

Evaluation

Reachability query = RQ, Shortest-path = SP, No-index = NI

Dataset Algorithm #Nodes #Edges #Connections
RQ 414 4,021 421,268
Zurich SP 2,508 248,292 55,015,587
NI 2,508 5,630 555,713
RQ 1,808 53,543 2,533,940
Berlin SP 12,984 7,361,928 764,355,690
NI 12,984 34,791 1,348,070
RQ 8,421 212,564 18,018,811
Synthetic SP 145,188 1,041,869,088 222,760,750,368
NI 145,188 433,272 31,042,468

Index size (RQ) << Index size (SP)

11

Evaluation

& start times: {8,12,16,18,22}, cost budgets: {60min,120min}, POls: 5% of

nodes
103 104 104
w 5 103 w103
& 102 s _§
3 g 3
3 g 102 B 10?
2 2 2 {
@ 10! = < 5 < N
g = = g g
[} - = s 10! . @10t
* P * i 5 #
3 7 - 3
S 100 RQ | 8 RQ | 8 RQ
NI 10° - SN 10° NI
0 — P 0 Eid 0 P
0 500 1000 1500 2000 2500 3000 0 2000 4000 6000 8000 10000 12000 0 2000 4000 6000

query executions (ordered by expanded edges)

(a) Zurich

query executions (ordered by expanded edges)

(b) Berlin

8000 10000 12000
query executions (ordered by expanded edges)

(c) Synthetic

Summary

e Reachability index requires precomputation from and to border nodes
e Cell by cell expansion scales to large networks

e Network structure may affect the effectiveness of reachability index

13

Thank youl!

14

