

Fake News in social media

A survey shows 62% US adults get news from social media [1], which become a primary source for people to read the news.

Fake news could spread more quickly and widely in our society. More and more fake news detection studies appear [2].

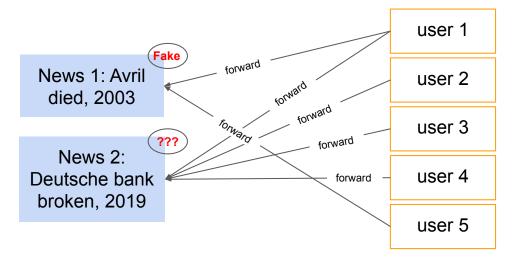
[1] Sihombing, Sabrina Oktaria. "Predicting intention to share news through social media: An empirical analysis in Indonesian youth context." Fusiness and Economic Horizons, 13.4 (2017): 468-477.

[2] Bondielli, Alessandro, and Francesco Marcelloni. "A survey on fake news and rumour detection techniques." Information Sciences 497 (2019): 38-55

Fake news detection scenario

Social media users forward the news articles. Some news is real, and some is fake. A subset of news are labeled by experts.

Goal: predict unlabeled news veracity.



Reliability assessment in fake news detection

User reliability: the possibility of user spreading real news.

News reliability: the possibility of news being real.

Existing models (Castillo [3], Harmonic [4], HC-CB-3 [5], TriFN [6]) assess news and users reliability based on labeled data, and **do not fully consider the uncertainty lead by the unlabeled data**. We propose a **Subjective Opinions** based fake news detection model (SO_fnd).

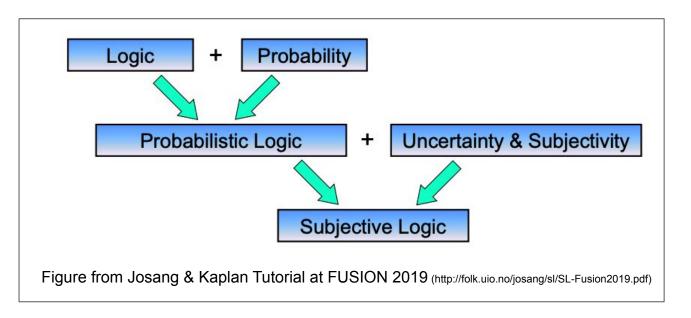
^[3] Castillo, Carlos, Marcelo Mendoza, and Barbara Poblete. "Information credibility on twitter." *Proceedings of the 20th international conference on World wide web*. 2011. [4] E. Tacchini, G. Ballarin, M. L. Della Vedova, S. Moret, and L. de Alfaro, "Some Like it Hoax: Automated Fake News Detection in Social Networks," in Proceedings of the Second Workshop on Data Science for Social Good, vol. 1960. Skopje, Macedonia: CEUR-WS, 2017

^[5] Della Vedova, Marco L., et al. "Automatic online fake news detection combining content and social signals." 2018 22nd Conference of Open Innovations Association (FRUCT). IEEE, 2018.

^[6] Shu, Kai, Suhang Wang, and Huan Liu. "Exploiting tri-relationship for fake news detection." arXiv preprint arXiv:1712.07709 (2017).

Subjective Opinions

Subjective Opinions could represent the probability affected by the degrees of uncertainty, and Subjective Logic is a calculus for subjective opinions [7].



Subjective Opinions

Source **A**'s opinion towards a statement **p** can be described as [7]:

$$\omega_p^A = \{trust_p^A, distrust_p^A, uncertainty_p^A\}$$

Trust + distrust + uncertainty = 1

	Subjective Opinions	Probabilistic Logic
A believe p is true with <u>higher</u> uncertainty.	{0.4, 0.2, 0.4}	0.6
A believe p is true with <u>lower</u> uncertainty.	{0.5, 0.3, 0.2}	0.6

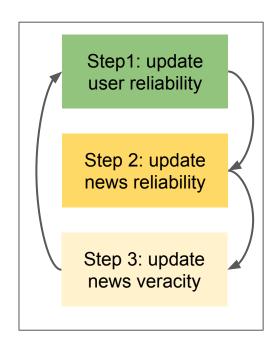
Two proposed fake news detection models

Probability (Prob_fnd) & Subjective Opinions (SO_fnd)

based fake news detection

Table 2: Comparison of Prob_fnd and SO_fnd

	Table 2. Comparison of Froe mid Sound		
Steps	Prob_fnd	SO_fnd	
	Use Probability to describe	Use Subjective Opinions to describe	
Step 1: Update	our belief in a user sharing	our belief in a user sharing real	
$user_reliability.$	real news. Ignore unknown	news. Record unknown cases	
	cases.	with uncertainty.	
Step 2: Update	Use Average to fuse related	Use Consensus to fuse related	
$news_reliability.$	users' reliability.	users' reliability.	
Step 3: Update	Prodict with name religibility	Predict with news_reliability.	
news veracity.	redict with news_retractivity.	reduct with news_remaining.	



Prob_fnd reliability assessment

$$user_reliability(user_i) = \frac{\#(r_n)}{\#(r_n) + \#(f_n)}$$

- #(r_n) is count of **real news** user forwards; #(f_n) is count of **fake news**.

 $news_reliability(news_j) = Average(user_reliability(related\ users))$

SVM classifier predicts news veracity with {news_reliability} as the feature.

SO_fnd reliability assessment

 $user_reliability = \{user_trust, user_distrust, user_uncertainty\}$

$$\begin{cases} user_trust = \frac{\#(r_n)}{\#(r_n) + \#(f_n) + \#(u_n)} * (1 - \alpha), \\ user_distrust = \frac{\#(f_n)}{\#(r_n) + \#(f_n) + \#(u_n)} * (1 - \alpha), \\ user_uncertainty = \frac{\#(u_n)}{\#(r_n) + \#(f_n) + \#(u_n)} * (1 - \alpha) + \alpha. \end{cases}$$

- #(r_n) is count of **real news** user forwards; #(f_n) is count of **fake news**; #(u_n) is count of **unlabeled/unpredicted news**.

```
news\_reliability(news_j) = user_1\_reliability \oplus user_2\_reliability \oplus ...
\oplus user_k\_reliability,
```

SVM classifier predicts news veracity with {news_distrust} as the feature.

Experimental study

Dataset 1: PolitiFact

- 120 real news & 120 fake news
- 23865 users

Dataset 2: BuzzFeed

- 90 real news & 90 fake news
- 15257 users

Baselines:

- Harmonic [5], HC-CB-3 [6], TriFN [7]

Evaluation metrics:

$$Recall = \frac{TP}{TP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$F1 = 2 \frac{Precision * Recall}{Precision + Recall}$$

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Experiments Results

Table 3: Repeated 5-fold cross-validation results on two real-world datasets.

	Prob_fnd	SO_fnd	HC-CB-3	Harmonic	TriFN
accur	$acy .852 \pm .055$	$.871 \pm .051^{**}$	$.856 \pm .052$	$.854 \pm .052$	$.864 \pm .026^*$
BuzzFeed precis	sion $.788 \pm .086$	$.816 \pm .079^*$	$.791 \pm .076$	$.782 \pm .075$	$.849 \pm .040^{**}$
recall	$.969 \pm .043$	* .960 \pm .004	$.966 \pm .045$	$.983 \pm .041^{**}$	$.893 \pm .013$
F1	$.866 \pm .052$	$.880\pm .050^{**}$	$.867 \pm .050$	$.869 \pm .050$	$.870 \pm .019^*$
accur	$acy.922 \pm .036$	$.953 \pm .029^{**}$	$.938 \pm .029^*$	$.916 \pm .042$	$.878 \pm .020$
PolitiFact precis	sion $.887 \pm .056$	$.941 \pm .048^{**}$	$.899 \pm .057^*$	$.876 \pm .074$	$.867 \pm .034$
recall	$.967 \pm .034$	* $.967 \pm .034^{*}$	$.948 \pm .046$	$.970 \pm .030**$	$.893 \pm .023$
F1	$.924 \pm .035$	* .953 \pm .030**	$.921 \pm .041$	$.919 \pm .044$	$.880 \pm .017$

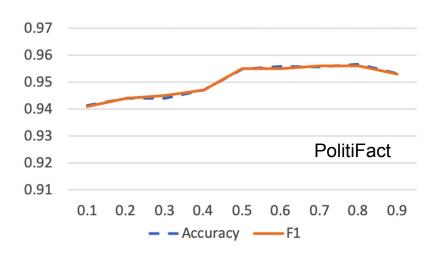
 $[\]overline{x^{**}}$: the run with the best performance.

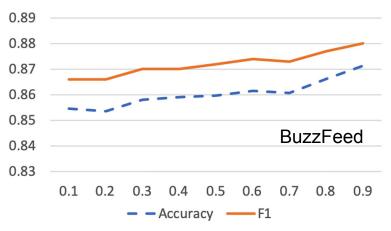
SO_fnd significantly outperforms Prob_fnd (p-value<0.01).

 x^* : the run with the second best performance.

SO_fnd is robust with parameter α .

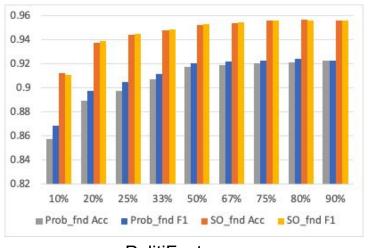
SO_fnd could get similar performance with different α .

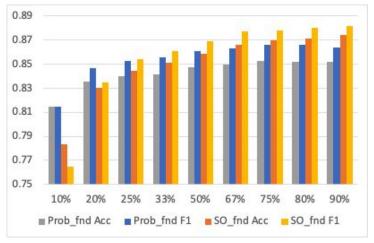




Effect from labeled training data size

Compared to TriFN, our proposed two models are able to achieve a similar or even better performance with much less labeled training data.

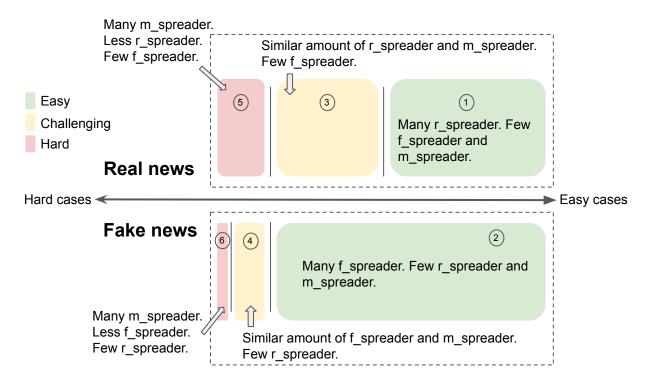




PolitiFact

BuzzFeed

When does Prob_fnd & SO_fnd win and lose?



Real news spreader (r_spreader), user_reliablity >80%; Fake news spreader (f_spreader), user_reliablity <20%; Mixed news spreader (m_spreader), 20%<user_reliablity<80%.

Conclusion and future works

We proposed two new models to evaluate users and news reliability in fake news detection area. Extensive experiments on two real-world datasets, validate our proposed methods' effectiveness. Especially, SO_fnd shows higher performance than state-of-art models.

Next step, we plan to

- introduce news content into news reliability assessment;
- Introduce **user profile**, e.g., age and gender, into user reliability assessment.

Thanks

Q&A

Probability & Subjective Opinions based reliability representation

User 1	User 2	User 3
yes	yes	yes
yes	yes	yes
yes		yes
	yes	
	yes	
		yes
		yes
		yes
	yes	yes yes yes yes yes yes

User 1 reliability	100%
User 2 reliability	50%
User 3 reliability	<u>100%</u> ? 50%? or 75%?

Prob fnd [1], Harmonic [2], HC-CB-3 [3]

User 3 reliability	{trust = 0.5, distrust = 0, uncertainty = 0.5}
User 2 reliability	{trust = 0.5, distrust = 0.5, uncertainty = 0}
User 1 reliability	{trust = 1, distrust = 0, uncertainty = 0}

^[1] Zhang, Danchen, et al. "Fake News Detection Based on Subjective Opinions." European Conference on ADBIS. Springer, Cham, 2020.

^[2] E. Tacchini, et al., "Some Like it Hoax: Automated Fake News Detection in Social Networks," 2nd Workshop on Data Science for Social Good, 2017

Subjective Logic consensus operator

Consensus operator: cumulatively fuse subjective opinions.

$$\omega_s^{A,B} = \omega_s^A \oplus \omega_s^B$$

$$\begin{cases} t_S^{A,B} = (t_S^A u_S^B + t_S^B u_S^A)/(u_S^A + u_S^B - u_S^A u_S^B) \\ d_S^{A,B} = (d_S^A u_S^B + d_S^B u_S^A)/(u_S^A + u_S^B - u_S^A u_S^B) \\ u_S^{A,B} = (u_S^A u_S^B)/(u_S^A + u_S^B - u_S^A u_S^B) \end{cases}$$