# Processing and Querying Temporal Data

Johann Gamper Free University of Bozen-Bolzano, Italy www.inf.unibz.it/~gamper

#### Acknowledgments

Joint work with

- M. Böhlen, University of Zurich
- A. Dignös, Free University of Bozen-Bolzano
- C. S. Jensen, Aalborg University

Partially funded by

- Autonomous Province of Bozen-Bolzano
- Swiss National Science Foundation
- EU (Chorochronos)
- unibz (TPG)







#### 2 Temporal Alignment – Comprehensive Query Support







### **1** Temporal Databases

2 Temporal Alignment – Comprehensive Query Support



# **Temporal Aggregation Example**





| Project | Dept | Budget             | Time   |        |
|---------|------|--------------------|--------|--------|
| COSPA   | CS   | 200K               | 2014 - | - 2019 |
| TPG     | CS   | 18 <mark>0K</mark> | 2017 - | - 2019 |
| MEDAN   | Μ    | 150K               | 2016   | - 2020 |

- What is the project budget per department?
  - Independ. of time:  $\Rightarrow$  (CS,380K), (M,150K)
  - At the current time (now):  $\Rightarrow$  (M,30K)
  - At each time point (sequenced):

| Dept | Budget | Time        |
|------|--------|-------------|
| CS   | 100K   | 2014 - 2016 |
| CS   | 280K   | 2017 - 2019 |
| М    | 150K   | 2016 - 2020 |



- Timestamps must be adjusted for the result
- Some values must be scaled to the adjusted timestamps

#### • Four overlapping phases

- 1956–1985: Concept development
- 1978–1994: Design of query languages
- 1988–present: Implementation aspects
  - Storage and index structures
  - Operator algorithms (join, aggregation)
  - First framework with comprehensive query support
- 1993-present: Consolidation phase
  - Consensus glossary of temporal database concepts
  - Temporal features in SQL
- Still an active research area today
  - New application domains need new operations
  - e.g., moving objects, data streams, temporally evolving graphs, etc.

# **Temporal Features in SQL:2011**

• Period specification for tables (application-time and system-time)

```
CREATE TABLE Emp (
Name VARCHAR,
Dept VARCHAR,
Start DATE,
End DATE,
PERIOD FOR Period (Start, End) );
```

- Temporal UPDATE/DELETE behavior
- Temporal primary and foreign keys ALTER TABLE Emp ADD PRIMARY KEY (Name, Period WITHOUT OVERLAPS)
- Predicates/Functions for periods to support querying
- Support for storage and update
- Limited support for query formulation!



#### **1** Temporal Databases

#### 2 Temporal Alignment – Comprehensive Query Support



# **Temporal Alignment**

- Reduce temporal operators  $\psi^T$  to nontemporal operators  $\psi$ 
  - Adjust time periods of input relations
  - Apply non-temporal operator



Minimal changes to DBMS: normalizer and aligner primitives
Existing query optimization/indexing works

# Example Temporal Aggregation – Normalizer <sup>unibz</sup>

• What is the budget per department:  ${}_{D}\vartheta^{T}_{SUM(Budget)}(\mathbf{p})$ 



| uni | hz |
|-----|----|
|     | _  |

| Operator                                     |                                                            |   | Reduction                                                                                                                                |  |  |
|----------------------------------------------|------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Selection                                    | $\sigma_{	heta}^{T}(\mathbf{r})$                           | = | $\sigma_{	heta}(\mathbf{r})$                                                                                                             |  |  |
| Projection                                   | $\pi_{\mathbf{B}}^{T}(\mathbf{r})$                         | = | $\pi_{\mathbf{B},T}(\mathcal{N}_{\mathbf{B}}(\mathbf{r},\mathbf{r}))$                                                                    |  |  |
| Aggregation                                  | $_{\mathbf{B}} \boldsymbol{\vartheta}_{F}^{T}(\mathbf{r})$ | = | $_{\mathbf{B},T} \boldsymbol{\vartheta}_{F}(\mathcal{N}_{\mathbf{B}}(\mathbf{r},\mathbf{r}))$                                            |  |  |
| Difference                                   | r - s                                                      | = | $\mathcal{N}_{\mathbf{A}}(\mathbf{r},\mathbf{s}) - \mathcal{N}_{\mathbf{A}}(\mathbf{s},\mathbf{r})$                                      |  |  |
| Union                                        | $\mathbf{r} \cup^T \mathbf{s}$                             | = | $\mathcal{N}_{\mathbf{A}}(\mathbf{r},\mathbf{s})\cup\mathcal{N}_{\mathbf{A}}(\mathbf{s},\mathbf{r})$                                     |  |  |
| Intersection                                 | $\mathbf{r} \cap^T \mathbf{s}$                             | = | $\mathcal{N}_{\mathbf{A}}(\mathbf{r},\mathbf{s})\cap\mathcal{N}_{\mathbf{A}}(\mathbf{s},\mathbf{r})$                                     |  |  |
| Cart. Prod.                                  | $\mathbf{r} \times^T \mathbf{s}$                           | = | $\alpha(\phi_{\top}(\mathbf{r},\mathbf{s})\bowtie_{\mathbf{r}.T=\mathbf{s}.T}\phi_{\top}(\mathbf{s},\mathbf{r}))$                        |  |  |
| Inner Join                                   | $\mathbf{r} \Join_{	heta}^T \mathbf{s}$                    | = | $\alpha(\phi_{\theta}(\mathbf{r}, \mathbf{s}) \Join_{\theta \wedge \mathbf{r}.T=\mathbf{s}.T} \phi_{\theta}(\mathbf{s}, \mathbf{r}))$    |  |  |
| Left O. Join                                 | $\mathbf{r} \boxtimes_{\theta}^{T} \mathbf{s}$             | = | $\alpha(\phi_{\theta}(\mathbf{r}, \mathbf{s}) \bowtie_{\theta \wedge \mathbf{r}.T=\mathbf{s}.T} \phi_{\theta}(\mathbf{s}, \mathbf{r}))$  |  |  |
| Right O. Join                                | $\mathbf{r} \ltimes \frac{T}{\theta} \mathbf{s}$           | = | $\alpha(\phi_{\theta}(\mathbf{r}, \mathbf{s}) \Join_{\theta \land \mathbf{r}.T=\mathbf{s}.T} \phi_{\theta}(\mathbf{s}, \mathbf{r}))$     |  |  |
| Full O. Join                                 | $\mathbf{r} \boxtimes_{\theta}^{T} \mathbf{s}$             | = | $\alpha(\phi_{\theta}(\mathbf{r}, \mathbf{s}) \bowtie_{\theta \wedge \mathbf{r}.T=\mathbf{s}.T} \phi_{\theta}(\mathbf{s}, \mathbf{r}))$  |  |  |
| Anti Join                                    | $\mathbf{r} \triangleright_{\theta}^{T} \mathbf{s}$        | = | $\phi_{\theta}(\mathbf{r}, \mathbf{s}) \triangleright_{\theta \wedge \mathbf{r}.T = \mathbf{s}.T} \phi_{\theta}(\mathbf{s}, \mathbf{r})$ |  |  |
|                                              |                                                            |   |                                                                                                                                          |  |  |
| Temporal Op. = $Primitive + Traditional Op.$ |                                                            |   |                                                                                                                                          |  |  |

ADBIS 2020 - Lyon, France

# Temporal PostgreSQL @ UNIBZ

- Integration in DBMS kernel (approx. 1000 LOC)
- Dignös et al.: Extending the kernel of a relational DBMS with comprehensive support for sequenced temporal queries. TODS, 2016.
- Submitted as patch to PostgreSQL
- For more information go to: http://tpg.inf.unibz.it

Ongoing project: we seek PhD students and PostDocs to join!













#### Boosting performance

- Customized alignment primitives to reduce intermediate relation size
- Precise cost estimates based on temporal distribution
- Equivalence rules for the interaction of primitives with RA
- Support for multiple time dimensions
  - e.g., valid time and transaction time (supported by SQL:2011)
- SQL extension to facilitate the formulation of temporal queries





2 Temporal Alignment – Comprehensive Query Support





- A special type of temporal data: sequence of point values
- Analysis has to consider entire time series (not just single point)
- Mostly based on similarity: find most similar TS is a fundamental query

### Temporal Databases vs. Time Series



| Operations                                                                                    | Technologies                         |
|-----------------------------------------------------------------------------------------------|--------------------------------------|
| Selection Projection Aggregation<br>Join Difference Intersection Union                        | RA<br>SQL<br>RDBMS<br>B-tree<br>Hash |
| Alignment Missing value imputation                                                            | ED                                   |
| Alignment Missing value imputation                                                            |                                      |
| Outlier detection Resampling Dimensionality reduction                                         | ΡΑΑ                                  |
| Aggregation Anomaly detection Classification Compression                                      | DET                                  |
| Correlation analysis Discord detection Forecasting                                            | iSAX                                 |
| Function approximation Motif discovery Prediction                                             | ADS                                  |
| Predictive maintenanceSeasonality analysisSegmentationSimilarity searchSubsequence searchetc. | SQL-TS<br>TSMS<br>:                  |

J. Gamper

15

# **Project on Predictive Maintenance**

- Goal: Predict device errors or maintenance steps
- Idea: Spot patterns in sensor data with high prognostic accuracy



#### Preprocessing

- is essential for accurate/reliable analytics
- is work-intensive, ad-hoc, lack of methods to steer the process

# **Multivariate Time Series**





Error pattern becomes only visible by looking at multivariate signalsHow to determine a good subset of signals?

# Window Length

unibz

Signals with three errors

Window covers two errors



• Different window lengths might or might not detect an error

• How to determine a good window length?

# Granularity/Representation





Different granularities/representations emphasize different information

• How to determine a good granularity/representation?



- Investigation of systematic preprocessing techniques and methods
  - Impact on downstream analysis
- Time series management system (TSMS)
  - Comprehensive support for time series management/analytics/mining
  - Integrate into RDBMs?



### **1** Temporal Databases

#### 2 Temporal Alignment – Comprehensive Query Support



# Conclusion



### Temporal databases

- Temporal features in SQL:2011
- Query support is largely missing
- Temporal alignment offers comprehensive query support

#### Time series

- Special kind of temporal data, heavily based on similarity
- Operations studied in isolation
- Preprocessing not well studied

### Future work

- Performance/query optimization
- Multiple time dimensions
- SQL extension

### Future work

- Systematic investigation of preprocessing
- (Relational) Time series management system

# Thank You!