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Abstract. Several methods have been proposed in the past decades
to deal with Multicriteria Decision Aiding (MCDA) problems. How-
ever, a comparison between these methods is always arduous as the
number of datasets proposed in the literature is very low. One of the
limitations of the existing datasets is that generally MCDA method
are dealing with very small sets of data; typically, a MCDA problem
deals with a number of alternatives that does not exceed 20 or 30
and is often less. Therefore, it should be interesting to propose a way
to simulate new data based on some existing dataset, i.e. taking into
account the potential links that should exist between the criteria. We
introduce in this paper the use of the statistical functions named cop-
ula to simulate such data. A practical way to use copula is proposed,
and the quality of the obtained data is discussed.

1 Introduction

Multicriteria Decision Aiding (MCDA) studies aim at helping a De-
cision Maker (DM) to take (good) decisions. Many different models
have been proposed since more than 50 years (see [3] or [7] for a
survey), among others:

• utility-based approaches, using linear (MAUT [15], AHP [24]) or
non-linear (Choquet integral [14]) aggregation functions

• outranking approaches, like ELECTRE [13] or PROMETHEE [8]
methods

• mixed methods, like rule-based methods [20, 21] and others.

There is still a great increase of the number of very specific meth-
ods, or variants of existing methods, to be proposed. All these meth-
ods are always presented as very interesting and perfectly adapted
to the situation. The fact is that it is very difficult to test and com-
pare different methods described in the literature, as they often are
dedicated to one specific situation. Even if the axiomatic foundations
have been generally well studied (see [7] for a first approach), it is
often difficult to realize which are the difference in practice between
the results obtained by two different methods. Therefore, there is a
lack of testing sets of data on which one can try the different meth-
ods. Several solutions have already been proposed to increase the
possibility of benchmark between MCDA methods. We can cite the
Decision Deck project which proposes a unified data standard for
MCDA data [5], and a unified web services platform through DIVIZ
[18]. We can cite also a companion paper [22] which aims at propos-
ing a repository of real or fictitious datasets for MCDA situations.

But sometimes only very few data are available; for example, from
an preference learning point of view, the dataset should be so limited
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that it is too small to be divided into a test subset and a validation sub-
set. Researches should also desire to have more data to test the pro-
posed methods. There is then a need to be able to increase the size of
the datasets through simulated data. Good practices in MCDA point
out the fact, among others, that criteria should be as independent as
possible [23]. But in real life the values taken by an alternative on
different criteria are generally not totally independent. For example,
if the DM is facing a problem like flat rental, she would like to se-
lect several flats to visit. Obviously, data like surface, price, or rooms
number seem to be good criteria to decide which flat to visit. But
these criteria are often linked: increasing the surface is greater in-
crease also the chance to have more rooms; or the price is an increas-
ing function of the surface, with respect to other criteria. Therefore,
MCDA data cannot be independently well simulated. The problem
is then to model the interaction between criteria in a plausible way.
We propose to use a statistical approach to overcome this difficulty.
Copula is a statistical tool which aims at modelling those interac-
tions. Basically, a copula is a function that describe a multivariate
distribution as a function of the marginal univariate distributions. We
propose in this paper to use copulas to first model the interactions
between criteria, and then to simulate new alternatives. We automat-
ically learn the copula parameters from the actual dataset (used as
training set) so as to generate new simulated data sets.

As far as we know, there is no work about the simulation of mul-
ticriteria data except a tentative using Bayesian network presented in
[2].

In this paper we present a practical way to use copulas to simu-
late MCDA data inspiring from the work in [12]. In section 2 we
introduce the copulas functions and quickly present the most well-
known copulas families. In section 3 we first stand the hypothesis
under which we worked. We then present a process to elicitate the
parameters of the copulas following [1]. Finally, we show some nu-
merical experiments we performed on available MCDA dataset in the
literature.

2 Copulas
In this section we recall some basic notions about modeling depen-
dency with copulas (see [19] for a more formal presentation of the
subject). The basic construction bricks will be pair copula construc-
tions (PCC) which are assembled together in a vine copula.

2.1 A brief introduction to copulas
In a nutshell a copula is a multivariate cumulative distribution func-
tion which has all its margins uniformly distributed on the unit inter-
val. If U1, . . . , Un;n ≥ 2 are random variables with uniform distri-
bution in [0, 1], then a copula C : [0, 1]n 7→ [0, 1] satisfies

C(u1, . . . , un) = P (U1 ≤ u1, . . . Un ≤ un) (1)



A central result on copulas is Sklar’s theorem [25] which al-
lows one to represent any n−variate cumulative distribution function
F (x1, . . . , xn) of the random vector X = (X1, . . . , Xn) as

F (x1, . . . , xn) = C(F (x1), . . . , F (xn)), (2)

where F (x1), . . . , F (xn) are the univariate marginal distribution
functions of the vector X. Moreover, this representation is unique
if the marginals are absolutely continuous. A converse result is
Nelsen’s corollary [19] which identifies the copula from the joint and
marginal distribution

C(u1, . . . , un) = F (F−1(x1), . . . , F
−1(xn)). (3)

Intuitively, the probabilistic structure of the vector X is the result
of coupling the marginal behavior of the components of X by means
of the copula C which has intermediate practical implications. For
example, from the observation of n independent and identical real-
izations X1, . . . ,Xn of X, one can estimate the joint multivariate
distribution function F by estimating the marginals and identifying
one copula function among the elements of known copula families
(e.g. the elliptical or Archimedean classes among others [19]). If F
is absolutely continuous, then we use the chain rule to write the den-
sity equivalent to equation (2)

f(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))f1(x1) . . . fn(xn) (4)

where the copula density function c is given by

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1, . . . , ∂un
(5)

The difficulty of this problem depends on the data dimension n. In
the bivariate case, e.g. n = 2, only one pair-copula must be estimated
and many solutions have been already proposed to do so (see for
example [16, Chapter 5]). However, several of these approaches are
not feasible in higher dimension spaces.

2.2 Pair-Copula Construction (PCC)
To avoid some problems that arise on high dimension datasets, [4]
propose a pair-copula construction in order to decompose the mul-
tivariate joint density of X into a cascade of building blocks called
pair-copula.

As before f is the joint density ofX which is factorized (uniquely
up to a relabeling of the elements of X) as

f(x1, . . . , xn) = f(xn)f(xn−1|xn) . . . f(x1|x2, . . . , xn). (6)

Then, one can write each of the conditional densities on (6) using
(4) recursively which yields on this general expression for a generic
element Xi of X given a generic conditioning vector v

f(xi|v) =cxi,vj |v−j
(F (xi|v−j), F (vj |v−j))

× f(xi|v−j). (7)

In last expression we use the notation vj for the j-th element of v
and v−j for all the elements of v but vj .

For example, let take three random variables X1,X2 and X3. We
have the following decomposition:

f(x1|x2x3) =c12|3 (F (x1|x3), F (x2|x3))
× f(x1|x3). (8)

2.3 Vines copulas

Vines copulas have been proposed to classify alternatives factor-
ization of (6) into a structured graphical model [4]. This construc-
tion allows highly flexible decompositions of the (possibly high) di-
mensional distribution of X because each pair-copula can be cho-
sen independently from the others. The iterative decomposition pro-
vided by the PCC is then arranged into a set of linked trees (acyclic
connected graph). Two special schemes are usually used: C-vines
(canonical vines) and D-vines. In the former one, a dependent vari-
able is identified and chosen to be the root of the tree. In the follow-
ing tree, the dependence will be computed conditional on this first
variable and so on. In the latter scheme, a variable ordering is cho-
sen. Then on the first tree one models the dependence of each of the
consecutive pairs of variables. The following tree will model the de-
pendence of the remaining pairs, conditional on the those that were
already modeled. See [1] for a more detailed exposition of this con-
struction.

2.4 Simulation

Simulation of copula data (i.e. n-variate data with uniformly dis-
tributed marginals) can be done using the probability integral trans-
form. It is convenient to define the h-function

h(x|v, θ) =
∂dCx,vj |v−j

(F (x|vj), F (x|v−j), |θ)
∂F (vj |v−j)

, (9)

where θ is a parameter vector associated to the decomposition level.
The h-function is the conditional distribution of x given v and we
let h−1(u|v, θ) be its inverse with respect to u, i.e. the inverse of
the cumulative conditional distribution. The simulation for the vine
is as follows. First sample n uniformly distributed random variables
w1, w2, . . . , wn. Then use the probability integral transform of the
corresponding conditional distribution:

x1 = w1,

x2 = F−1(w2|x1),

x3 = F−1(w3|x1, x2),
. . .

xn = F−1(wn−1|x1, . . . , x−1).

At each step, the computation of the inverse conditional distribution
is made through the (inverse) h-function.

3 Numerical experiments

The aim of the data simulation is to obtain new fictitious data in
accordance with a set of real data. The model (copula) parameters
are automatically learned from the real dataset, and then the model is
used to simulate new data. Ideally, the new fictitious data should be
indiscernible from the real ones. We detail in the following sections
the hypothesis on the real data that we make, then the simulation
process and the way we can prove that we reach our objective of
indiscernibility.

3.1 Hypothesis

The input data are a set of p alternatives described on n criteria. Typ-
ically, a MCDA problem faces a small number of alternatives (from



5 or 6 to less than 50). The number of criteria is also small rang-
ing between 3 and about 10. It should be noticed that the real data
can be considered as example data but not as sampled data as in the
classical statistical sampling theory framework: the data set is not
obtained by a random sampling, as the data has been generally pre-
viously selected for their interest. Therefore it is difficult to infer the
distribution of each criteria from the data, as there exists a observa-
tion bias.

Since the margins are unknowns, it is preferable to use normal-
ized ranked data to estimate the copula parameters. This avoids the
problem of estimating the marginal distribution. However, we need to
estimate these distributions in order to transform the simulated data
(whose margins are uniformly distributed) into the original scale of
the data. Two different solutions can be considered:

• choose a parametric form of distribution (Gaussian, uniform...) for
the criteria and estimate its parameters, or

• use a non-parametric approach for the marginal distribution.

We chose to use the empirical distribution invert function which is a
fully non-parametric approach. The inconvenience stands in the fact
that we can only infer marginal distribution contained between the
observed (real) minimum and maximum for each criterion. Therefore
extrema values could be not so well simulated.

In order to avoid problems due to count data we assume that the
margins are absolutely continuous. Thus, the representation in (2) is
unique.

3.2 Simulation scheme

We use the statistical software R to perform the numerical experi-
ments. The simulation process has been implemented in the CDVine
package [9]. The input data set is a numeric performance matrix. To
obtain a simulated dataset we follow these steps:

Step 1. Transform original data into copula data, i.e. purely ordinal
distributions for each criterion.

Step 2. Select a C or a D vine structure via the function
CDVineCopSelect proposed in the package CDVine. Param-
eters of this function are the choice between C-Vine or D-Vine
structure to be selected, and the selection criterion (AIC or BIC).

Step 3. Estimate the parameters of all the pair copula jointly through
the maximization of the pseudo likelihood. This step is performed
via the function CDVineMLE proposed in the package.

Step 4. Simulate the desired number of data via the function
CDVineSim proposed in the package CDVine.

Step 5. Transform back copula data into real-like data via the in-
verse of the empirical cumulative function.

3.3 Evaluation

The testing step consists in the analysis of the differences between
the set of real data and the set of simulated one. We want to detect if
there is any difference between both sets and quantify the difference
if any. An acceptable simulation procedure would yield on simulated
data that is indistinguishable from the real data.

Since we are interested on a joint multivariate probability struc-
ture, using classical univariate tests (e.g. Kolmogorov-Smirnov test)
on the margin of the joint distribution is clearly not sufficient. How-
ever, the simulation scheme must warranty that these margins are
correctly simulated as well as the joint structure.

One could then rely on clustering methods to split the mixed
datasets of real and simulated data into two clusters. Then, one com-
putes a confusion matrix using the classes obtained from the clus-
tering methods and the real labels (real vs simulated) and tests for
independence through a χ2 test. The k-means method is one of the
most common and popular unsupervised clustering method. How-
ever, this method should be useless here, as it will always conclude
to the confusion of real and simulated data as long as the marginal
distributions will be close. This clustering method is able to capture
clusters that are not in the same place in the possible data space, but
is less able to capture clusters that have different structures in the
same subspace.

Alternatively, one could use a binary classifier to test whether the
merged data is easy to discriminate in terms of the added labels real
vs. simulated. We use the Random Forest algorithm [10] as a su-
pervised learning method. This algorithm allows to estimate the in-
fit sample error rate, that is the proportion of alternatives that are
wrongly classified. For this, the algorithm constructs many binary
trees classifiers on bootstrapped subsets of the merged dataset. Then,
it test the classifier on the remaining alternatives and computes the
error rate. The quality indicator we look at is the mean global error
ratio computed over all the classifiers constructed by the Random
Forest algorithm. Heuristically, the higher the ratio the better it is in
our case as it indicates that there is more and more confusion between
real and simulated data.

A more formal way of measuring the quality of the simulation is to
test the existence of differences between the simulated and real data.
For instance, one could use a flexible multivariate ANOVA [26]. We
do not explore this method in this paper.

3.4 Results
We tested the elicitation process on 3 data sets obtained from the
MCDA data set repository [22]. Let us present the three selected
cases.

Case 1. A data set of farms evaluated on the animal welfare, de-
scribed in [6]. The dataset is composed of 29 farms described on
4 criteria valued between 0 and 100.

Case 2. A data set of 27 scenarios for radioactive waste manage-
ment, with regard to 4 criteria, described in [11].

Case 3. A data set of 243 virtual peach ideotypes with regard to 3
criteria described in [17].

The three data sets are represented on the left panels of Figures 1, 2
and 3 respectively. These panels contain all the pairwise scatter plots
for each data set on its upper triangle. On the lower triangles we rep-
resent each estimated pairwise copula density by means of contour
plots. These pair copula are the elemental brick on the construction
of the vines. It is possible to remark different kinds of probability
structures and dependence between the three cases. For instance, the
contour plots show spherical shapes in Figure 1 and elliptical shapes
in Figure 2 which can be associated to multivariate normal or t distri-
butions. The shapes of the contour plots in Figure 3 are more intricate
and therefore represent more complex dependence structures.

In order to obtain a estimation of the quality of the simulation
procedure we repeated the simulation scheme (see 3.2) 1000 times,
producing then 1000 simulated data sets for each of the three real
data sets. The simulated data sets have the same dimensions as the
real data sets they are simulated from. Figures 1, 2 and 3 allow to
visually inspect one of the replicates of the simulation procedure for
each of the MCDA data sets. On the first two cases, it is hard to tell
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Figure 1: Animal welfare dataset [6]. On the right, the pairs plot of the data points (black dots) and simulated points (gray dots). On the left,
the original data points are represented as normalized ranks on the upper triangle and the estimated pair copulas as shown as contour plots on
the lower triangle.

that the global pattern of the data is not respected, however there are
some simulated data points that lay in zone of low real data density.
On the third case, it is more clear that the structure of the simulated
dataset does not necessarily follow the structure of the real data. In
particular, we see how simulated data points lay far away from the
strong structure of real data set.

For each simulation we tested the univariate and multivariate ad-
equacy of the simulated datasets to the real datasets. We used the
Kolmogorov-Smirnov test on each margin and the proposed eval-
uation (see 3.3) using the Random Forest intrinsic error ratio. The
Kolmogorov-Smirnov test is marginally rejected at the level of 5%
(the maximum rejection was 5 times out of 1000 replication using
the first dataset and the first variable) so we do not include the re-
sults here. The obtained average error ratios using Random Forest
are presented in table 1 which is detailed and analysed in the next
section.

In order to ensure that results are not purely due to randomness,
we also produced 1000 simulated data sets without any hypothesis
of dependence between criteria, i.e. we generated criteria values in-
dependently, following only the marginal distributions for each cri-
terion on each dataset. The results of such simulation are also listed
in table 1.

RandomForest Error Ratio
Data Set With copulas Without copulas

Case 1 [6] 0.534 0.5
Case 2 [11] 0.573 0.012
Case 3 [17] 0.204 0.119

Table 1: Average error ratio of the Random Forest classifier for each
of the MCDA datasets for the simulation scheme using copula to
model dependence and without any dependence structure.

A higher error ratio shows that it is more difficult to distinguish be-
tween learning data and simulated data with the use of copulas, and
as a consequence we consider that the simulation is of better quality.
If we consider that a higher error ratio implies a simulation of higher
quality, then we notice that for all the proposed datasets the quality
of the simulated data seems to be better when we use copulas than
under the independence hypothesis. However, the differences among
the three cases are not negligible. For example while in the first case
both error rates are very close (0.534 under the dependence hypothe-
ses against 0.500 under the independence hypothesis), in the second
case the error rates are quite different (0.573 under the dependence
hypothesis against 0.012 under the independence hypothesis). Let us
examine more in detail these results.

First we used vine tree plots to graphically represent the esti-
mated dependence structure. Vine tree plots represent dependent pair
copulas as connected components on a graph. The non connected
components are the (conditionally) independent couples of variables.
When a pairwise dependence exists, the associated edge indicates the
strength of the association and a label is placed together with the em-
pirical Kendall’s tau as well as the retained copula. Vine tree plots
for our experiment are presented on Figure 4. With this representa-
tion it is easy to see the low dependence structure of the first case
(where only one non independent pair copula is estimated), and also
the strong structure observed in case 3 where all the possible pair-
wise components are linked together. Finally the case 2 is somehow
more interesting because the dependence structure is present at some
levels of the disaggregation and for some variables.

We now try to interpret the obtained results in terms of the practi-
cal problem associated to each one of the cases we studied.

Case 1. [6] presents data that are very weakly dependent (see figure
1). There, the representation of the data and the used copula seems
to indicate that the dataset could be correctly represented using a
spherical copula. Therefore, a simulation under the independence
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Figure 2: Radioactive waste management dataset. On the right, the pairs plot of the data points (black dots) and simulated points (gray dots). On
the left, the original data points are represented as normalized ranks on the upper triangle and the estimated pair copulas as shown as contour
plots on the lower triangle.
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Figure 3: Peach ideotypes dataset. On the right, the pairs plot of the data points (black dots) and simulated points (gray dots). On the left, the
original data points are represented as normalized ranks on the upper triangle and the estimated pair copulas as shown as contour plots on the
lower triangle.

hypothesis will give good results and will not be very improved
by the use of copulas.

Case 2. [11] is a very interesting case as the data are more linked
by a non-linear relation (see figure 2 for the representation of the
data and the used copula). In this case the use of copulas permits to
really improve the quality of the simulation by taking into account
these links.

Case 3. [17] is a very special case since all the alternatives in the
dataset are situated in a 3D-surface which is a Pareto front (see
3 for the representation of the data and the used copula). Sim-
ulating data without the constraint of being in the surface leads
for sure to absurd solutions. The use of copulas in this situation
can weakly improve the quality of the data, but cannot of course
use the special surface structure of the data to better simulate new



alternatives. The simulation process should be linked with a clean-
ing phase where only pareto-optimal solutions should be kept in
the dataset.

4 Conclusion

The objective of our work is to propose to the community a practical
tool to simulate ”real-like” data from a real dataset. We focused on
the way to take into account weak and non-linear links between cri-
teria and proposed a solution based on the use of copulas to model
these links. We have shown that the use of copula increases the qual-
ity of the simulated data compared to the simple model only based on
the use of the marginal distributions. The proposed process is based
on a automatic learning of the copula model and parameters. How-
ever, we can imagine that the expert can define the used model of
copula and/or part of the parameters if needed.

The use of copulas to simulate new MCDA data from a set of real
ones seems to be validated by the tests we made. In each case data are
of better quality with the use of copulas than if we simulate data un-
der the hypothesis of complete independence between criteria. How-
ever, the use of copulas is of higher interest when the criteria are
linked by a weak relation: if no relation exists between criteria one
can simulate criteria values independently; if a strong (and hidden)
relation exists between criteria copulas can fail at representing it.

Moreover, it should be noticed in a multicriteria combinatorial op-
timization point of view that we only generate alternatives with cred-
ible criteria values. We do not check if these alternatives correspond
effectively to feasible solutions or not.

Perspectives of this work are the following:

• to provide an efficient similarity-index to test the similarity be-
tween real and simulated data;

• to develop an available R service for anyone to simulate MCDA
data from a learning dataset;

• to study the effect of criteria number and alternatives number in
the learning set on the quality of the simulation;

• to propose a process using copulas to simulate data directly from
indications of the DM without any learning dataset.
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(a) Case 1: low stochastic dependence structure

(b) Case 2: high stochastic dependence structure

(c) Case 3: high deterministic dependence structure

Figure 4: Tree vine plot for the three cases studied. Nodes represent the pair copula components. Edges are present where a significant depen-
dence is estimated between pair copula.


