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Abstract For several reasons like benchmarking of MCDA methods, the MCDA
community should be interested in the production of simulated multicriteria datasets
based on real datatsets. Our goal in this paper is to propose several methods to
simulate these new multicriteria data from an existing dataset. Simulated data
should be as similar as possible to the initial dataset, including the capture of spe-
cific structure in the initial dataset (if any). We propose here to study independent
sample, PCA-based sample and copula based sample and to determine which one
best succeed in generating new data on demand. The copula based method seems
the best one to reproduce specific links between criteria.
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1 Introduction

As pointed out in [9] and [8], there is a need of simulated multicriteria datasets
to be used by the Multicriteria Decision Aiding (MCDA) community . One of the
reasons is that many different MCDA methods have been already proposed, each
of them adapted to specific data or environment. Even if the axiomatic foundations
of these methods have been generally well studied (see [6] for a first approach), it is
often difficult to evaluate in practice between these MCDA methods (see [3], [6]
or [15] for a survey). Therefore, testing these methods on several situations, using
real datasets, should improve our understanding of advantages and inconveniences
of each method. But these “real-world datasets” are generally not appropriate for
such a task, for several reasons. In many cases, only very few data are available.
From a preference learning point of view, the dataset may be so limited that it
is too small to be divided into a test subset and a validation subset. Researchers
should also desire to have more data with a specific shape to test the proposed
methods onto data with plausible values on each criteria. Our goal is to propose
one or several methods to simulate new multicriteria data from an existing dataset.
Simulated data should be as similar as possible to the initial dataset. Therefore,
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the proposed methods are supposed to be able to capture the specific dependence
structure of the initial dataset (if any), and then generate new data on demand.

Good practices in MCDA point out that values on criteria should be as sta-
tistically independent as possible. It just means that the values taken on different
criteria should not be functionally related (linearly or not) to avoid redundancy.
Note that this statistical independence is not the preference independence between
criteria (see [14]). Each time we mention independence in this paper we refer to sta-
tistical independence. But in real life the values taken by an alternative on different
criteria are generally functionally related at some extent. Therefore, multicriteria
data cannot be well simulated using only statistical independent sampling on each
variable. The problem is then to model the dependence structure between criteria
in a plausible way. While in some cases the functional link describing the depen-
dence structure may be linear, it may be the case where a more flexible functional
link is needed.

As introduced in [9], we propose to use a statistical approach to overcome
this difficulty that can be summed up in two steps. First we borrow from other
disciplines simulation schemes suitable for MCDA data. We use tools that range
from quite classical methods like Principal Component Analysis (PCA) to modern
simulation approaches based on copulas. Second we evaluate the quality of the
simulated data by testing its similarity to the original non artificial data.

Our choices are guided by a increasing level of complexity on the multivari-
ate dependence of the data. When this dependence can be correctly described by
linear relationships we expect the PCA to detect them. Then, the uncorrelated
linear factors obtained from PCA may be better simulated by independent draws
on each factor. If the relationships between criteria were non linear, we propose to
use copula which aims at model those interactions. Basically, a copula is a func-
tion that describes a multivariate distribution in terms of the marginal univariate
distributions. We propose in this paper to use copulas to first model the interac-
tions between criteria, and then to simulate new alternatives. We automatically
learn the copula parameters from the actual dataset (used as training set) so as to
generate new simulated data sets. As far as we know, there is no other work about
the simulation of multicriteria data except a tentative using Bayesian network
presented in [2].

In the present paper, we first propose in Section 2 to detail the proposed meth-
ods, including a fully independent simulation method, simulation method using
Principal Component Analysis (PCA), and simulation method based on copulas.
In Section 3, we propose a quality analysis of the simulation results regarding the
three methods (independent sampling, PCA, copulas). Last in Section 4 we ex-
periment these methods on real datasets and show that PCA and copulas-based
simulators lead to simulated datasets of higher quality than simple independent
samples.

2 Materials and methods

We describe in this section the three frameworks we use to create simulated MCDA
data from available dataset that we describe by a matrix X with n rows and p

columns. Each column represents a criterion (variable). Each row represents an
alternative. The first method does not take into account any dependence structure
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of X and so simulate values on each criterion independently from others. While this
approach can be useful in some cases, in most real life applications the columns
of X can not be considered totally independent. Therefore, we incorporate this
element on the simulation scheme for the second and third methods.

2.1 Simulation by independent draws

The first framework uses the inverse of the classical probability integral transform,
which is a classical simulation method on univariate distributions ([10]). That is,
if a random variable, say Y , has a distribution function FY , then one can simulate
realizations of Y in two steps. First, one draws a realization u from a standard
uniform law (i.e. with support on the unit interval). Then, the realization y for Y
is obtained as y = F−1

Y (u), where

F−1
y (u) = inf{y : FY (u) ≥ y} (1)

is a generalized inverse of F (since the distribution functions are weakly monotonic
and right-continuous).

Our starting point is the set y1, . . . , yn of size n containing realisations of the
target variable with an unknown distribution function. Therefore, we estimate FY

by means of the empirical distribution function,

F̂Y (y) =
1

n

n∑
i=1

1{yi≤y}, (2)

which is, for each y a simple average of indicators. Graphically, the empirical dis-
tribution function is a stepwise function with jumps at the observed realizations
y1, . . . , yn an so inducing a restriction to the realization: only observed data points
can be obtained with the simulation. In order to relax this constraint we apply
an additional smoothing step to obtain from (2) a continuous version using inter-
polation splines. Then, one need to simulate standard uniform realizations u and
apply (1) replacing FY by the smooth version of F̂Y . Since each column is treated
independently, the simulation scheme for X follows the same steps column-wise.

2.2 Independent draws on latent factors

The independent draws approach is somewhat disappointing when applied to
MCDA framework, because the eventual dependence structure between the al-
ternatives is not taken in consideration. To overcome with this drawback one may
consider a simple transformation of the dataset X to create latent factors over
which the independent hypothesis will be more reasonable.

Principal Components Analysis is a very popular data analysis tool which al-
lows one to construct a new coordinate system to better represent a multivariate
dataset. The construction can be seen as a sequential search of a new variable (also
known as factor) that is a linear combination of the original variables (a direction)
in order to maximize the variance of the projected scatter the direction. Moreover,
the directions are taken to be orthogonal to the precedent ones which gives a new
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orthogonal coordinate system. In practice, all the directions are obtained simul-
taneously thanks to the singular value decomposition of a centred (and usually
standardized) version of X.

Actually, if the dependence structure of X is only linear, one may rely on
the principal components analysis (PCA) to extract orthogonal variables which
explain the best the variability on the data. Moreover, if X follows a multivariate
Gaussian distribution this approach would generate independent factors. Our aim
is not to push so far the independence hypothesis but to have a simple approach
that will overcome the problems mentioned before.

Concretely, we decompose X using the classical principal component analysis
to get a new matrix F with the same dimensions as X. We keep the the barycentre
and scale of the original dataset by an appropriate centring and standardization
on the columns of X. Then, we apply the independent draws approach on the
columns of F in order to get a simulated set of latent factors. Using the well known
reconstruction formula for PCA, the latent factors are used to get a simulated
centred and standardized version of X. Finally, the original barycentre and scales
are incorporated to yield on the simulated version of X.

Notice that while many matrix decomposition schemes exists, most of them can
not be used because they lack off a reconstruction formula (i.e. Independent Com-
ponents Analysis). The high computing performance of PCA gives an additional
argument for our choice.

2.3 Copulas

Simple linear relationships may not suffice to describe the dependence structure of
the criteria in MCDA. Then, copula construction may be promising alternative. In
this section we recall some basic notions about modelling dependence with copulas
(see [13] for a formal presentation of the subject).

In a nutshell a copula is a multivariate cumulative distribution function which
has all its margins uniformly distributed on the unit interval. If U1, . . . , Up; p ≥ 2
are random variables with uniform distribution in [0, 1], then a copula C : [0, 1]p 7→
[0, 1] satisfies

C(u1, . . . , up) = P (U1 ≤ u1, . . . Un ≤ up) (3)

A central result on copulas is the theorem introduced by [16] which allows one
to represent any p−variate cumulative distribution function F (x1, . . . , xp) of the
random vector x = (x1, . . . , xp) as

F (x1, . . . , xp) = C(F1(x1), . . . , Fp(xp)), (4)

where F1(x1), . . . , Fp(xp) are the univariate marginal distribution functions of the
vector x. Moreover, this representation is unique if the marginals are absolutely
continuous. A converse result is Nelsen’s corollary introduced in [13] which iden-
tifies the copula from the joint and marginal distribution

C(u1, . . . , up) = F (F−1
1 (x1), . . . , F−1

p (xp)). (5)

Intuitively, the probabilistic structure of the random vector x is the result of
coupling the marginal behaviour of the components of x by means of the copula C
which has intermediate practical implications. For example, from the observation
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of n independent and identical realizations x1, . . . ,xn of x, one can estimate the
joint multivariate distribution function F by estimating the marginals and identi-
fying one copula function among the elements of known copula families (e.g. the
elliptical or Archimedean classes among others, see [13]). If F is absolutely con-
tinuous, then we use the chain rule to write the density equivalent to equation (4)

f(x1, . . . , xp) = c(F1(x1), . . . , Fp(xp))f1(x1) . . . fp(xp) (6)

where the copula density function c is given by

c(u1, . . . , up) =
∂pC(u1, . . . , up)

∂u1, . . . , ∂up
(7)

The difficulty of this problem depends on the data dimension p. In the bivariate
case, e.g. p = 2, only one pair-copula must be estimated and many solutions have
been already proposed to do so (see for example [12, Chapter 5]). However, several
of these approaches are not feasible in higher dimension spaces.

To avoid some problems that arise on high dimension datasets, [4] propose
a pair-copula construction (PCC) in order to decompose the multivariate joint
density of x into a cascade of building blocks called pair-copula.

As before f is the joint density of x which is factorized (uniquely up to a
relabelling of the elements of x) as

f(x1, . . . , xp) = f(xp)f(xp−1|xp) . . . f(x1|x2, . . . , xp). (8)

Then, one can write each of the conditional densities on (8) using (6) recursively
which yields on this general expression for a generic element xi of x given a generic
conditioning vector v

f(xi|v) =cxi,vj |v−j
(F (xi|v−j), F (vj |v−j))

× f(xi|v−j). (9)

In last expression we use the notation vj for the j-th element of v and v−j for all
the elements of v but vj .

Vines copulas have been proposed to classify alternatives factorization of (8)
into a structured graphical model by [4]. This construction allows highly flexible
decompositions of the (possibly high) dimensional distribution of x because each
pair-copula can be chosen independently from the others. The iterative decom-
position provided by the PCC is then arranged into a set of linked trees (acyclic
connected graph). We use the scheme called D-vines, where a variable ordering is
chosen. Then on the first tree one models the dependence of each of the consecutive
pairs of variables. The following tree will model the dependence of the remaining
pairs, conditional on those that were already modelled (see [1] for a more detailed
exposition of this construction and other decomposition schemes).

Simulation of copula data (i.e. p-variate data with uniformly distributed marginals)
can be done using the probability integral transform. It is convenient to define the
h-function

h(x|v, θ) =
∂pCx,vj |v−j

(F (x|vj), F (x|v−j), |θ)
∂F (vj |v−j)

, (10)

where θ is a parameter vector associated to the decomposition level. The h-function
is the conditional distribution of x given v and we let h−1(u|v, θ) be its inverse with
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respect to u, i.e. the inverse of the cumulative conditional distribution. The sim-
ulation for the vine is as follows. First sample p uniformly distributed random
variables w1, w2, . . . , wp. Then use the probability integral transform of the corre-
sponding conditional distribution:

x1 = w1,

x2 = F−1(w2|x1),

x3 = F−1(w3|x1, x2),

. . .

xp = F−1(wp−1|x1, . . . , x−1).

At each step, the computation of the inverse conditional distribution is made
through the (inverse) h-function.

3 Numerical experiments

We propose in this section to study the influence of some factors on the simulation
quality. Several factors have been identified which can have an influence on the
simulation quality, as listed in Table 1.

Concept Notation

Size of the learning set N
Number of criteria P
Marginal distribution of each criterion D
Intensity of the correlation between criteria R2

Linearity of the correlation between variables L
Monotonicity of the functional link between variables M

Table 1: List of influential factors on simulation quality

All the experiments are implemented in R. Code for the data generators and
the simulation schemes are available in github.com/cugliari/simuMCDA.

3.1 Generating random learning sets

Let F = {N,P,D,R2, L,M} be the set of identified factors and Fn,p,d,r,l,m be a
situation where factor N is fixed to value n, factor P to value p and so on. In
order to measure the influence of each factors we propose a experiment protocol
as follows:

1. for each Fn,p,d,r,l,m, generate randomly 30 sets of initial data Ii via the use of a
Cholevsky matrix (to control r) and post-treatment to obtain l,m,d as needed.

2. for each set Ii, do 30 data simulations using the three methods introduced
in Section 2. For each simulation, compute the p-value of a goodness-of-fit
multivariate test. We use the empirical goodness-of-fit test proposed by [17] —
see in Section 3.2 for details.

https://github.com/cugliari/simuMCDA
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3. save the distribution of the 900 p-values for each Fn,p,d,r,l,m.

As developed below, we tested 5 different values for N , 10 different values for
R, 3 different values for L, 2 different values for M and only one for D (uniform
distribution) and for p (p = 4):

– Size of the learning set N : Intuitively, the bigger the learning set, the better
the simulation will be. As our study particularly focus on small datasets,we
decide to test our simulators for N = 20, 30, 40, 50 and 100 data in the learning
set.

– Number of criteria P : the more criteria are used, the more difficult it will be
to capture the links between all the different pairs (or subset) of criteria. A
previous study presented by [8] showed that for a number of criteria between
3 and 6 there is no significant difference between the simulated data quality.
On another hand, the tests we made with P = 6 showed that the computing
time greatly increases with P . Therefore we decide to focus only on the case
P = 4. Examples with more than 4 criteria are presented in section 4.1.2.

– The marginal distributions on the criteria: the use of the Cholevsky matrix
to generate a dataset with a controlled determination degree leads to normal
marginal distributions for the criteria. A post-treatment based on the rank of
each criterion value turned the marginal distribution of each criterion into an
uniform marginal distribution.

– Intensity of the correlation between criteria R2: we measure the intensity of
the correlation through the determination coefficient R2 between two criteria.
We test our simulators with R2 varying from 0.5 to 0.95 by step of 0.05.

– The linearity of the correlation between variables L: as said above, simple lin-
ear relationships may not suffice to describe the dependence structure of the
alternatives in MCDA. In order to represent functional but not linear depen-
dencies between criteria, we make a post-treatment on 2 of the criteria. For
each initial randomly generated set, we apply exponential function on crite-
rion #3 and logarithm function on criterion #4. We therefore have in the same
dataset linear (between criteria #1 and #2), exponential (between criteria #1
and #3) and logarithmic (between criteria #1 and #4) dependencies.

– The monotonicity of the correlation between variables indicates that on some
situations MCDA data are not linked by a monotonic function. We simulate
this by applying a post-treatment on the criterion #2 which turns the mono-
tonic correlation of criteria #1 and #2 (“cigar” shape) into a non-monotonic
correlation (“banana” shape). Examples of such simulations are shown in Fig-
ures 1a and 1b.

An example of a simulated learning set is shown in Figure 2.

3.2 Quality index

We state that data are correctly simulated if it is not possible to distinguish the
real data and the simulated ones. So we need a tool that is able to distinguish
two different distributions, such as a statistical multivariate goodness-of-fit test.
But as pointed out by [11], non-parametric goodness-of-fit test that can be used in
practice is something very hard to find. We then choose to use the goodness-of-fit
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(a) Data simulation with cigar shape (b) Data simulation with banana shape

Fig. 1: Example of “banana” and “cigar” data set

Fig. 2: Example of a simulated learning set

test proposed by [17], based on a geometric approach, and implemented in R. The
null hypothesis H0 is “the two multivariate distributions are the same”, versus
hypothesis H1 “the two multivariate distributions are different”. The test returns
a p-value: if this p-value is less than a fixed threshold, then the difference between
the two distribution is said to be statistically significant, and then the simulated
data cannot be considered to have the same distribution as the real ones. The
p-value can be seen as a quality index: the greater the p-value, the greater the
simulation quality. Of course the p-value will change for each simulated data set.
Therefore, as presented in Section 3.1, we study the result of 900 simulations via the
boxplot of all the p-values. It is important to notice that the geometrical approach
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on which the test is based supposes that all the variables are homogeneous. On
the contrary, the geometrical distance has no sense.

Fig. 3: Example of a quality boxplot

On Figure 3, one can observe that real and simulated data can easily be con-
fused, as more than 75% of the simulated data sets have a p-value greater than 0.5
for the confusion test (remember that generally the threshold to reject H0, equal
distribution hypothesis, is a p-value less than 0.05). Other comparison processes
have been studied. Especially, we tried to use supervised and unsupervised classifi-
cation methods to determine whether real and simulated data can be distinguished
using machine learning. However, these methods (SVM, k-means, random forest)
did not managed to separate real and simulated data when the data have the same
margin distribution, which is always the case here by construction.

3.3 Factors influence analysis

We present in this section an analysis of the influence of each identified factor in
Section 3.1. Each analysis is based on the boxplot of the p-values of the goodness-
to-fit test. Remember that the higher the p-values, the better the simulation qual-
ity.

3.3.1 Size of the learning set N

In figure ?? is shown the influence of the learning set size (the number of data
in the learning set) on the quality of the simulation. One can see that for the
independence method the quality of the simulation greatly decrease with respect
to the learning set size. For PCA-based method the decreasing is less important.
And a quasi-stability is observed for copula-based method which appears to be
non-dependent to the learning set size.

3.3.2 Intensity of the correlation between criteria R2

In figure 4 is shown the influence of the correlation intensity on the quality of
the simulation. One can see that for all the three methods the quality of the
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Fig. 4: Learning set size influence

simulation decreases with the increase of the correlation degree. The decrease is
big in the case of the independent method, and less in the case of the PCA based
and copula based methods. However this analysis should go deeper when linked
with the dataset shape (banana or cigar).

Fig. 5: Correlation intensity influence

3.3.3 Monotonicity of the correlation between variables M

As shown in Figure ??, the impact of dataset shape is different for each method.
For the independence method, the simulation quality is generally bad, but is a
little bit better in the case of a “banana” dataset than a “cigar” dataset. It is the
contrary for PCA and copula based methods, where simulations are globally good,
and better in case of “cigar” shape than “banana” shape. We can see that when
the correlation is strong with “banana” shape, both PCA and copula methods
hardly detect the specific shape, and consequently are unable to well simulate
these dataset. On Figure 5 we can see that the size has also a joint effect with the
shape of the initial dataset. For a correlation intensity fixed at 0.9, the learning set
size has clearly an influence on the ability of the copula method to well simulate
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new data. When the learning set is too small with a “banana” shape, the dataset
is not so different than a non-structured dataset and even the independent method
produces simulations not so different than the initial dataset. When the structure
is strong (100 items in the initial dataset and correlation index at 0.9), it is obvious
that even the copula method simulates the specific structure of the dataset with
difficulties.

Fig. 6: Shape and correlation intensity influence

3.4 General conclusion: copula wins

As stated above, we can say that the copula method is better than the PCA
method, which is better than the independent method. Results are better for
“cigar” shape than for “banana” shape, and for “cigar” shape it is better to have
more data in the learning set. The results of this small study should encourage all
the practitioners to use a more accurate simulation process than just independent
method. However, the computing time needed to use copula method can be a
difficulty as it is significantly greater than the computing time needed by the
two other methods. An example presented in Table 2 using data from the dataset
detailed in Section 4.1.2 shows how the computing time increases with the number
of criteria, for 88 alternatives.
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Fig. 7: Shape and data number influence

Nb. of criteria (p) indep indepPCA copula

4 0.33 0.41 3.64
5 0.38 0.50 9.59
6 0.45 0.64 16.83
8 0.64 0.81 81.86
10 0.63 0.99 233.82
12 0.69 1.21 352.43
15 0.74 1.21 570.22
19 0.81 1.31 915.76

Table 2: Average computing time (in seconds) of the different simulation methods
for 88 individuals (n) and criteria number (p) from 4 to 19.

4 Application on real datasets

4.1 Multicriteria dataset

4.1.1 Simulation on small datasets

We propose in this section to test the three different methods on some real datasets
from the literature. The first one, proposed in [5], has 29 observations and 4 vari-
ables. The variables are almost independent and have the same scale, between
0 and 100. The second one was proposed in [7] and has 27 observations for 4
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variables. The correlation coefficient between variables are around 0.7 and the
variables have the same scale, between 0 and 100. For each dataset, we produced
1000 simulated datasets and then we draw the p-value boxplot as before. Results
are shown in Figures 6.

As a result, we can observe that the PCA sample method seems to produce
more accurate simulated data, even if the copula sample method leads also to
good quality simulated data. For the first dataset, the three different methods
are similar, even if the independent sample method does not produce the same
quality datasets as the two others. It seems that even if no correlation is observed
between the variables in the initial dataset, PCA and copulas sample methods are
able to catch a small dependent link and therefore lead to more accurate data
generation. For the second data set, it is very clear that the independent sampling
method is not efficient: this case shows that most of the sampling produced by
the independent methods can be distinguished from the initial dataset, whereas
those produced with the copula sampling method, or even better with the PCA
sampling method, can be considered as similar to the initial dataset.

These two examples give a good illustration that taking into account depen-
dencies between variables (even if there are not obvious) leads to better simulated
data than just independent sampling method. However, it is a surprise for us that
on these examples PCA sampling method seems to produce better results than
copula-based method.

Fig. 8: Two real datasets

4.1.2 Simulation of french departments

France is administratively and geographically divided into about 100 different de-
partments; The national statistical institute INSEE published on december 2016
a sustainable development-oriented portrait of the departments including 19 cri-
teria1. A quick analysis shows that departments around Paris have a very specific
profile. We then focused on the 88 other departments. Our question is “can we sim-
ulate new departments which have the same profile as existing one”? We present

1 see https://www.insee.fr/fr/statistiques/2512993

https://www.insee.fr/fr/statistiques/2512993
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in the following two different simulations with different numbers of criteria. As a
set with 19 criteria needs a very long computing time to be simulated, especially
with the copula methods, we propose to first compute simulations with a subset
of 8 criteria having an average determination coefficient of 0.23 between each oth-
ers has been computed (300 simulations). The results are shown in Figure 7. It
is obvious that both PCA and copula based methods lead to good simulations
whereas independent sampling leads to bad simulated sets. Moreover, the copula
method gives information about the structure of the initial dataset. For example
with the departments dataset on 8 criteria, the vine-copulas say that criteria C1
and C2 are linked by a Gaussian copula; this is coherent with the signification of
C1 and C2, respectively life expectancy for men and women, which are strongly
correlated. The vine-copula also says that C5 is linked with C4 through a Stu-
dent copula, and with C6 with a Gumbel copula; this is also coherent as C4 is
the poverty ratio, C5 the percentage of youth without employment, and C6 the
part of population far from the basic health services, all criteria which characterize
rural areas. As a third example, C7 is not copula-linked to other criteria which
is also coherent as C7 represents the percentage of flood-prone area, which have
no link with the other criteria. Therefore, PCA and copula based methods appear
to succeed in modelling the correlation between criteria in a plausible way. An
example of simulated department dataset with PCA and copula methods is shown
in Figure 8. Please notice that, as pointed out in Section 3.2 the goodness-of-fit
test is applied on scaled data, as the 19 criteria have very different scales, from a
proportion between 0 and 1 to a number of inhabitants in millions.

The complete departments dataset includes 19 criteria. Most of the pairs of two
criteria have no specific correlation. Only 18 pairs have a determination coefficient
greater than 0.3, and only 6 greater than 0.5. We also tried to compute 300 new
datasets simulations. The results are shown in figure 7. Again, PCA and copula
based methods appear to succeed in modelling the data structure and producing
new and plausible departments.

5 Discussion

We explored three strategies to simulate MCDA datasets from existing ones. Using
artificially generated datasets to simulate new ones we have showed that:

– while computationally the fastest, statistically independent criteria simulation
(indep) is in general a very poor strategy when used alone;

– statistically independent draws may be used after preprocessing the original
dataset to obtain uncorrelated factors, for example with PCA;

– PCA preprocessing may distortion the dependence structure if it cannot be
properly described by linear relationships, then the copula based strategy out-
performs indepPCA

– the copula based simulation strategy is the slowest one and may be computa-
tionally prohibitive if the number of criteria is too large;

– on moderate and large dataset sizes with a not too big number of criteria,
copula based simulation success to better capture the dependence structure.

In view of these conclusions we suggest the following practical considerations
when simulate MCDA datasets:
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Fig. 9: Departments: first figure with 8 criteria, second one with 19 criteria

1. avoid using independent draws on criteria;
2. if the dependence structure is mostly linear, use PCA based simulation. As-

sessing whether linear dependence is a reasonable hypothesis may be done with
the inspection of the singular values of the spectral decomposition of X. If they
rapidly decay to zero then factors will capture most of the richness of X;

3. for non linear dependence structure use copula based simulation. However,
attention must be paid to the number of alternatives (n should be large enough,
say at least 20) and the number of criteria (p should be not too large, say below
20). Since this setting of non linear dependence structure, relatively moderate
number of alternatives and relatively small number of criteria is the most
common in MCDA, the copula based simulation strategy should be frequently
used.
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