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Abstract. Several methods have been proposed in the past decades
to deal with Multicriteria Decision Aiding (MCDA) problems. Even
if the axiomatic foundations of these methods are generally well-
known, comparing the different methods or simply analysing the re-
sults produced by the methods on real-life problems is arduous as
there is a lack of benchmark MCDA datasets in the literature. A
solution is therefore to simulate new MCDA dataset examples. But
the analysis of real-world examples show that one must deal with
data that are lightly linked, and then it is important to take into ac-
count dependency between variables when simulating new datasets.
We propose in this paper three different approaches to simulate new
data based on existing small datasets. We describe these methods,
we propose a quality analysis of the results, and we experiment the
methods on different examples from the literature.

1 Introduction
There is in Multicriteria Decision Aiding (MCDA) a great number of
very specific methods to be proposed, with multiple variants. Testing
these methods on several situations, using real datasets, should im-
prove our understanding of advantages and inconveniences of each
method, even if an axiomatic analysis has been done. But sometimes
in real-world cases, only very few data are available; for example,
from an preference learning point of view, the dataset should be so
limited that it is too small to be divided into a test subset and a valida-
tion subset. Researchers should also desire to have more data to test
the proposed methods. Therefore, as already pointed out in [4], there
is a need of simulated multicriteria datasets to be used by the MCDA
community, either for benchmarking or just to improve the under-
standing of each method. This paper deals with the simulated datasets
issue for MCDA. Our goal is to propose one or several method to
simulate new multicriteria data from an existing dataset. Simulated
data should be as similar as possible to the initial dataset. Therefore,
the proposed methods are supposed to be able to capture the specific
structure of the initial dataset (if any), and then generate new data on
demand.

Good practices in MCDA point out the fact, among others, that
values on criteria should be as statistically independent as possible.
Please note that this statistical independence is not the preference in-
dependence between criteria (see [7]). It just means that the values
taken on different criteria should not be correlated (linearly or not) to
avoid redundancy. Each time we mention independence in this paper
will refer to statistical indepenence. ut in real life the values taken
by an alternative on different criteria are generally not totally inde-
pendent. Therefore, multicriteria data cannot be well simulated using
only statistical independent sampling on each variable. The problem
is then to model the correlation between criteria in a plausible way.
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In [4] we introduced a statistical approach to overcome this diffi-
culty using copulas. In the present paper, we first propose in sec-
tion 2 a new simulation method using Principal Component Analysis
(PCA), and we present also the simulation method based on copulas.
In section 3, we propose a quality analysis of the simulation results
regarding the three methods (copulas, PCA and independent sam-
pling). Last we experiment these methods on real datasets and show
that PCA and copulas-based simulators lead to simulated datasets of
higher quality than simple independent samples.

2 Generating methods
We describe in this section the three frameworks we use to create
simulated MCDA data from available dataset that we describe by a
matrix X with n rows and p columns. Each column represent an cri-
terion (variable). Each row represent an alternative. The first method
does not take into account any dependence structure of X and so
simulate values on each criterion independently from others. While
this approach can be useful in some case, in real life applications the
columns of X can not be considered totally independent. Therefore,
we incorporate this element on the simulation scheme for the second
an third method.

2.1 Simulation by independent draws
The first framework uses the inverse of the classical probability inte-
gral transform. That is, if a random variable say Y has a distribution
function FY , then one can simulate realizations of Y in two steps.
First, one draws a realization u from a standard uniform law (i.e.
with support on the unit interval). Then, the realization y for Y are
obtained by doing y = F−1

Y (u), where

F−1
y (u) = inf{y : FY (u) ≥ y} (1)

is a generalized inverse of F (since the distribution functions are
weakly monotonic and right-continuous).

Our starting point is the set y1, . . . , yn of size n containing reali-
sations of the target variable with an unknown distribution function.
Therefore, we estimate Fy by means of the empirical distribution
function,

F̂Y (y) =
1

n

n∑
i=1

1{yi≤y}, (2)

which is, for each y a simple average of indicators. Graphically, the
empirical distribution function is a stepwise function with jumps at
the observed realizations y1, . . . , yn an so inducing a restriction to
the realization : only observed data points can be obtained with the
simulation. In order to relax this constraint we apply a additional
smoothing step to obtain from (2) a continuous version using inter-
polation splines. Then, one need to simulate standard uniform real-
izations u and apply (1) replacing FY by F̂Y .



2.2 Independent draws on latent factors
The independent draws approach is somewhat disappointing when
applied to MCDA framework, because the dependence between the
alternatives is not considered. In order to overcome with this draw-
back one may consider a simple transformation of the dataset X to
create latent factors over which the independent hypothesis will be
more reasonable. Actually, if the dependence structure of X is only
linear, one may rely on the principal components analysis to extract
orthogonal variables which explain the best the variability on the
data. Moreover, if X followed a gaussian distribution this approach
would generate independent factors. Our aim is not to push so far
the hypothesis but to have a simple approach that will overcome the
problems mentioned before.

Concretely, we decomposeX using the classical principal compo-
nent analysis to get a new matrix F. We keep the the barycentre and
scale of the original dataset by an appropriate centring and standard-
ization on the columns of X.

Then, we apply the independent draw approach on the columns
of F in order to get a simulated set of latent factors. Using the well
known reconstruction formula for PCA, the latent factors are used
to get a simulated centred and standardized version of X . Finally,
the original barycentre and scales are incorporated to yield on the
simulated version of X.

Notice that while many matrix decomposition schemes exists,
most of them can not be used because they lack off a reconstruction
formula (i.e. Independent Components Analysis).

2.3 Simulation through copula
Simulation through copula on the MCDA framework has been re-
cently proposed by [4]. Following the reference, we describe briefly
the procedure without given the technical details.

In a nutshell a copula is a multivariate cumulative distribution
function which has all its margins uniformly distributed on the unit
interval (see [6] for a more formal presentation of the subject). In-
tuitively, a probabilistic multivariate structure can then be viewed as
the coupling of the marginal behaviour by means of a copula C.

The pair-copula construction has been proposed to avoid some
problems that arise on high dimension datasets (large p). Then the
multivariate joint density ofX is decomposed into a cascade of build-
ing blocks called pair-copula. Let f be the joint density of X which
is factorized (uniquely up to a relabelling of the elements of X) as

f(y1, . . . , yn) = f(yp)f(yp−1|yn) . . . f(y1|y2, . . . , yp). (3)

Then, one can write each of the conditional densities on (3) using
the copula recursively which yields on this general expression for a
generic element yi of X given a generic conditioning vector v

f(yi|v) =cyi,vj |v−j
(F (yi|v−j), F (vj |v−j))

× f(yi|v−j). (4)

In last expression we use the notation vj for the j-th element of v
and v−j for all the elements of v but vj .

Vines copulas have been proposed to classify alternatives factor-
izations into a structured graphical model. This construction allows
highly flexible decompositions of the (possibly high) dimensional
distribution of X because each pair-copula can be chosen indepen-
dently from the others. The iterative decomposition provided by the
pair-copula construction is then arranged into a set of linked trees
(acyclic connected graph). Two special schemes are usually used:

C-vines (canonical vines) and D-vines. In the former one, a depen-
dent variable is identified and chosen to be the root of the tree. In
the following tree, the dependence will be computed conditional on
this first variable and so on. In the latter scheme, a variable ordering
is chosen. Then on the first tree one models the dependence of each
of the consecutive pairs of variables. The following tree will model
the dependence of the remaining pairs, conditional on the those that
were already modelled.

Simulation of copula data (i.e. n-variate data with uniformly dis-
tributed marginals) can be done using the probability integral trans-
form. It is convenient to define the h-function

h(y|v, θ) =
∂dCy,vj |v−j

(F (y|vj), F (y|v−j), |θ)
∂F (vj |v−j)

, (5)

where θ is a parameter vector associated to the decomposition level.
The h-function is the conditional distribution of x given v and we
let h−1(u|v, θ) be its inverse with respect to u, i.e. the inverse of
the cumulative conditional distribution. The simulation for the vine
is as follows. First sample n uniformly distributed random variables
w1, w2, . . . , wn. Then use the probability integral transform of the
corresponding conditional distribution:

y1 = w1,

y2 = F−1(w2|y1),

y3 = F−1(w3|y1, y2),
. . .

yp = F−1(wn−1|y1, . . . , yp−1).

At each step, the computation of the inverse conditional distribution
is made through the (inverse) h-function.

3 Experiments
3.1 Experiment process
We present in this section the testing process of our experiments.
Our goal is to compare the results of simulating data using the three
different methods previously stated. For this purpose, we first need
to state a quality index of the simulation data.

3.1.1 Quality index

We state that data are correctly simulated if it is not possible to dis-
tinguish the real data and the simulated ones. So we need a tool that
is able to distinguish two different distributions, such as a statisti-
cal multivariate goodness-of-fit test. But as pointed out by McAssey
[5], non-parametric goodness-of-fit test that can be used in practice
is something very hard to find. We then choose to use the goodness-
of-fit test proposed by Szkely and Rizzo [8], based on a geometric
approach, and implemented in R. The null hypothesis H0 is “the two
multivariate distributions are the same”, versus hypothesis H1 “the
two multivariate distributions are the different”. The test returns a p-
value : if this p-value is less than a fixed threshold, then the difference
between the two distribution is said to be statistically significant, and
then the simulated data cannot be considered to have the same distri-
bution as the real ones. The p-value can be seen as a quality index :
the greater the p-value, the greater the simulation quality. Of course
the p-value will change for each simulated data set. Therefore, the
following testing process has been established to compare the differ-
ent simulation methods:



1. for each real data set, for each simulation method, simulate n new
data sets;

2. for each simulated data set, compute the p-value of the goodness-
of-fit test comparing real and simulated data sets;

3. plot the boxplot of all the p-values.

Figure 1: Example of a quality boxplot

On Figure 1, one can observe that real and simulated data can eas-
ily be confused, as more than 75% of the simulated data sets have a p-
value greater than 0.5 for the confusion test (remember that generally
the threshold to reject H0, equal distribution hypothesis, is a p-value
less than 0.05). Other comparison processes have been studied. Es-
pecially, we tried to use supervised and unsupervised classification
methods to determine whether real and simulated data can be dis-
tinguished using machine learning. However, these methods (SVM,
k-means, random forest) did not managed to separate real and simu-
lated data when the data have the same margin distribution, which is
always the case here by construction.

3.1.2 Comparing different generating processes

In the following, we will use boxplots like the one presented in Fig-
ure 1 to compare different simulation processes. If the distribution
of p-values obtained by method A is higher than the distribution of
p-values obtained by method B, it means that method A gives better
simulations than method B, as it should be more difficult to reject
the equal distribution hypothesis in case A than in case B. We will
compare the three different methods proposed in section 2: “indep”
corresponds to independent variables samples, “PCA” corresponds to
independent variables samples on the different PCA axes, and “cop-
ula” uses copula to learn the links between variables.

3.1.3 Influence factors

Different factors can have an influence on the quality of the data sim-
ulation:

1. the number of variables
2. the size of the learning set
3. the strength of the link between variables

The effect of each of these factors will be tested independently. The
testing process is the following:

1. for each value of the tested variable, generate 30 different datasets
using a multivariate normal distribution with a specified correla-
tion coefficient between the variable (through the Cholewsky ma-
trix). Then exponential (for one variable) and log (for another vari-

able) transformations are used to produce a dataset with a non-
linear controlled link between variables. These are the reference
datasets.

2. for each reference data set, generate 30 simulated datasets (of the
same size that the reference dataset) with each simulation method.

3. Compute the p-value of the goodness-of-fit test comparing refer-
ence and simulated datasets.

4. For each method, there is 900 p-values obtained in the same con-
ditions (same number of variables, same size of the learning set,
same correlation degree between variables). Then plot the boxplot
of the obtained p-values.

3.2 Experiment results

3.2.1 Number of variables

We choose to test the effect of the number of variables on the simu-
lation process by varying the number of variables between 3 and 6.
The other parameters are unchanged and have been fixed at 30 for the
size of the reference datasets, and 0.5 for the correlation coefficient
between criteria. The results are shown in Figure 2. One can see that
the effect of changing the number of variables is pretty null, as the
four boxplots are very similar. The three methods have almost the
same performance whatever the number of variables is.

3.2.2 Size of the learning set

We choose to test the effect of the learning set size on the simulation
process by varying the learning set size between 20 and 50 items.
The other parameters are unchanged and have been fixed at 4 for the
number of variables, and 0.5 for the correlation coefficient between
criteria. The results are shown in Figure 3. One can see that the ef-
fect of changing the size of the learning set is different for the three
methods. The effect is null for the copula method. The effect is small
for the PCA method and more important for the independent method
: results are worse with an increase of the size of the learning set,
certainly because an increase of the size of the datasets has a direct
effect on the power of the test, i.e. the capacity if the test to rejectH0

when H0 is false.

3.2.3 Variables correlations

We choose to test the effect of the correlation degree on the sim-
ulation process by varying the correlation degree between 0.1 and
0.9s. The other parameters are unchanged and have been fixed at 4
for the number of variables, and 30 for the size of the learning set.
The results are shown in Figure 4. One can observe the differences
between the three methods with the correlation degree between the
variables. Just remember that a post-treatment has been done to mod-
ify the data in order to have a functional (but not linear) link between
the variables. The results are very interesting: one can easily see that
the three methods have also the same results when the correlation de-
gree is weak, but when the correlation degree is strong, the simulation
method based on copula is able to capture the link between variables.
The PCA method is also able to capture this link, less powerful in the
case of non-linear link. The independent method, as guessed, does
not simulate data similar to the initial ones when there is a correla-
tion between variables. Therefore, it is clear on the Figure 4 that the
simulation method based on PAC or copula produces simulated data
that are more similar to a set of initial data than independent samples.



Figure 2: Variation of the quality plots with the number of variables – number of variables=3, 4, 5, 6

Figure 3: Variation of the quality plots with the size of the learning set – number of learning items= 20, 30, 40, 50



Figure 4: Variation of the quality plots with the correlation degree – cor. coef= 0.2, 0.4, 0.6, 0.8

3.3 Results on real datasets

We propose in this section to test the three different methods on some
real datasets from the literature. The first one, proposed in [1], has
4 variables and 29 observations. The variables are almost indepen-
dent. The second one is introduced in [2], and has 14 observations
for 5 criteria. The correlation index between variables are around 0.3
The last one was proposed in [3] and has 27 observations for 4 vari-
ables. The correlation coefficient between variables are around 0.7.
For each dataset, we produced 500 simulated datasets and then we
draw the p-value boxplot as before. Results are shown in Figures 5a,
5b and 5c.

As a result, we can observe that the PCA sample method seems
to produce more accurate simulated data, even if the copula sam-
ple method leads also to good quality simulated data. For the first
dataset, the three different methods are similar, even if the indepen-
dent sample method do not produce the same quality datasets as the
two others. It seems that even if no correlation is observed between
the variables in the initial dataset, PCA and copulas sample methods
are able to catch a small dependent link and therefore lead to more
accurate data generation. For the second data set also the three meth-
ods seems to produce sampling data very close to the initial ones.
PCA sampling method seems also in this case be the best method,
i.e. the method that produces new data that are impossible to dis-
criminate from the initial ones via a goodness-of-fit test. The third
case is different, as it is very clear in this case that the independent
sampling method is not efficient : Figure 5c shows that most of the
sampling produced by the independent methods can be distinguished
from the initial dataset, whereas those produced with the copula sam-
pling method, or even better with the PCA sampling method, can be
considered as similar to the initial dataset.

These three examples give a good illustration that taking into ac-
count dependencies between variables (even if there are not obvi-
ous) leads to better simulated data than just independent sampling
method. However, it is a surprise for us that on these three examples
PCA sampling method seems to produce better results than copula-
based method.

4 Conclusion
We proposed two different ways to improve the simulation quality of
generated datasets for Multicriteria Decision Process. Both copulas
and PCA methods lead to simulated datasets that are more accurate
than pure independent samples. Copula method seems to have bet-
ter results within controlled environment, whereas on the 3 “real”
tested datasets PCA method seems to produce better results. How-
ever, we strongly encourage practitioners to use one of these two
methods to extend the datasets they’re working on and then generate
new datasets to test the proposed decision process.
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(a) Case 1: Botreau and Rolland

(b) Case 2: Bouyssou et al.

(c) Case 3: Briggs et al.

Figure 5: Real datasets


