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Abstract. In machine learning, the multiple classifiers aggregation
problems consist in using multiple classifiers to enhance the qual-
ity of a single classifier. Simple classifiers as mean or majority rules
are already used, but the aggregation methods used in voting theory
or multi-criteria decision making should increase the quality of the
obtained results. Meanwhile, these methods should lead to better in-
terpretable results for a human decision-maker. We present here the
results of a first experiment based on the use of Choquet integral, de-
cisive sets and rough sets based methods on four different datasets.

1 Introduction

A classification problem consists in affecting an individual to a pre-
defined category (or class) from its description via some variables.
A classifier or model is a mapping function giving a unique class
to each individual. In supervised classification, this function is built
from a set of examples thanks to learning method. A large amount
of different supervised learning algorithms are used, as indicated for
example in [1]. It is then common to have, for a given situation, sev-
eral results given by several classifiers. These classifiers can be based
on the use of very different methods, or can use the same method
with variations on leaning set. Using these information to enhance
the quality of the classification is the purpose of the multiple classi-
fier aggregation problem. Several methods already exist to solve the
multiple classifier aggregation problem (see [11] and [12] for a sur-
vey). We propose here new aggregation procedures inspired by some
aggregation methods developed in the framework of multi-criteria
decision making and social choice theory. In section 2, we present
the multiple classifier aggregation problem and stand the needed no-
tations. In section 3 we briefly present some aggregation procedures
based on the use of set functions and their applications in our frame-
work; then in section 4 we present the implementations and tests of
these methods and propose an analysis of the results.

2 Multiple classifier aggregation

2.1 Multiple classifier

It is well known that there exists no perfect classifier neither univer-
sal classifier : each classifier makes mistakes, and each classification
algorithm is really performing only on specific situations. So in or-
der to reduce the errors number, it should be interesting to mix the
results of several classifiers. Given a specific classifier, we can in-
crease its performances by adding one or several other classifiers.
These new classifiers should be as independent as possible from the

first one to be able to ‘correct” its errors. It is the case for example in
the boosting method where classifiers are built to obtain a maximum
diversity [15]. But the new classifiers should also be intrinsicaly per-
formant, although they will degrade the general performance. On the
other hand, if the first classifier is still good, many other good clas-
sifiers will be strongly related to the first one : it should be difficult
to find another good classifier independent from the first one. There-
fore, adding a new classifier will not give much more information to
the decision maker. So two mains properties have to be considered
for selecting and aggregating classifiers: the quality of each classifier
and the diversity into the set of classifiers. Mean rules and major-
ity rules are very dependent of the quality of the added classifier for
one hand, and of the independence between classifiers on the other
hand (see [14] for a theoretical study). We investigate in this paper
some other aggregation procedures which should manage less quality
and/or dependent classifiers.

2.2 Aggregation procedures
There already exist several aggregation procedures for the multi-
classifier problem [11]. Two of them are considered as reference
procedures, due to their use facility, and the fact that they are eas-
ily understandable :

• the majority rule : the allocated class for an individual is the class
chosen by a majority of classifiers.

• the mean rule : the allocated class for an individual is obtained by
a cutting level applied on the mean of the different labels given by
each classifiers.

In this paper, we present new aggregation procedures which aim
at enhancing the quality of these two procedures. The general idea
is that a multiple classifiers aggregation procedure can be seen as a
particular case of either a voting procedure, or a multi-criteria aggre-
gation rule, as seen below :

• suppose that each classifier is a voter, who can vote for or against
allocating x in class a. Then the aggregation of classifiers problem
can be seen as a voting procedure.

• suppose that each classifier is giving a score related to the strength
of its conviction that individual x should be affected to class 1.
This score can be seen as a value taken by a criterion related to
the considered classifier. Then the multiple classifiers aggregation
can be seen as a multi-criteria aggregation problem.

The field of multi-criteria aggregation procedure or voting pro-
cedure has been well studied in the past decades, and several ap-



proaches and methods are available solve these aggregation prob-
lems in social choice theory or multi-criteria decision aiding theory
( see [2] for a review). We will focus here on a few a them, based on
the same basic tool which is the use of set functions to represent the
importance of each coalition of voters (resp. criteria).

2.3 Notations
We first establish the needed notations to have a formal representa-
tion of our framework. We define formally a classifier aggregation
problem as a problem which consists in aggregating the informa-
tion given by m classifiers on a individual ω in order to sort him
into a pre-defined class. We note here Ω the set of n individuals
{ω1, . . . , ωn} to be classified. Each individual ωi is described by
a set of q predictor variables Xj ∈ R, j = 1, . . . , q and a class of
membership Y ∈ {0, 1}. By convention for the ith individual ωi we
denote Yi its class andXi = (X1

i , . . . , X
q
i ) ∈ Rq its representation.

A single classifier φ is a mapping :

φ : Rq → [0, 1]
X 7→ φ(X) = p

The result φ(X) is said to be a label according to X by the clas-
sifier φ. It can be seen as a score (probability, possibility...) for indi-
vidual ω represented by X to belong to class 1.

According to this classifier, the chosen class should be obtained
by a cutting level α :

c(X) = 1 if φ(X) > α

Let P = {φ1, . . . , φm} be a set of m classifiers. An individual X
can then be described by a vector of labels given by each classifiers
px = (p1, . . . , pj , . . . , pm), or by a vector of chosen class affected
by each classifier cx = (c1, . . . , cj , . . . , cm).

The multiple classifier aggregation problem consists in aggregat-
ing the m outputs of the m classifiers to get a unique chosen class
C.

An multi-classifier aggregation function Φ is a mapping :

Φ : [0, 1]m → {0, 1}
{φi(X)} 7→ Φ(X) = C

As cj(X) ∈ {0, 1} ∀φ ∈ P also, the multi-classifier aggregation
function Φ can also takes a vector cx as argument.

2.4 General framework
We focus here on aggregation problems with a few number of dif-
ferent classifiers (typically less than 10 classifiers). The input of the
aggregation procedure is a vector px = (p1, . . . , pm) ∈ [0, 1]m of
labels or a vector cx = (c1, . . . , cm) ∈ {0, 1}m of classes. The
result is a unique chosen class CX .

A classifier gives for each individual a class which can be wrong
or right, as soon as the real class Y of the individual is known. Let us
recall that four situations can happen with a classifier. The following
table stands the different sets cardinals for each possibility :

real class
obtained class a b
a naa nab
b nba nbb

The quality of a classifier can be measured by several indicts.

• success ratio, denoted su.

su =
naa + nbb

n

The success ratio is the ratio of the number of well-affected indi-
viduals divided by the total number of individuals. It measures the
ability of the classifier to well classify the individuals, whatever
their class should be.

• precision ratio for the class a, denoted pra.

pra =
naa

naa + nab

The precision ratio is the number of well-affected individuals
of class a on the total number of individuals affected by the
procedure to the class a. It measures the ability of the classifier
to well reject the individuals which are not supposed to belong to
the class a.

• callback ratio for the class a, denoted cra :

cra =
naa

(naa + nba)

The callback ratio is the ratio of the number of well-affected indi-
viduals of class a divided the total number of individuals of class
a. It measures the ability of the classifier to well detect the indi-
viduals of class a : it is an asymmetric ratio, which is rather used
in the field of statistic tests, or disease detection.

3 Set functions approaches
As mentioned in section 2.2, the multi-classifier aggregation problem
has strong formal links with the preference aggregation problem in
social choice theory or multi-criteria decision making. Considering
each classifier as a voter, we wonder if there exist some coalitions
(sets of classifiers) such that if all the classifiers of a coalition agree
on class a for individual ω then the aggregation result of Φ(X) is
class a. We would like to represent the existence of such coalitions
through set functions, roughly giving to each subset of P a weight
corresponding to its power as a coalition. We present in this paper
three methods based on a decisive sets concept.

3.1 Capacity and Choquet Integral
3.1.1 Definition

One of the limits of the use of the weighted mean as an aggregation
function is that it is unable to take into account synergy possibly
happening between criteria to aggregate. A Choquet integral (see [5],
[13] for a complete presentation) can then be seen as a non-additive
generalization of the weighted mean. It is based on the use of a non-
additive set function named capacity :

Definition 1. Let N be a set of objects and µ = card(N). A ca-
pacity v : 2N → R+ is a set function such that v(∅) = 0, and
A ⊆ B ⊆ N implies that v(A) ≤ v(B). A capacity is said to be
normalized iff v(N) = 1.

Formally, a Choquet integral is a function C from [0, 1]µ into [0, 1]
such that, ∀x = (x1, . . . , xµ) ∈ [0, 1]µ:

C(x) =

µ∑
i=1

xσ(i)(v(Aσ(i))− v(Aσ(i−1)))

where



• σ is a permutation on {1, . . . , µ} such that σ(1) ≤ σ(2) ≤ . . . ≤
σ(µ)

• v is a capacity on the set {1, . . . , µ}.
• Aσ(i) = {σ(i), σ(i+ 1), . . . , σ(µ)}

The Choquet integral has been very used in the fields of decision
under uncertainty and multi-criteria decision aiding along the past
decade, as mentioned in [7].

Choquet integral based aggregation rule
Input a set of individuals App

pX = (φ1(X), . . . , φm(X) ∀ω ∈ App
or cX = (c1(X), . . . , cm(X)) ∀ω ∈ App
Yω ∀ω ∈ App

Output a capacity v on the set {1, . . . ,m}
Aggregation C(X) = 1 ⇐⇒ α < Φ(X)

Φ(X) =
∑m
i=1 φσ(i)(X)(v(Aσ(i))− v(Aσ(i−1)))

Table 1. Summary of Choquet integral model

3.1.2 Analogy with the multi-classifier aggregation problem

Each classification function φi is giving a label in [0, 1] to the indi-
vidual ω. Formally, each classifier can then be seen as a criterion and
the function Φ as an aggregation function on these criteria. If a ca-
pacity function is defined on the set of classifiers, we can then use a
Choquet integral as an aggregation function to obtain a global score
for individual ω described by predictor variables X . We obtain, with
the above notations,

Φ′(X) =

m∑
i=1

φσ(i)(X)(v(Aσ(i))− v(Aσ(i−1)))

where

• σ is a permutation on {1, . . . ,m} such that σ(1) ≤ σ(2) ≤ . . . ≤
σ(m)

• v is a capacity on the set {1, . . . ,m}.
• Aσ(i) = {σ(i), σ(i+ 1), . . . , σ(m)}

The chosen class should then be obtained from Φ′ by a cutting
level α.

3.1.3 Using Choquet integral in multi-classifier
aggregation framework

The aim of the use of a Choquet integral in a multi-classifier aggre-
gation problem is to exhibit interactions which can appear between
classifiers. In order to do so, we will use identification procedures
based on a least square approach as proposed in [6]. These proce-
dures use a learning set of individuals as input. The label vector pX
for each individual given by all the classifiers is known, such as the
real class of each individual, and the identification procedure is an
optimization program that compute the parameters of the Choquet
integral that better fit the learning set. We then use the calculated
parameters to infer the category of new individuals.

We implemented two procedures:

• Choquet ls uses least-square based approach to infer the parame-
ters of the whole set of capacity values.

• Choquet 3-add uses least-square approach also but is limited to
a 3-additive capacity, i.e. a capacity with no interactions between
sets of more than 3 criteria (see [4] for details on k-additivity).
This limit has been chosen as a compromise, in order to facilitate
the computation as it divides by two the number of parameters,
but keeping a relevant amount of interaction between criteria.

The first experiments show that between 50 and 85% of the Mbius
coefficients are almost null. For example, we can have v({1}) = 0,
v({2}) = 0 and v({1, 2}) = 1. It means in that case that if a alterna-
tive is classified in class 1 for both classifiers 1 and 2, then it should
be classified in class 1 by the Choquet Integral operator. Note that it
is not always easy to obtain such a simple semantic interpretation of
the capacity parameters.

It is not always easy to obtain such a simple semantic interpreta-
tion of the capacity parameters and we have not study thoroughly
the results. However, the first experiments show that between 50
and 85% of the Mbius coefficients are almost null. For example,
we can have as typical parameters v({1}) = 0, v({2}) = 0 and
v({1, 2}) = 1. It means in that case that if a alternative is classified
in class 1 for both classifiers 1 and 2, then it is classified in class 1
by the Choquet Integral operator. This may be compared to the de-
cisive set method described below, noting that the Choquet integral
method can take into account both positive and negative examples in
learning.

3.2 Decisive sets
3.2.1 Definition

In social choice theory, voters v1, . . . , vn are supposed to be able to
give a preference relation between two candidates (or individuals) x
and y. The fact that voter v1 prefers candidate x to candidate y is
denoted by x �v1 y. Following Fishburn [3], a voter vi is said to
be decisive for the pair (x, y) if the fact that x �vi y implies that
x is preferred to y in the aggregated order, denoted x � y. A voter
who is decisive for all pair x, y is said to be totally decisive, or just
decisive. Inspired by Weymark [17], we can also define a decisive set
of voters V = {vi, . . . , vj} for the pair (x, y) if the fact that x �vi y
∀vi ∈ V implies that x � y.

Decisive sets based aggregation rule
Input a set of individuals App

cX = (c1(X), . . . , cm(X)) ∀ω ∈ App
Yω ∀ω ∈ App

Output D, a set of K decisive subsets
Dk ⊆ P, k = 1, . . . ,K for the class a

Aggregation C(X) = a ⇐⇒ ∃D ∈ D
such that {i ∈ 1, . . . ,M | Ci(X) = a} ⊆ Dk

Table 2. Summary of Decisive sets model

3.2.2 Analogy with the multi-classifier aggregation problem

Analogously, we can settle the following definitions in our frame-
work:

Definition 2. A classifier φi ∈ P is said to be decisive for X for the
class a if ci(X) = a⇒ C(X) = a. If φi is decisive for all X , φi is
said to be totally decisive, or simply decisive.

Definition 3. a set of classifiers P ⊆ P is said to be decisive for
X for the class a if ∀φi ∈ P, ci(X) = a ⇒ C(X) = a. If P is
decisive for allX , P is said to be totally decisive, or simply decisive.



3.2.3 Using decisive sets in multi-classifier aggregation
framework

Practically, the aim of the identification process is to discover a set of
decisive sets as small as possible for a given class a. In order to iden-
tify these decisive sets, we study a learning set of known individuals
and we first catch all the existing decisive sets for each individual.
Then we select the smallest (for the inclusion) decisive sets of clas-
sifiers that optimize the chosen ratio. We then use this set of decisive
sets to infer the category of new individuals. The choice of a = 0
or a = 1 and the choice of the good ratio as an indicator of the fit
quality have an importance on the detected decisive sets. We present
below results obtained by considering successively a = 0 (method
Decisive sets 0) or a = 1 (method Decisive sets 1) both focusing on
the success ratio.

3.3 Rough sets dominance-based approximation
3.3.1 Definition

Another approach consists in using rough sets through the
dominance-based rough set approach (see Greco, Matarazzo and
Slowinski [9], [10]). In multi-criteria decision aiding, this approach
uses decision rules to assign the alternatives to the different cate-
gories, with respect to some reference levels on each criterion. The
axiomatic foundations of the rough set approach have been well stud-
ied by Greco, Mattarazo and Slowinski, including characterization
of the sorting problem using a utility function or an outranking re-
lation [8] or a Sugeno integral [16]. The dominance-based rough set
approach for classification consists first in obtaining for each alterna-
tive the set of all the classes compatible with the dominance relation
on the alternatives. It then produces a set of decision rules which
characterize the allocation of each alternative to the possible classes.
Decision rules present themselves as “if the value of the alternative
on criteria i is at least . . . and the value of the alternative on criteria
j is at least . . ., then the category of the alternative is at least . . ..”

dominance-based rough sets based aggregation rule
Input a set of individuals App

cX = (c1(X), . . . , cm(X)) ∀ω ∈ App
Yω ∀ω ∈ App

Output D, a set of K decisive subsets
Dk ⊆ P, k = 1, . . . ,K for the class a

Aggregation C(X) = a ⇐⇒ ∃DD
such that {i ∈ 1, . . . ,M | Ci(X) = a} ⊆ Dk

Table 3. Summary of dominance-based rough sets model

3.3.2 Analogy with the multi-classifier aggregation problem

Each classification function φi is giving a score on [0, 1] for the indi-
vidual ω. Formally, each classifier can then be seen as a criterion and
each individual as an alternative. Each alternative can then be clas-
sified only in one out of two classes. A dominance-based rough sets
approach will then consist in sorting each individual into one out of
three classes : individuals which are certainly in class a, individuals
which are certainly not in class a, and ambiguous individuals, based
on the dominance relation between individuals on values φi(X). We
have then to produce a decision rules set to characterize the allocation
of each individual to class 0 or 1. We can also directly use the classi-
fication vector cX in the dominance-based rough sets approach. All

the variables are then binary variables, and then decision rules can be
interpreted as decisive sets of classifiers. We will then focus on this
case.

3.3.3 Using dominance-based rough set approach in
multi-classifier aggregation framework

Following the analogy developed in the decisive sets frameworks, we
decide to aggregate the results cX of the classifiers to obtain the fi-
nal class for individual X . The inputs of the procedure are then only
binary vectors cX = (c1(X), . . . , cm(X)) with ci(X) ∈ {0, 1}.
The use of a dominance-based rough set approach in multi-classifier
aggregation consists simply in finding a set of decision rules that bet-
ter fits the learning set of individuals. Decision rules present them-
selves as “if ci(X) = a and . . . and cj(X) = a then c(X) = a”.
These rules can also be interpreted as decisive sets of classifiers : “if
ci(X) = a and . . . and cj(X) = a then c(X) = a” means that
{φi, . . . , φj} is a decisive set for class a. The used algorithm con-
sists in building decisive sets from an empty set of classifiers, adding
new classifiers in the set while the chosen ratio keeps on being opti-
mized. The choice of a = 0 or a = 1 and the choice of the good ratio
as an indicator of the fit quality have an importance on the detected
decision rules. We present below results obtained by considering suc-
cessively a = 0 (method Rough sets 0) or a = 1 (method Rough sets
1) both focusing on the success ratio.

4 Results
4.1 Data sets
We have compared those aggregation methods versus majority and
mean rules for the following four datasets:

• UCI’s dataset Letter: recognition of letter “R” versus “B”.
• UCI’s dataset Musk (v2): prediction if a molecule is (or not) a

musk.
• Leo Breiman’s Ringnorm and Threenorm: recognition of two

normal distribution with different mean and covariance.

Those datasets have medium size (detailed in table Tab:datasets)
from 1500 to 6600 individuals), which gives sufficient individuals
for the two learning steps (training simple classifiers and training ag-
gregating methods). They have 2 classes and two of them are real
examples (Letter and Musk) while the others (Threenorm and Ring-
norm) are constructed data.

nb indiv. nb var. prop of 1
Letter 1524 16 49.7%
Musk 6599 166 84%

Ringnorm 2128 20 50%
Threenorm 2128 20 50%

Table 4. List of the considered datasets.

4.2 Compared methods
We have compared the error, precision and call-back ratios through
the three different methods for the four datasets. In order to do so, we
split each dataset into a learning set L and a test set T . The learning



set has been used to train the classifier and the test one to compare the
computed class with the true one. More, our method used two levels
of training, one for the simple classifiers to build m models and one
for the aggregation model. So for our algorithm, the learning set L is
itself split in two equal parts Ltrain and Lagg .

• Ltrain is used for training 7 simple well-known classifiers:

– Breiman’s random forest from the randomForest R library;

– ada boost from the ada R library;

– support vector machine using C classification and Gaussian
kernel (ksvm function from kernlab R package);

– linear Discriminant Analysis from MASS R package;

– logistic regression using glm from stats R package;

– single decision tree C4.5 using J48 function provided by
RWeka R package;

– k nearest neighbours using IBk function from RWeka R pack-
age by default (k=1).

Then we obtain p : Ω → [0, 1]m

x 7→ px = (p1, . . . , pm)
• The responses of the obtained classifiers are computed on Lagg

and T , to obtain respectively the p(Lagg) and p(T ) results.
• The aggregation operator is trained using classifiers responses
p(Lagg) and true classes Y (Lagg) in order to obtain the multi-
classifier aggregation function Φ.

• The aggregated response for test set Φ(p(T )) is computed and
compared to the true class Y (T ) to compute the different ratios.

For mean and majority aggregation, the two levels learning is not
necessary, so the classifier’s training process is done one more time
using the entire learning set L.

We also use Wilcoxon signed rank test to detect if the differences
are significant or not. Our several learning sets and test sets are com-
puted using 10 cross-validations. This means that the dataset is di-
vided into 10 disjoint parts. We repeat the same test 10 times, each
time, one part is used as test set and one is used for learning algo-
rithm. The presented ratios are the means of the 10 corresponding
results and the significance of the differences is computed thanks to
Wilcoxon test.

4.3 Results
We present in tables 5 to 8 the results of our experiment on the dif-
ferent datasets. For each dataset, we present success ratio for each
aggregation method, precision and callback ratio for class 1. For
each aggregation method we indicate the significance degree (with
α = 5%) compared first to the mean rule and second to the majority
one.

• “+” denotes that the proposed aggregation method is significantly
better than mean (respect. majority) rule,

• “-” denotes that it is significantly worse than mean (respect. ma-
jority) rule,

• “=” denotes that the difference is not significant.

For example in table 8, the success ratio of rough set oriented for
0 class is 87.1%, which is significantly better than majority rule but
not than mean rule.

We can see that aggregation methods are often better than majority
or mean rule, rarely worst (and never for success ratio). These results
are promising as they are obtained with non optimized algorithm. For

example we haven’t study the effect of the size of Ltrain and Lagg ,
choosing same size for the both. This means that simpler classifiers
(majority and mean rule) are trained on 2 times bigger sets. Our first
intuition was that the orientation of decision or rough sets research
should have an effect on precision and callback ration, but this is not
obvious in our experiments. However, further studies in this direction
certainly need to be lead.

Agg. method Success ratio Precision ratio Call-back ratio
Mean 98.7 98.8 98.5
Majority 98.8 99.1 98.5
Decisive sets 1 98.6 =/= 99.0 =/= 98.2 =/=
Decisive sets 0 98.7 =/= 98.8 =/= 98.5 =/=
Rough sets 1 98.6 =/= 99.5 =/= 97.7 =/=
Rough sets 0 98.5 =/= 98.4 =/= 98.5 =/=
Choquet ls 98.8 =/= 99.2 =/= 98.4 =/=
Choquet 3-add 98.8 =/= 99.1 =/= 98.5 =/=

Table 5. Comparison of several methods for the Letter R/B data set

Agg. method Success ratio Precision ratio Call-back ratio
Mean 97.6 97.7 99.5
Majority 97.7 97.8 99.6
Decisive sets 1 97.9 =/= 98.0 =/= 99.6 =/=
Decisive sets 0 98.1 +/+ 98.6 +/+ 99.2 -/-
Rough sets 1 98.2 +/+ 98.5 +/+ 99.3 -/=
Rough sets 0 98.2 +/+ 98.4 +/+ 99.5 =/=
Choquet ls 98.2 +/+ 98.7 +/+ 99.2 -/-
Choquet 3-add 98.2 +/+ 98.7 +/+ 99.1 +/+

Table 6. Comparison of several methods for the Musk data set

Agg. method Success ratio Precision ratio Call-back ratio
Mean 95.9 94 98.3
Majority 94.2 92.5 96.2
Decisive sets 1 98.4 +/+ 98.1 +/+ 98.7 =/+
Decisive sets 0 97.2 =/= 98.3 +/+ 96.0 =/=
Rough sets 1 98.5 +/+ 98.2 +/+ 99.0 =/+
Rough sets 0 92.8 =/= 90.1 =/= 99.4 +/+
Choquet ls 98.4 +/+ 98.2 +/+ 98.7 =/+
Choquet 3-add 98.4 +/+ 98.2 +/+ 98.7 =/+

Table 7. Comparison of several methods for the Ringnorm data set

5 Conclusion
In this paper, we obtained promising results which need further in-
vestigations. Among others, we propose two issues which are in our
opinion relevant to be study:

• Does this approach can be applied to a larger number of clas-
sifiers ? This will be interesting to use it in ensemble methods
framework, where several tens (or hundreds) of classifiers are ag-
gregated. This leads to computation problems, because the com-
plexity of some methods grows exponentially with the number of
simple classifiers.



Agg. method Success ratio Precision ratio Call-back ratio
Mean 85.8 86.1 85.4
Majority 86. 85.9 86.3
Decisive sets 1 86. =/= 83.7 =/- 89.9 +/+
Decisive sets 0 86.5 =/= 87.1 =/+ 85.7 =/=
Rough sets 1 86.6 =/= 88.1 +/+ 84.7 =/-
Rough sets 0 87.1 =/+ 85.6 =/= 89.3 +/+
Choquet ls 87.5 +/+ 87.4 =/+ 87.7 =/=
Choquet 3-add 87.6 +/+ 87.5 +/= 87.8 =/=

Table 8. Comparison of several methods for the Threenorm data set

• May these methods be used for selecting classifiers ? Indeed,
rough set methods give generally a small number of rules. This
may be seen as a simplification of the original set of classifiers.
One drawback of aggregating different classifiers is that the pro-
cess disintegrate the decision in multiple classifier, making it im-
possible to understand. So a human decision maker may need such
a simplification.
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Criteria Decision Aid, eds., A. Colorni, M. Paruccini, and B. Roy, 117–
144, European Commission, Joint Research Centre, EUR 19808 EN,
Ispra, (2001).

[9] S. Greco, B. Matarazzo, and R. Slowinski, ‘Rough sets theory for multi-
criteria decision analysis’, European Journal of Operational Research,
129, 1–47, (2001).

[10] S. Greco, B. Matarazzo, and R. Slowinski, ‘Rough sets methodology
for sorting problems in presence of multiple attributes and criteria’, Eu-
ropean Journal of Operational Research, 138, 247–259, (2002).

[11] L. I Kuncheva, Combining Pattern Classifiers. Methods and Algo-
rithms, Wiley, 2004.

[12] Ludmila I. Kuncheva. Classifier ensembles: Facts, fiction, faults and
future, 2008. (slides, plenary talk).

[13] J.-L. Marichal, ‘An axiomatic approach of the discrete Choquet integral
as a tool to aggregate interacting criteria’, IEEE Transactions on Fuzzy
Systems, 8(6), 800–807, (December 2000).

[14] Dymitr Ruta and Bogdan Gabrys. A theoretical analysis of the limits
of majority voting errors for multiple classifier systems, 2000.

[15] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee.
Boosting the margin: A new explanation for the effectiveness of vot-
ing methods, 1997.

[16] R. Slowinski, S. Greco, and B Matarazzo, ‘Axiomatization of utility,
outranking and decision-rule preference models for multiple-criteria

classification problems under partial inconsistency with the dominance
principle’, Control and Cybernetics, 4(31), 1005–1035, (2002).

[17] J. A. Weymark, ‘Arrow’s theorem with social quasi-orderings’, Public
Choice, (42), 235–246, (1984).


