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antoine.rolland@lip6.fr

Abstract Several models have been proposed in
multi-criteria decision making relying on ordinal
information to aggregate the performances on dif-
ferent criteria in order to rank the alternatives, but
some situations can still not be well described by
these models. We propose here to investigate the
interest of new fuzzy measures (bi-capacities) in
ordinal aggregation procedures.
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Introduction

In the field of multicriteria decision making
(MCDM), many models have been proposed to
describe preference relations. A first school (see
e.g. Keeney and Raiffa [9]) is based on a numeri-
cal representation of preferences and put forwards
the aggregation of marginal scaled utility func-
tions into a global preference function, using for
example the weighted sum or other additive util-
ities. Some generalizations, using non-additive
functions, have been proposed based on the Cho-
quet integral (see e.g. Schmeidler [15], Grabisch
[6], Marichal [11]). But in many cases in MCDM,
the information available about the alternatives
is not sufficient to measure precisely the utility
of each alternative on each criterion, or to guar-
anty the commensurability of the criteria. In such
cases, non-numerical approaches based on the use
of preferences graphs are useful. In the relational
approach of preference models, preferences along
each criteria (whether numerical or not) are repre-
sented by a binary preference relation, and aggre-
gation methods like votes, majority rules or con-
cordance rules are used to perform criteria aggre-
gation (see e.g. Roy [13], Fodor and Roubens [5],

Perny and Roubens [12]). All these methods are
based on evaluating the importance of the coali-
tions of criteria which favor an alternative over
another. In this idea, the importance of each crite-
rion, or coalition should be evaluated by a weight,
or a fuzzy measure (see Sugeno [16]), or capacity
(see Choquet [3]). This has been much studied in
the numerical approach, but it has been less stud-
ied in preference aggregation (see e.g. the concor-
dance rules proposed by Dubois and Al. [4]). But
the use of a capacity to describe the importance
of criteria coalitions is sometimes not sufficient.
Grabisch and Labreuche [7] recently proposed bi-
capacities as a useful generalization of capacities.

The aim of this paper is to investigate the descrip-
tion potential of bi-capacities in graphs-based ag-
gregation methods like concordance rules and to
provide representation theorems for bi-capacity-
based concordance relations
Section (1) presents the general framework and
points out the descriptive limits of some ordinal
MCDM models. Section (2) introduces prefer-
ence models using ordinal bi-capacities and refer-
ence points. Section (3) presents the main results :
a characterization of preference models using bi-
capacities with and without a reference point. All
the proofs are relegated in the appendix in order
to facilitate the reading.

1 Motivations

1.1 Notations and definitions

Notations
A multicriteria decision problem is character-
ized by a set X of alternatives and a set N =
{1, . . . , n} of attributes used to describe the alter-
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natives. We note P(N) the set of subsets of N .
Let (Xi,%i) denote a finite ordered scale where
Xi is the set of attribute values for component
i ∈ N , and %i is a complete weak-order on Xi.
X = X1 × . . . ×Xn is said to be the multicrite-
ria space. We suppose that each attribute set Xi is
composed by at least 3 different levels.
We note C�(x, y) the set {j ∈ N, xj �j yj}.

An aggregation procedure consists in deriving
a global preference relation % on X from par-
tial preferences relations %j on each criterion
X1, . . . , Xn. % is supposed to be a weak-order,
i.e. a transitive and reflexive binary relation.

Many models have been proposed to describe ag-
gregation procedures in the frame of ordinal mul-
ticriteria decision making, see for example Roy
[14] for a review.

Generalized Concordance Rules
Dubois and al. [4] have introduced the General-
ized Concordance Rules in a purely ordinal frame
as follow:

Definition 1 A generalized concordance rule de-
fines a preference relation % on X from the rela-
tions %j on Xj , ∀j = 1, .., n as follows :

x % y ⇐⇒ C�(x, y) %N C�(y, x)

where %N is a relative importance relation on
P(N)

Capacity-based Concordance Rules
Let us recall the definition of fuzzy measures, or
capacities for finite sets. For more details, see
e.g. Sugeno and Murofushi [17], Grabisch and
Roubens [8] and Grabisch and Labreuche [7].

Definition 2 A capacity µ : 2N → R+ is a set
function such that µ(∅) = 0, and A ⊆ B ⊆ N
implies µ(A) ≤ µ(B). The capacity is normal-
ized if in addition µ(N) = 1.

An instance of the general model introduced in
definition 1 is:

Definition 3 A capacity-based concordance rule
defines a preference relation % on X from the re-
lations %j on Xj , ∀j = 1, .., n and a capacity µ
on P(N) as follows :

x % y ⇐⇒ µ(C�(x, y)) ≥ µ(C�(y, x))

1.2 Some limits of existing models

Even if the Capacity-Based Concordance Rules
and the Generalized Concordance Rules can de-
scribe many preference relations, the follow-
ing examples show different situations where
Capacity-Based Concordance Rules, or even
Generalized Concordance Rules are unable to ex-
plain the proposed preferences.

Example 1 Let us consider the following exam-
ple, giving evaluations obtained by several cars
following three criteria : Comfort (1), Price (2)
and Consumption (3). The performances on each
criteria are evaluated on three different scales :
three levels ”+”, ”=” and ”-” for the comfort,
five categories from A (the cheapest) to E (the
more expensive) for he price, and the consumma-
tion in liter for hundred kilometers.

1 2 3
x1 + B 8
x2 + E 6.5
x3 - B 6.5

Assume that the decision maker has the following
preferences : she prefers x1 to x3 (so x1 � x3),
but she has no preferences between x1 and x2,
and x2 and x3 (so x1 ∼ x2 and x2 ∼ x3).

The question is : can we represent these prefer-
ences with a Capacity-Based Concordance Rule?
In this model, we have x % y if and only if
µ(C�(x, y)) ≥ µ(C�(y, x)). We can easily see
that in the present situation, x1 ∼ x2 implies
that µ({2}) = µ({3}) , x2 ∼ x3 implies that
µ({1}) = µ({2}) while x1 � x3 implies that
µ({1}) > µ({3}) : there is an impossibility.

Remark : We have shown in this example that
some preference relations cannot be represented
by a Capacity-Based Concordance Rule. But
these preferences can be represented by a Gen-
eralized Concordance Rule with a non transitive
importance set relation %N specifying {M} ∼N

{P}, {P} ∼N {C} and {M} �N {C}.
These relations can also be represented by a Bi-
Capacity-Based Concordance relation, as seen
below.

Example 2 Let us consider now the following ex-
ample in the same frame than example (1), includ-



ing a fourth criterion representing the available
options (air-bags, high fidelity radio...) evaluat-
ing by 1 (few options), 2 or 3 (many options).

1 2 3 4
x1 + C 8 2
x2 + C 6 1
x3 = A 8 2
x4 = A 6 1

Assume that the decision maker has the following
preferences : he prefers x1 to x2 (so x1 � x2),
and x4 to x3 (so x4 � x3).

The question is : can we represent preferences
x1 � x2 and x4 � x3 using a Capacity-Based
Concordance rule or even a Generalized Concor-
dance Rule defined in definition 1 ? We can eas-
ily see that in the present situation, x1 � x2 im-
plies that {3} is more important than {4}, while
x4 � x3 implies the contrary : there is an impos-
sibility. The Concordance rules introduced above
are not sufficient to be able to describe some ex-
isting preferences.

2 Bi-capacity-based concordance
models

We propose in this section preference models us-
ing a bi-capacity to represent the issue of conflict-
ing coalitions in concordance rules.

We will first recall the definition of bi-capacities.
Let us denote Q(N) = {(A,B) ∈ P(N) ×
P(N) | A ∩ B = ∅}, where P(N) stands for
2N as introduced in Grabisch and Labreuche [7].

Definition 4 A function ν : Q(N) → R is a
bi-capacity if it satisfies :

1. ν(∅, ∅) = 0

2. A ⊆ B implies ν(A, .) ≤ ν(B, .) and
ν(., A) ≥ ν(., B)

In addition, ν is normalized if ν(N, ∅) = 1 =
−ν(∅, N).

We can then define bi-capacity-based concor-
dance rules as follows :

Definition 5 A bi-capacity-based concordance
rule defines a preference relation % on X from
the relations %j on Xj , ∀j = 1, .., n and a bi-
capacity ν on P(N)× P(N) as follows :

x % y ⇐⇒ ν(C�(x, y), C�(y, x)) ≥ 0

Return to Example 1 : The preference relations
described in Example 1 can easily be built using a
Bi-Capacity-Based Concordance rule as follows :

ν({2}, {3}) = 0
ν({1}, {2}) = 0
ν({1}, {3}) = 1

Note that the use of the bi-capacity-based concor-
dance relations is interesting only if C�(x, y) 6=
N\C�(y, x). If not, the bi-capacity reduces to a
capacity µ by setting µ(A) = (ν(A,A) + 1)/2.

Return to Example 2 : The preference rela-
tions described in Example 2 can not be built
using a Bi-Capacity-Based Concordance rule, as
seen below : C�(x1, x2) = C�(x

3, x4) = {4},
C�(x

2, x1) = C�(x
4, x3) = {3}, so x1 � x2

implies that ν({4}, {3}) > 0 and x4 � x3 implies
that ν({3}, {4}) > 0, which is not coherent.

Introducing a reference point in a bi-capacity-
based concordance rule means that the preference
relation between two elements x and y will no
longer depend on the position of x relatively to
y. Only the respective position of each alterna-
tive compared to a reference point p are taken
into account to compare x and y. We will note
p = (p1, . . . , pn) ∈ X the reference point, and
assume that
- ∀j ∈ N, ∃x, y ∈ X such that xj �j pj �j yj
(p is neither majoring nor minoring any criteria).
- ∀j ∈ N, ∀x ∈ X, xj %j pj or pj %j xj
(each element of Xj is comparable to pj for j =
1, . . . , n).

We can define a bi-capacity-based concordance
rule with a reference point as follow :

Definition 6 A bi-capacity-based concordance
rule with a reference point defines a preference re-
lation% onX from the relations%j onXj , ∀j =
1, .., n, a bi-capacity ν on P(N) × P(N) and
a reference point p as follows : x % y ⇐⇒
ν(C�(x, p), C�(p, x)) ≥ ν(C�(y, p), C�(p, y))



Return to example 2 : Let us take p=(=,C,6,2)
as a reference profile for a car. Then C�(x1, p) =
{1}, C�(p, x

1) = {3}, C�(x
2, p) = {1},

C�(p, x
2) = {4}, C�(x

3, p) = {2},
C�(p, x

3) = {3}, C�(x
4, p) = {2},

C�(p, x
4) = {4}. Hence, preferences x1 �

x2 and x4 � x3 are easily represented by
a Bi-Capacity-Based Concordance rule with
ν({1}, {3}) > ν({1}, {4}) and ν({2}, {4}) >
ν({2}, {3}).

We have seen above that the introduction of a ref-
erence point allows the decision maker to sort the
value of each alternative on each criterion in two
categories : good (better than p) or bad (worse
than p). In order to be a little bit more discrimi-
nating, we can introduce a second reference point,
with for example p1i �i p

2
i ∀ ∈ N , which con-

sists, for each criteria, in partitioning the different
criterion values in three categories : good (better
than p1i ), medium (between p1i and p2i ) and bad
(worse than p2i ). Several approaches can then be
considered to compare the alternatives to p1 and
p2. We choose here an up to down filtering, where
the alternatives are first compared to p1 and then
to p2, in order to select first the best alternatives,
but other choices are also possible. We will so
define a bi-capacity-based concordance rule with
two reference points as follow :

Definition 7 A bi-capacity-based concordance
rule with two reference points defines a prefer-
ence relation % on X from the relations %j on
Xj , ∀j = 1, .., n, a bi-capacity ν on P(N) ×
P(N) and two reference points p1and p2 as fol-
lows : x % y ⇐⇒ ν(C�(x, p

1), C�(p
2, x)) ≥

ν(C�(y, p
1), C�(p

2, y))

Example 3 In this example, we show the interest
of the introduction of a second reference point.
The context is the same as in example 2.

1 2 3 4
x1 + A 6 2
x2 + C 6 2
x3 + E 6 2
x4 - C 9 3

Assume that the decision maker has the following
preferences : she prefers x1 � x2 and x2 � x3.
Assume also that she prefers x2 � x4, which
shows that preference % does not depend only on

criterion (2).

The question is : can we represent these prefer-
ences with a bi-capacity-based concordance rule
with only one reference point p? Suppose that it
is possible, and let us note p = (p1, p2, p3, p4)
the reference point. We show that in these con-
ditions, there is not acceptable value for one of
the pi, value of p on criterion i. First, the fact that
x1 � x2 gives, on criterion 2, thatA �2 p2 %2 C,
because it is the only mean to distinguish x1 and
x2. Then, the fact that x2 � x3 gives, on the
same criterion, that C �2 p2 %2 E. so we have
p2 %2 C � p2 which is not possible. We cannot
represent these preferences with this model.

But these preferences can easily be build with a
bi-capacity-based concordance rule with two ref-
erence points p1 and p2 as follow : let us take
p1 = (=, B, 7, 2) and p2=(=,D,9,2). Then, fol-
lowing the definition (7), we have

x1 � x2 ⇒ ν({1, 2, 3}, ∅) > ν({1, 3}, ∅)
x2 � x3 ⇒ ν({1, 3}, ∅) > ν({1, 3}, {2}).

3 Axiomatization

Establishing a representation theorem for a spe-
cific decision model consists in giving a set of
conditions on the preference relation % , through
some testable axioms, and proving that they are
necessary and sufficient for % to be represented
by the proposed model. A representation theo-
rem of a model allows to justify theoretically the
use of this model in a specific context. Several
general representation theorems on product sets
have been proposed in conjoint measurement the-
ory (see e.g. Luce et al. [10], Bouyssou and Pirlot
[2]). Specific representation theorems for concor-
dance rules have been proposed by Bouyssou and
Pirlot [1] and Dubois et al. [4]. In this section, we
establish three representation theorems to charac-
terize preference structures which are compatible
with a bi-capacity-based concordance rule as ex-
pressed by the relations defined in definition 5, 6
and 7.



3.1 Bi-capacity-based concordance
model

First of all, we need to specify that the preference
structure is ordinal-based. This is what the fol-
lowing axiom, introduced in Dubois et al. [4],
says.

Axiom 1 Neutrality and Independence (NI)
∀x, y, z ∈ X, [C�(x, y) = C�(z, w) and
C�(y, x) = C�(w, z)]⇒ [x % y ⇐⇒ z % w]

Then, it seems reasonable for the preference
structure to have also a unanimity property on the
criteria.

Axiom 2 Unanimity (UNA)

∀i = 1, . . . , n, xi %i yi ⇒ x % y

These two axioms are enough to specify which
kind of preference structures can be character-
ized by a bi-capacity-based concordance rule, as
shown in the following theorem:

Theorem 1 If the preference relation % and the
weak-orders %j satisfy axioms (NI) and (UNA),
then a bi-capacity ν exists such that :

x % y ⇐⇒ ν(C�(x, y), C�(y, x)) ≥ 0

3.2 Bi-capacity-based concordance
model with a reference point

Introducing a reference point in a bi-capacity-
based concordance rule means that the NI axiom
is no longer respected. It is now important to no-
tice that only the respective position of each al-
ternative compared to the reference point p are
taken into account to compare two different alter-
natives. This is the meaning the following axiom:

Axiom 3 Neutrality and Independence with
respect to a Reference Point (NIp)

∀x , y ∈ X ,
{
C�(x, p) = C�(y, p)
C�(p, x) = C�(p, y)

⇒ x ∼ y

Associated with the unanimity axiom, (NIp) is
sufficient to characterize the preference relations
which can be represented by a bi-capacity-based
concordance relation, as shown in the following
theorem:

Theorem 2 If % and %j satisfies axioms (NIp)
and (UNA), then a bi-capacity ν exists such that
: x % y ⇐⇒ ν(C�(x, p), C�(p, x)) ≥
ν(C�(y, p), C�(p, y))

Remark : as we have seen before in Example 2,
bi-capacity-based concordance rule using a refer-
ence point allows us to capture by ordinal concor-
dance rules preference relations which were not
modelled before.

3.3 Bi-capacity-based concordance
model with two reference points

The neutrality and independence axiom should
take into account the existence of two different
reference points as follow :

Axiom 4 Neutrality and Independence with
respect to two Reference Points (NI2p)
∀x, y ∈ X,{
C�(x, p

1) = C�(y, p
1)

C�(p
2, x) = C�(p

2, y)
⇒ x ∼ y

As above, this axiom is sufficient, associated
with an unanimity axiom, to characterize the bi-
capacity-based concordance rules with two refer-
ence points, as shown in the following theorem:

Theorem 3 If % and %j satisfies axioms (NI2p)
and (UNA), then a bi-capacity ν exists such that:
x % y ⇐⇒ ν(C�(x, p

1), C�(p
2, x)) ≥

ν(C�(y, p
1), C�(p

2, y))

4 Conclusion

New models using bi-capacity based concordance
rules have been proposed to enlarge the descrip-
tion capacity of Concordance rules in ordinal
MCDM. For examples, in the situations where
the preference relations are semi-transitives, bi-
capacity based concordance relations cannot be
reduced to capacity based concordance relations.

On another hand, the introduction of reference
points in such models, allows us to get out the
frame of the so-called Arrow’s impossibility the-
orem, and so to obtain transitive and non dictato-
rial preference rules based on the aggregation of
ordinal preferences.



Appendix

We define z = (xj , y−j) as the element ofX such
as zj = xj and zi = yi i 6= j, with j ∈ N and
x, y ∈ X . More generally, z = (xA, y−A) is de-
fined as the element of X such as zj = xj if j ∈
A and zj = yj if j 6∈ A, with A ⊂ N and
x, y ∈ X .

Proof of theorem 1

Let us define a function f from P(N)×P(N) to
{−1, 0, 1} by :
f(A,B) = 1 ⇐⇒ ∃x, y ∈ X|C�(x, y) =
A, C�(y, x) = B and x � y
f(A,B) = 0 ⇐⇒ ∃x, y ∈ X|C�(x, y) =
A, C�(y, x) = B and x ∼ y
f(A,B) = −1 ⇐⇒ ∃x, y ∈ X|C�(x, y) =
A, C�(y, x) = B and y � x

Let us show that the function f is well defined :
suppose that ∃ (x, y) and (z, w) ∈ X × X such
as C�(x, y) = C�(z, w) = A and C�(y, x) =
C�(w, z) = B. As % respects the axiom (NI),
we are sure that x % y ⇐⇒ z % w, and so there
is no ambiguity on the value of f(A,B). We now
show that f is a bi-capacity.

• f((∅, ∅)) = 0 : if C�(x, y) = C�(y, x) =
∅, it means that ∀i ∈ N , xi = yi, and so x =
y an dx ∼ y, which means that f((∅, ∅)) =
0.

• Monotonicity : suppose that ∃x, y, z ∈ X
such as C�(x, y) = A, C�(z, y) = A′,
C�(y, x) = C�(y, z) = B and A ⊆ A′.
Do we have f(A′, B) ≥ f(A,B)? Let
us take w ∈ X such as ∀i ∈ N , wi =
max%i

{xi, zi}. We have ∀i ∈ N , wi %i xi,
so as % respects (UNA), w % x. Moreover,
as A ⊆ A′, C�(w, y) = A′ and C�(y, w) =
B. So w % y ⇐⇒ z % y.

– if f(A,B) = −1, then f(A′, B) ≥ −1
and so f(A′, B) ≥ f(A,B)

– if f(A,B) = 0, we have x ∼ y, and, by
transitivity, w % y. By (NI), we have
z % y and so f(A′, B) ≥ 0 = f(A,B).

– if f(A,B) = 1, we have x � y, and, by
transitivity, w � y. By (NI), we have
z � y and so f(A′, B) = 1 ≥ f(A,B).

So if A ⊆ A′, we always have f(A, .) ≤
f(A′, .). We can show on the same idea
that if A ⊆ A′, we always have f(., A) ≥
f(., A′).

This proves that f is a bi-capacity. �

4.1 Proof of theorem 2

Let us define a relation %′ on Q × Q by
(A,B) %′ (C,D) ⇐⇒ ∃x, y ∈

X|


A = C�(x, p)
B = C�(p, x)
C = C�(y, p)
D = C�(p, y)

and x % y.

We show that this relation is a complete weak or-
der on Q.

Let us demonstrate first that the relation %′ de-
fined above exists. The relation %′ defined above
should not depend on the elements x and y chosen
during the construction. For this, we should show
that if two couples of X × X , (x, y) and (z, w),

exist such that
{
A = C�(x, p) = C�(z, p)
B = C�(p, x) = C�(p, z)

and
{
C = C�(y, p) = C�(w, p)
D = C�(p, y) = C�(p, w)

, then x %

y ⇐⇒ z % w. This is obvious, follow-

ing (NIp), because
{
C�(x, p) = C�(z, p)
C�(p, x) = C�(p, z)

and{
C�(y, p) = C�(w, p)
C�(p, y) = C�(p, w)

give x ∼ z and y ∼ w.

Let us now demonstrate that %′ is a weak-order
on Q.

• asymmetry of �′ : if (A,B) �′ (C,D),
this means that exist x, y ∈ X such that{
A = C�(x, p)
B = C�(p, x)

,
{
C = C�(y, p)
D = C�(p, y)

and

x � y. If (A,B) ≺′ (C,D), this means that

exist z, w ∈ X such that
{
A = C�(z, p)
B = C�(p, z)

,{
C = C�(w, p)
D = C�(p, w)

and w � z. Follow-

ing (NIp), we have x ∼ z and y ∼ w,
which is in contradiction with x � y and
w � z. So we can ’t have on the same time
(A,B) �′ (C,D) and (A,B) ≺′ (C,D),
which proves the asymmetry of �′.



• symmetry of∼′ : on the same idea, symme-
try ∼′ is easily shown based on the symme-
try of ∼ and (NIp).

• transitivity of%′ : if (A,B) %′ (C,D) and
(C,D) %′ (E,F ), then exist x, y, y′, z ∈ X

such that
{
A = C�(x, p)
B = C�(p, x))

,{
C = C�(y, p)
D = C�(p, y)

and x % y, and{
C = C�(y

′, p)
D = C�(p, y

′)
,
{
E = C�(z, p)
F = C�(p, z)

and

y′ % z. Axiom (NIp) implies that y ∼ y′,
and transitivity of % implies x % z, which
shows the transitivity of %′.

We now show the completeness of %′. As we
have ∀i ∈ N , ∃ xi, yi such that xi �i pi �i yi,
we can build for all (A,B) ∈ Q a element z ∈ X
such that C�(z, p) = A and C�(p, z) = B :

we just have to take


zi = ai if i ∈ A
zi = bi if i ∈ B
zi = pi if not

, with

ai �i pi∀i ∈ N and bi ≺i pi∀i ∈ N . Com-
pleteness of % gives the completeness of %′.

As %′ is complete and Q is finite, there is a func-
tion ν : Q → R such that (A,B) %′ (C,D) ⇐⇒
ν(A,B) ≥ ν(C,D). We now show that this set-
function ν is a bi-capacity. Suppose that A ⊆ B.
Let compare ν(A,C) and ν(B,C), withA∩C =
B∩C = ∅. Suppose x ∈ X such thatC�(x, p) =
A and C�(p, x) = C. Suppose y ∈ X such that
C�(y, p) = B and C�(p, y) = C. Let denote
z = (xA∪N\B, yB\A). Following axiom (UNA),
z % x, because ∀j ∈ N, zj %j xj . Actually, if
j ∈ B\A, we have zj = yj �j pj and xj = pj .
So z % x gives (B,C) %′ (A,C), which im-
plies ν(B,C) ≥ ν(A,C). We have shown that
A ⊆ B ⇒ ν(A, ·) ≤ ν(B, ·). On the same way,
we can show that A ⊆ B ⇒ ν(·, A) ≥ ν(B, ·).
Then, ν is a bi-capacity if ν(∅, ∅) = 0. If not,
we just have to take ν ′ = ν − ν(∅, ∅) to have a
bi-capacity. �

Proof of theorem 3

let us define a relation %′ on Q × Q by
(A,B) %′ (C,D) ⇐⇒ ∃x, y ∈

X|


A = C�(x, p

1)
B = C�(p

2, x)
C = C�(y, p

1)
D = C�(p

2, y)

and x % y.

We show that this relation is a complete weak or-
der on Q.

Let us demonstrate first that the relation %′ de-
fined above exists. The relation %′ defined above
should not depend on the elements x and y cho-
sen during the construction. For this, we should
show that if two couples ofX×X (x, y) et (z, w)

such that
{
A = C�(x, p

1) = C�(z, p
1)

B = C�(p
2, x) = C�(p

2, z)
and{

C = C�(y, p
1) = C�(w, p

1)
D = C�(p

2, y) = C�(p
2, w)

, then x %

y ⇐⇒ z % w. It is obvious follow-

ing (NI2p) :
{
C�(x, p

1) = C�(z, p
1)

C�(p
2, x) = C�(p

2, z)
and{

C�(y, p
1) = C�(w, p

1)
C�(p

2, y) = C�(p
2, w)

gives x ∼ z and

y ∼ w.

We now demonstrate that %′ is a weak order on
Q.

• asymmetry of �′ : if (A,B) �′ (C,D),
this means that exist x, y ∈ X such that{
A = C�(x, p

1)
B = C�(p

2, x))
,
{
C = C�(y, p

1)
D = C�(p

2, y)
and x � y. If (A,B) ≺′ (C,D), this
means that exist z, w ∈ X such that{
A = C�(z, p

1)
B = C�(p

2, z))
,
{
C = C�(w, p

1)
D = C�(p

2, w)
and w � z. Following the axiom (NI2p), we
have x ∼ z and y ∼ w which is in contra-
diction with x � y and w � z. So we can
’t have on the same time (A,B) �′ (C,D)
and (A,B) ≺′ (C,D), which proves the
asymmetry of �′.

• symmetry of∼′ : on the same idea, symme-
try ∼′ is easily shown based on the symme-
try of ∼ and (NIp).

• transitivity of%′ : If (A,B) %′ (C,D) and
(C,D) %′ (E,F ), then exist x, y, y′, z ∈ X

such that
{
A = C�(x, p

1)
B = C�(p

2, x))
,{

C = C�(y, p
1)

D = C�(p
2, y)

and x % y, and



{
C = C�(y

′, p1)
D = C�(p

2, y′)
,
{
E = C�(z, p

1)
F = C�(p

2, z)
and y′ % z. Axiom (NI2p) implies that
y ∼ y′, and transitivity of % implies x % z,
which proves the transitivity of %′.

We now demonstrate the completeness of %′.
As we supposed that ∀i ∈ N , ∃ xi, yi such
that xi �i p

1
i and p2i �i yi, we can build for

all (A,B) ∈ Q an element z ∈ X such that
C�(z, p

1) = A and C�(p
2, z) = B : we just

have to take


zi = ai if i ∈ A
zi = bi if i ∈ B
zi = ci if not

, with ai �i p
1
i

∀i ∈ N , bi ≺i p
2
i ∀i ∈ N and p1i %i ci %i p

2
i

∀i ∈ N . Completeness of % implies the com-
pleteness of %′. As %′ is complete and Q is fi-
nite, there is a function ν : Q → R such that
(A,B) %′ (C,D) ⇐⇒ ν(A,B) ≥ ν(C,D).
We now show that this function ν is a bi-capacity.
Suppose that A ⊆ B. Let compare ν(A,C)
and ν(B,C), with A ∩ C = B ∩ C = ∅.
Let take x ∈ X such that C�(x, p1) = A and
C�(p

2, x) = C. Let take y ∈ X such that
C�(y, p

1) = B and C�(p2, y) = C. We note
z = (xA∪N\B, yB\A). Following axiom (UNA),
z % x, because ∀j ∈ N, zj %j xj . Actually,
if j ∈ B\A, we have zj = yj �j p

1
j and p1j %j

xj %j p
2
j . z % x gives (B,C) %′ (A,C), which

gives ν(B,C) ≥ ν(A,C). we have shown that
A ⊆ B ⇒ ν(A, ·) ≤ ν(B, ·). On the same way,
we can show that A ⊆ B ⇒ ν(·, A) ≥ ν(B, ·).
Then, ν is a bi-capacity if ν(∅, ∅) = 0. If not,
we just have to take ν ′ = ν − ν(∅, ∅) to have a
bi-capacity. �
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