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Abstract

We study in this paper the generation of the Choquet optimal solutions of biobjective combinatorial opti-
mization problems. Choquet optimal solutions are solutions that optimize a Choquet integral. The Choquet
integral is used as an aggregation function, presenting di�erent parameters, and allowing to take into account
the interactions between the objectives. We develop a new property that characterizes the Choquet optimal
solutions. From this property, a general method to easily generate these solutions in the case of two objectives
is de�ned. We apply the method to two classical biobjective optimization combinatorial optimization prob-
lems: the biobjective knapsack problem and the biobjective minimum spanning tree problem. We show that
Choquet optimal solutions that are not weighted sum optimal solutions represent only a small proportion of
the Choquet optimal solutions and are located in a speci�c area of the objective space, but are much harder
to compute than weighted sum optimal solutions.

Keywords:
Multiobjective optimization, Choquet integral, algorithmic decision theory, knapsack problem, minimum
spanning tree problem.

1. Introduction

Multiobjective combinatorial optimization (MOCO) problems deal with situations where a decision-maker
has to optimize several objectives simultaneously. These situations often come from a problem with a com-
binatorial number of solutions, for example spanning tree, shortest path, knapsack, traveling salesman tour,
etc. [6]. Many algorithms have been proposed to solve these problems in the case of a single objective to
be optimized [33]. But these algorithms have to be adapted when several objectives have to be taken into
consideration.

To solve a MOCO problem, three di�erent approaches are usually followed. In the a posteriori approach,
all the Pareto optimal solutions, that is the solutions for which it does not exist a solution better or equal
on all the objectives and better on at least one objective, are �rst generated. Once this has been done, the
decision-maker is free to choose among all solutions the one that corresponds the best to his/her preferences.
For this speci�c task, since the number of Pareto optimal solutions can be very large, di�erent methods
coming from the multicriteria decision making �eld can help [4].

Another possibility, called the a priori approach, is to �rst ask the decision-maker what are his/her
preferences among all the objectives and to compute an aggregation function [13], like a weighted sum or
an ordered weighted operator [34], with speci�ed parameters. The aggregation function is then optimized
and at the end, only one solution is generally proposed to the decision-maker (even if more than one optimal
solution can exist).
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A last possibility is to interact with the decision-maker along the process of generation of the solutions [22].
In this interactive approach, we ask the decision-maker to establish his/her preferences among di�erent
solutions, in order to guide the search, and to �nally obtain a solution that suits him/her.

The approach considered in this paper is quite new and is between the a posteriori approach and the a
priori approach. This new approach consists in trying to �nd the set of solutions that are optimal for at least
one set of parameters of a given aggregation function. This approach presents two advantages comparing
to the preceding ones: the parameters of the aggregation function do not have to be determined and at the
end, a set of solutions of smaller size comparing to the set of Pareto optimal solutions is proposed to the
decision-maker.

We will thus study in this paper how to optimize a speci�c aggregation function in the context of multi-
objective combinatorial optimization problems. As usually done previously in the literature [25, 27, 31, 32],
only biobjective combinatorial optimization problems will be considered in this paper (for example, once the
number of objectives is higher than two, generating simple weighted sum optimal solutions is nontrivial [26]).

We will also measure the impact of using an aggregation function instead of using Pareto dominance, that
is which Pareto optimal solutions will be not retained if an aggregation function is used to compare solutions.

We focus in this paper on the Choquet integral as a speci�c aggregation function [5, 13]. A Choquet
integral can be seen as an integral on a non-additive measure (or capacity). This integral is widely used in
multicriteria aggregation problems [12] as it can model many speci�c aggregation operators, including, but
not limited to, the average, the minimum, the maximum and all the statistic quantiles, the ordered weighted
averaging, the weighted ordered weighted averaging, etc.

Some papers already deal with the optimization of the Choquet integral of multiobjective combinatorial
optimization problems [8, 9, 10] when a speci�c capacity is given by the decision-maker. But to our knowledge,
the development of a method to generate the whole set of Choquet optimal solutions has not yet been studied.
In this paper, we present a property that characterizes the Choquet optimal set of biobjective combinatorial
optimization problems and develop a method based on this property to generate the Choquet optimal set,
containing the solutions that are optimal solutions of Choquet integrals.

In the next sections, we �rst de�ne popular aggregation operators (Section 2) and then the Choquet
integral (Section 3). The Section 4 is devoted to the generation of the Choquet optimal set. We �rst
expose a brief state-of-the-art (Subsection 4.1), then a property that characterizes the Choquet optimal set
(Subsection 4.2) and �nally a method to generate this set (Subsection 4.3). In Section 5, we experiment the
method with two classic biobjective combinatorial optimization (BOCO) problems: the biobjective knapsack
problem and the biobjective minimum spanning tree problem.

2. Aggregation operators

Before de�ning the Choquet integral, we �rst introduce the formalism of a MOCO problem, and then
present other popular aggregation operators, that can be seen as particular cases of the Choquet integral.

2.1. De�nitions and notations

A multiobjective (linear) combinatorial optimization (MOCO) problem is generally de�ned as follows:

“max
x

�f(x) = Cx = (f1(x), f2(x), . . . , fp(x))

subject to Ax ≤ b

x ∈ {0, 1}n

x ∈ {0, 1}n −→ n variables, i = 1, . . . , n
C ∈ Rp×n −→ p objective functions, k = 1, . . . , p

A ∈ Rr×n and b ∈ Rr×1 −→ r constraints, j = 1, . . . , r

A feasible solution x is a binary vector of n variables, having to respect the r constraints of the problem.
Therefore, the feasible set in decision space is given by X = {x ∈ {0, 1}n : Ax ≤ b}. The image of the feasible
set is given by Y = f(X ) = {f(x) : x ∈ X} ⊂ Np. An element of the set Y is called a cost-vector or a point.

Let us recall the concept of Pareto e�ciency. We consider that all the objectives have to be maximized.
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De�nition 1. The Pareto dominance relation (P -dominance for short) is de�ned, for all y1, y2 ∈ Zp, by:

y1 ≻P y2 ⇐⇒ [∀k ∈ {1, . . . , p}, y1k ≥ y2k and y1 ̸= y2]

De�nition 2. The strict Pareto dominance relation (sP -dominance for short) is de�ned as follows:

y1 ≻sP y2 ⇐⇒ [∀k ∈ {1, . . . , p}, y1k > y2k]

Within a feasible set X , any element x1 is said to be P -dominated when f(x2) ≻P f(x1) for some x2

in X , P -optimal (or P -e�cient) if there is no x2 ∈ X such that f(x2) ≻P f(x1) and weakly P -optimal if
there is no x2 ∈ X such that f(x2) ≻sP f(x1). The P -optimal set denoted by XP contains all the P -optimal
solutions. The image f(x) in the objective space of a P -optimal solution x is called a P -non-dominated point.
The image of the P -optimal set in Y, equal to f(XP ), is called the Pareto front, and is denoted by YP . We
can also de�ne the weakly P -optimal set denoted by XwP that contains all the weakly P -optimal solutions.

Generating all the P -optimal solutions of MOCO problems is an arduous and challenging task: MOCO
problems are often NP-Hard, with a non-convex feasible set X and a huge number of optimal solutions.
Moreover, many MOCO problems have been proved to be intractable, that is there are instances for which
the number of P -non-dominated points is exponential in the size of the instance [6]. Consequently, exact
methods can only be applied to solve small size biobjective or three-objective problems [15, 25, 32].

2.2. Weighted sum

The most popular aggregation operator is the weighted sum (WS), where positive importance weights
λi(i = 1, . . . , p) are allocated to the objectives:

De�nition 3. Given a vector y ∈ Zp and a weight set λ ∈ Rp
+, the WS fws

λ (y) of y is equal to:

fws
λ (y) =

p∑
i=1

λiyi

The main drawback of the WS is that this operator does not favor �balanced� solutions1. For example,
if the WS is used to establish the average grade of students and if we consider three students that have
respectively obtained the following notes for two subjects: (9,16), (12,12) and (16,9), the second student will
never be ranked �rst, regardless of the weight set used. It is impossible to have fws

λ (12, 12) ≥ fws
λ (9, 16) and

fws
λ (12, 12) ≥ fws

λ (16, 9) since for the �rst inequality, we need to have λ1 ≥ 4
7 and for the second, λ1 ≤ 3

7 .
This property is well-established in multiobjective optimization.

De�nition 4. Let x ∈ X and y = f(x) its image in Y. If ∃λ ∈ Rp (λi > 0) such that fws
λ (y) ≥

fws
λ (y2) ∀ y2 ∈ Y then x is a supported P -optimal solution, and its image y a supported P -non-dominated
point.

On the other hand, the P -optimal solutions that are not supported (that is they do not optimize a WS,
regardless of the weight set) are called non-supported P -optimal solutions. The images of the supported
P -e�cient solutions are located on the boundary of the convex hull of Y.

Please note that optimizing a WS with λi ≥ 0 only leads to weakly P -optimal solutions [6].

2.3. Ordered weighted average

The ordered weighted average (OWA) operator has been introduced by Yager [34] and is de�ned as follows:

1This notion is not easy to de�ne, but we will simply say that if yi < yj for some cost-vector, slightly improving (here
increasing) component yi to the detriment of yj while preserving the mean of the costs would produce a better distribution of
costs, and consequently a more equitable solution [21].
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De�nition 5. Given a vector y ∈ Zp and a weight set w ∈ Rp
+ (with

∑p
i=1 wi = 1, wi ∈ [0, 1]), the ordered

weighted average (OWA) of y is called fowa
w (y) and is equal to

p∑
i=1

wiy⌊i⌋, where ⌊.⌋ represents the permutation

over {1, . . . , p} such that y⌊1⌋ ≥ . . . ≥ y⌊p⌋ are the components of y sorted in non-increasing order.

In OWA, the weights are assigned to the ordered values rather than to the speci�c objectives. The OWA
operator allows to model the maximum (w1 = 1, wi = 0, i = 2, . . . , p), the minimum (wp = 1, wi = 0, i =
1, . . . , (p− 1)), the arithmetic mean (wi = 1/p, i = 1, . . . , p) and all the statistic quantiles. Also, if the weight
set w is well-chosen, OWA favors balanced solutions. For example, if w1 ≤ 3

7 , f
owa
w (12, 12) ≥ fowa

w (9, 16) and
fowa
w (12, 12) ≥ fowa

w (16, 9). With the OWA operator, non-supported P -non-dominated points can be thus
generated.

2.4. Weighted ordered weighted average

The OWA operator is a powerful operator often used to favor balanced solutions. However a simple
weighted mean cannot be expressed with this operator. Therefore, Torra [30] has introduced a more general
aggregation operator, the weighted ordered weighted average (WOWA), de�ned as follows:

De�nition 6. Given a vector y ∈ Zp, a weight set λ ∈ Rp
+ (with

∑p
i=1 λi = 1, λi ∈ [0, 1]) which allows to

de�ne the importance accorded to the objectives and a weight set w ∈ Rp
+ (with

∑p
i=1 wi = 1, wi ∈ [0, 1])

which allows to express the importance attached to the order of the components, the weighted ordered weighted
average (WOWA) fwowa

w,λ (y) of y is de�ned by:

fwowa
w,λ (y) =

p∑
i=1

ωiy⌊i⌋ with ωi = ω∗(
∑
k≤i

λ⌊k⌋)− ω∗(
∑
k<i

λ(⌊k⌋)

where ω∗ is an increasing function interpolating the points ( i
p ,
∑

k≤i wk) together with the point (0, 0) and

⌊.⌋ represents the permutation over {1, . . . , p} such that y⌊1⌋ ≥ . . . ≥ y⌊p⌋ are the components of y sorted in
non-increasing order.

We will consider piecewise linear interpolation function ω∗ which is the simplest form of the required
interpolation. The WOWA operator becomes the weighted mean if the preference weights are all equal
(weight w) and it is reduced to the standard OWA operator if the importance weights are all equal (weight
λ).

3. Choquet integral

The Choquet integral [5] generalizes all the aggregation operators de�ned before (WS, OWA and WOWA):

3.1. De�nition

We �rst de�ne the notion of capacity, on which the Choquet integral is based. We design by P the set of
objectives {1, . . . , p}.

De�nition 7. A capacity is a set function v: 2P → [0, 1] such that:

• v(∅) = 0

• v(P) = 1

• ∀A,B ∈ 2P such that A ⊆ B, v(A) ≤ v(B)

Therefore, for each subset of objectives A ⊆ P, v(A) represents the importance of the set A.
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De�nition 8. The Choquet integral of a vector y ∈ Zp for a capacity v is de�ned by:

fC
v (y) =

p∑
i=1

(
v(Y⌈i⌉)− v(Y⌈i+1⌉)

)
y⌈i⌉

=

p∑
i=1

(y⌈i⌉ − y⌈i−1⌉)v(Y⌈i⌉)

where ⌈.⌉ represents the permutation over {1, . . . , p} such that 0 = y⌈0⌉ ≤ y⌈1⌉ ≤ . . . ≤ y⌈p⌉, Y⌈i⌉ = {j ∈
{1, . . . , p}, yj ≥ y⌈i⌉} = {⌈i⌉, ⌈i+ 1⌉, . . . , ⌈p⌉} for i ≤ p and Y⌈p+1⌉ = ∅.

An example of the isopreference lines of this operator is represented in Figure 1, for two objectives.
Contrary to the OWA operator, the isopreference lines are not symmetric according to the bisector of equation
(f1(x) = f2(x)) separating the objective space.

6

-
(5,5) f1(x)

f2(x)

s

10 15

10

15

s
s(9, 13)

(10, 12)

(13, 11)

v({1}) = 0

v({2}) = 1
2

Figure 1: Isopreference lines of the Choquet integral, for the point (10, 12), with the capacity function v({1}) = 0 and v({2}) = 1
2
.

For this capacity, the points (10, 12), (13, 11) and (9, 13) have the same Choquet integral evaluations. We can also remark that
the point (10, 12) can never be better or equal than the points (13, 11) and (9, 13) if the OWA operator is used.

We show below how the di�erent aggregation operators (WS, OWA and WOWA) can be obtained from
a Choquet integral:

• WS: if the capacity v is additive, that is ∀A,B ⊆ P, v(A∪B) = v(A)+v(B), then the Choquet integral
of a vector y ∈ Zp is equal to:

fC
v (y) =

p∑
i=1

(
v(Y⌈i⌉)− v(Y⌈i+1⌉)

)
y⌈i⌉ =

p∑
i=1

v({i})yi

• OWA: if the capacity v is symmetric, that is ∀A,B ⊆ P such that |A| = |B|, v(A) = v(B), then the
Choquet integral of a vector y ∈ Zp is equal to:

fC
v (y) =

p∑
i=1

(
v(Y⌈i⌉)− v(Y⌈i+1⌉)

)
y⌈i⌉ =

p∑
i=1

wiy⌊i⌋

for a weight set w de�ned by: ∀i ∈ P, wi = v(A)− v(B) when i = |A| = |B|+ 1.
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• WOWA: if the capacity is de�ned from the function ω∗, then the Choquet integral of a vector y ∈ Zp

is equal to:

fC
v (y) =

p∑
i=1

(
v(Y⌈i⌉)− v(Y⌈i+1⌉)

)
y⌈i⌉ =

p∑
i=1

(
ω∗(

∑
j∈Y⌈i⌉

λ⌊j⌋)− ω∗(
∑

j∈Y⌈i+1⌉

λ⌊j⌋)
)
y⌈i⌉

In [29], Torra shows that all WOWA operators are Choquet integrals, but that the reversal is not
always true, as shown in an example with three objectives. If only two objectives are considered, we
can wonder whether there is a di�erence between the Choquet integral and the WOWA operator.

Property 1. With two objectives, all Choquet integrals are WOWA operators.

Proof 1. If the case of two objectives, from the equation above, we have:

fC
v (y) =

(
ω∗(

∑
j∈Y⌈1⌉

λ⌊j⌋)− ω∗(
∑

j∈Y⌈2⌉

λ⌊j⌋)
)
y⌈1⌉ +

(
ω∗(

∑
j∈Y⌈2⌉

λ⌊j⌋))
)
y⌈2⌉

That is, if y1 ≥ y2:

fC
v (y) =

(
ω∗(λ1 + λ2)− ω∗(λ1)

)
y2 + ω∗(λ1)y1

=
(
1− ω∗(λ1)

)
y2 + ω∗(λ1)y1

= y2 + ω∗(λ1)(y1 − y2)

= y2 + v({1})(y1 − y2)

And if y1 < y2:

fC
v (y) = y1 + ω∗(λ2)(y2 − y1)

= y1 + v({2})(y2 − y1)

We have to show that it is possible to generate v({1}) and v({2}), that are independent and included
between [0,1], from ω∗(λ1) and ω∗(λ2), given that λ1 + λ2 = 1, and w1 + w2 = 1.

Let us suppose that λ1 ≤ λ2 (that is λ1 ≤ 0.5):

ω∗(λ1) = 2w1λ1

ω∗(λ2) = w1 + 2(1− w1)(λ2 − 0.5)

= w1 + 2(1− w1)(0.5− λ1)

= 1− 2λ1 + 2w1λ1 = 1− 2λ1 + ω∗(λ1)

And if λ1 > λ2 (that is λ1 > 0.5):

ω∗(λ2) = 2w1λ2 = 2w1(1− λ1)

ω∗(λ1) = w1 + 2(1− w1)(λ1 − 0.5)

= 2λ1 − 1 + ω∗(λ2)

Therefore, the WOWA operator equivalent to the Choquet integral is obtained with:

If v({1}) ≤ v({2}):

λ1 = 1+v({1})−v({2})
2 , w1 = v({1})

1+v({1})−v({2})

and if v({1}) ≥ v({2}):

λ1 = 1+v({1})−v({2})
2 , w1 = v({2})

1+v({2})−v({1})

∀v({1}) ∈ [0, 1], v({2}) ∈ [0, 1], we have a corresponding λ1 ∈ [0, 1] and a corresponding w1 ∈ [0, 1],
therefore all the capacities v({1}) and v({2}) can be obtained, and all Choquet integrals are WOWA
operators, in the case of two objectives.
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For example, the Choquet integral obtained with v({1}) = 3
4 and v({2}) = 1

2 is equivalent to the
WOWA operator obtained with λ = ( 58 ,

3
8 ) and w = ( 23 ,

1
3 ).

We have represented in Figure 2 the di�erent operators for two objectives in the capacity space (x-axis is
v({1}) and y-axis is v({2})).

6

-
v({1})

v({2})

s

OWA
WS

s

s

MAX

MEAN

MIN 0.5 1

1

0.5

Figure 2: Representation of the di�erent operators, for two objectives, in the capacity space (that is, x-axis is v({1}) and y-axis
is v({2})).

3.2. Example

6

-
f1(x)

f2(x)

t

t

t

tt

d

dd
dddd

(0,14)

(9,13)

(10,12)
(13,11)

(15,10)
(17,9) (21,8)

(23,6)

(24,5) (27,4)

(28,1)
(29,0)

Figure 3: Supported (represented by •) and non-supported (represented by ◦) P -non-dominated points.

In Table 1, we compare the points represented in Figure 3. They are all P -optimal, but only some of
them are WS, OWA, WOWA or C optimal.

We see that the C-optimal set is a subset of the P -optimal set. All the supported P -optimal solutions
belong to the C-optimal set, but not all the non-supported P -optimal solutions. The WS optimal set and
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(f1(x), f2(x)) P WS OWA WOWA C
(29,0) 1 1 1 1 1
(28,1) 1 0 0 0 0
(27,4) 1 1 1 1 1
(24,5) 1 0 0 0 0
(23,6) 1 0 0 0 0
(21,8) 1 1 1 1 1
(17,9) 1 0 0 0 0
(15,10) 1 0 0 0 0
(13,11) 1 0 1 1 1
(10,12) 1 0 0 1 1
(9,13) 1 1 0 1 1
(0,14) 1 1 0 1 1

Table 1: Comparisons of the points of Figure 3 according to the P -dominance and the di�erent operators (WS, OWA, WOWA,
Choquet).

the OWA optimal set are a subset of the C-optimal set. The WOWA optimal set is equal to the C-optimal
set in biobjective optimization. In this example, the point (10,12) is the only point which is not WS optimal
or OWA optimal but C-optimal.

4. Generation of the C-optimal set

4.1. State-of-the-art

Generating the C-optimal solutions of MOCO problems is a recent research topic. We have only listed
three previous works on this topic, none of them before 2009 [8, 9, 10]. Unlike the algorithm presented in
this paper, these works only focus on the generation of one C-optimal solution given a capacity. Moreover,
the problem of generating all the capacities that allow to generate the C-optimal set is not studied. On the
other hand, the previous works are not limited to two objectives, as considered here.

In [10], Galand et al. search for C-optimal solutions of multiobjective spanning trees problems and
multiobjective knapsack problems. They present a condition (named preference for interior points) that
characterizes preferences favoring well-balanced solutions: the capacity v has to be supermodular (in the case
of maximization of the objectives), that is ∀A,B ∈ 2P , v(A∪B) + v(A∩B) ≥ v(A) + v(B). They investigate
the generation of C-optimal solutions under this assumption. For both problems studied, they introduce a
linear bound of the Choquet integral and propose a branch and bound algorithm using this bound. They
consider instances with a number of objectives equal to 3, 5 or 8.

In [9], Galand et al. are looking for C-optimal solutions, under the same assumption. Multiobjective
spanning tree and shortest path problems are investigated. They use a branch and bound algorithm and an
enumeration algorithm, based on a ranking approach, to solve the problems.

In [8], Fouchal et al. study the same problem: generating a C-optimal solution given a capacity. They
apply their algorithm to the multiobjective shortest path problem. To �nd a C-optimal solution of the
multiobjective shortest path problem, they introduce Choquet dominance rules that they integrate within
the label setting algorithm of Martins [20], based on dynamic programming.

4.2. Characterization of the C-optimal solutions

The aim is to generate a complete C-optimal set called XC , containing at least one solution x ∈ X
optimal for each possible Choquet integral, that is ∀v ∈ V, ∃xc ∈ XC | fv

c (f(xc)) ≥ fv
c (f(x)) ∀x ∈ X , where V

represents the set of capacity functions de�ned over two objectives (that is v(∅) = 0, v({1}) = α, v({2}) = β
and v({1, 2}) = 1, with α ∈ [0, 1] and β ∈ [0, 1]).

Therefore, we do not guarantee to generate all the C-optimal solutions, but at least one solution optimal
for each possible Choquet integral (for computational reasons, as in single-objective optimization where only
one optimal solution is usually sought).
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Please �rst note that a solution C-optimal is only weakly P -optimal:

Property 2. A solution C-optimal is weakly P -optimal.

xc ∈ XC ⇒ xc ∈ XwP

Proof 2. If xc /∈ XwP , there is x ∈ X such that f(x) ≻sP f(xc), which implies that fv
c (f(x)) > fv

c (f(xc)),
that is xc /∈ XC . Therefore xc ∈ XwP .

However, the case where C-optimal solutions are weakly P -optimal but not P -optimal only occurs if a
Choquet integral with (α, β) = (0, 1) or (α, β) = (1, 0) is used. Indeed, in this case, only one objective is
optimized and if x1 and x2 represent two di�erent optimal solutions, we can have f

v
c (f(x1)) = fv

c (f(x2)) even
if f(x2) ≻P f(x1). In the algorithm proposed to generate XC , this case will be avoided by always generating
a P -optimal solution corresponding to an optimal solution of the Choquet integral with (α, β) = (0, 1) or
(α, β) = (1, 0). Therefore, all the C-optimal solutions generated will be P -optimal.

We now propose a property that characterizes the C-optimal set.
Let Xws be the set containing at least one solution xws ∈ X optimal for each WS de�ned through a weight

vector λ (∀λ ∈ [0, 1]2 ∃xws ∈ Xws

∣∣ fws(f(xws)) ≥ fws(f(x)) ∀x ∈ X ).
Let's separate the decision space in two parts: the subspace X+ composed of the solutions x ∈ X such

that f2(x) ≥ f1(x) and the subspace X− composed of the solutions x ∈ X such that f2(x) < f1(x). In order
to avoid trivial cases, we will suppose in the following that both X+ and X− are not empty.

We de�ne f+
1 and f−

2 the two values of Z such that f+
1 = maxx∈X+(f1(x)) and f+

2 = maxx∈X−(f2(x)).
Let denote m the (�ctitious) solution in the decision space such that f1(m) = f2(m) = max(f+

1 , f+
2 ) =

maxx∈X min(f1(x), f2(x)).
We note M+ the set X+ ∪ {m} and we note M− the set X− ∪ {m}.
Finally, let M+

ws be the set containing at least one solution xws+ ∈ X+ optimal, among the search
space M+, for each WS de�ned through a weight vector λ (∀λ ∈ [0, 1]2 ∃xws+ ∈ M+

ws

∣∣ fws(f(xws+)) ≥
fws(f(x)) ∀x ∈ M+). Let also M−

ws be the set containing at least one solution xws− ∈ X− optimal,
among the search space M−, for each WS de�ned through a weight vector λ (∀λ ∈ [0, 1]2 ∃xws− ∈ M−

ws

∣∣
fws(f(xws−)) ≥ fws(f(x)) ∀x ∈ M−).

We have represented an example of these sets in Figure 4.
We have then the following property which characterize XC :

Property 3.

XC = M+
ws ∪M−

ws

Proof 3. In order to prove Property 3, we have to prove the following implications:

1. x ∈ M+
ws ⇒ x ∈ XC

2. x ∈ M−
ws ⇒ x ∈ XC

3. x ∈ {X+ ∩ XC} ⇒ x ∈ M+
ws

4. x ∈ {X− ∩ XC} ⇒ x ∈ M−
ws

Due to the symmetry of the situations, we present below only the proofs of points 1 and 3.

1. x∗ ∈ M+
ws ⇒ x∗ ∈ XC

As x∗ ∈ M+
ws, we have:

∃β ∈ [0, 1] | (1− β)f1(x
∗) + βf2(x

∗) ≥ (1− β)f1(x) + βf2(x) ∀x ∈ M+ (1)

• We �rst show that ∀x ∈ X+ ∃ v ∈ V | fv
C(f(x

∗)) ≥ fv
C(f(x)). If we take v({2}) = β, we have

fv
C(f(x

∗)) = (1− β)f1(x
∗) + βf2(x

∗) and fv
C(f(x)) = (1− β)f1(x) + βf2(x). Therefore, following

(1), for this capacity v, fv
C(f(x

∗)) ≥ fv
C(f(x)) ∀x ∈ X+ (X+ ⊆ M+).

9



• We show now that ∀x ∈ X− ∃ v ∈ V | fv
C(f(x

∗)) ≥ fv
C(f(x)). If we take v({1}) = α = 0, we have

fv
C(f(x)) = αf1(x) + (1 − α)f2(x) = f2(x). And if we take v({2}) = β, following (1), we have
fv
C(f(x

∗)) = (1− β)f1(x
∗) + βf2(x

∗) ≥ (1− β)f1(m) + βf2(m) = f2(m) as f1(m) = f2(m). And
by de�nition of m, we have ∀x ∈ X−f2(x) ≤ f2(m), therefore fv

C(f(x
∗)) ≥ f2(m) ≥ f2(x) =

fv
C(f(x)), ∀x ∈ X−.

So ∀x∗ ∈ M+
ws there is a capacity v: {v(∅) = 0, v({1}) = 0, v({2}) = β, v({1, 2}) = 1) such that

fv
C(f(x

∗)) ≥ fv
C(f(x)), ∀x ∈ X+ and ∀x ∈ X−. Therefore x∗ ∈ XC .

3. x∗ ∈ {X+ ∩ XC} ⇒ x∗ ∈ M+
ws

As x∗ ∈ {X+ ∩ XC}, there is a capacity v : {v(∅) = 0, v({1}) = α, v({2}) = β, v({1, 2}) = 1) such that
fv
C(f(x

∗)) ≥ fv
C(f(x)) ∀x ∈ X . We have to show that there exists β∗ ∈ [0, 1] such that (1−β∗)f1(x

∗)+
β∗f2(x

∗) ≥ (1− β∗)f1(x) + β∗f2(x) ∀x ∈ M+.

• We �rst show that ∃β∗ ∈ [0, 1] | (1−β∗)f1(x
∗)+β∗f2(x

∗) ≥ (1−β∗)f1(x)+β∗f2(x) ∀x ∈ X+. As
fv
C(f(x)) = (1− β)f1(x) + βf2(x) and fv

C(f(x
∗)) = (1− β)f1(x

∗) + βf2(x
∗), and as fv

C(f(x
∗)) ≥

fv
C(f(x)), it is enough to take β∗ = β to have (1 − β∗)f1(x

∗) + β∗f2(x
∗) ≥ (1 − β∗)f1(x) +

β∗f2(x)∀x ∈ X+.

• We show now that (1− β∗)f1(x
∗) + β∗f2(x

∗) ≥ (1− β∗)f1(m) + β∗f2(m)

� Suppose that f1(m) = f2(m) = f+
1 . It means that there is x′ ∈ X+ such that f1(x

′) = f1(m)
and f2(x

′) ≥ f2(m). As (1 − β∗)f1(x
∗) + β∗f2(x

∗) ≥ (1 − β∗)f1(x) + β∗f2(x) ∀x ∈ X+, we
have (1−β∗)f1(x

∗)+β∗f2(x
∗) ≥ (1−β∗)f1(x

′)+β∗f2(x
′) and as (1−β∗)f1(x

′)+β∗f2(x
′) ≥

(1−β∗)f1(m)+β∗f2(m), we obtain by transitivity (1−β∗)f1(x
∗)+β∗f2(x

∗) ≥ (1−β∗)f1(m)+
β∗f2(m).

� Suppose that f1(m) = f2(m) = f−
2 . It means that there is x′ ∈ X− such that f2(x

′) = f2(m)
and f1(x

′) ≥ f1(m). As (1−β∗)f1(x
∗)+β∗f2(x

∗) ≥ (1−α)f2(x)+αf1(x) ∀x ∈ X−, we have
(1 − β∗)f1(x

∗) + β∗f2(x
∗) ≥ (1 − α)f2(x

′) + αf1(x
′) and as (1 − α)f2(x

′) + αf1(x
′) ≥ (1 −

6

-
f1(x)

f2(x) u u

u

u

u
u
u

f(x1)
f(x2)

f(x3)

f(x4)

f(x5)
f(x7)

f(x8)

f+
1

uf−
2

f(x6)e
f(m)

Figure 4: X+ = {x1, x2, x3, x4, x5},X− = {x6, x7, x8},Xws = {x1, x2, x7, x8},M+
ws = {x1, x2, x3},M−

ws = {x6, x7, x8}.
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α)f2(m)+αf1(m), we obtain by transitivity (1−β∗)f1(x
∗)+β∗f2(x

∗) ≥ (1−α)f2(m)+αf1(m).
Morever, we have:

(1− α)f2(m) + αf1(m) = f2(m) (as f1(m) = f2(m))

= (1− β∗)f1(m) + β∗f2(m)

Therefore (1− β∗)f1(x
∗) + β∗f2(x

∗) ≥ (1− β∗)f1(m) + β∗f2(m).

We have thus shown that if x∗ ∈ XC , there is a β∗ ∈ [0, 1] such that:

(a) (1− β∗)f1(x
∗) + βf2(x

∗) ≥ (1− β∗)f1(x) + β∗f2(x) ∀x ∈ X+.
(b) (1− β∗)f1(x

∗) + βf2(x
∗) ≥ (1− β∗)f1(m) + β∗f2(m)

which means that x∗ ∈ M+
ws.

4.3. Method to generate a C-optimal set

We want now to generate a C-optimal set XC . In order to do so, we need to generate the sets M+
ws and

M−
ws. For computational reasons, we �rst generate a set Xws. All the solutions of Xws are C-optimal (as

they optimize a WS) and included in M+
ws ∪M−

ws. We then generate the remaining C-optimal solutions.

4.3.1. Generation of Xws

The set Xws can easily be obtained with the dichotomic method of Aneja and Nair [2]. This method
consists in generating all the weight sets which make it possible to obtain a set of WS optimal solutions of a
BOCO problem. Please note that as the aim is to generate a set XC containing at least one solution x ∈ X
optimal for each possible Choquet integral, we do not need to generate all the WS optimal solutions but
only a set Xws containing at least one optimal solution for each possible WS (as a consequence, not all the
non-extreme supported P -optimal solutions (located along the facets) will be generated).

We recall this method in Algorithm 1, containing the Algorithm 2.
First, the set Xws is initialized with both lexicographic optimal solutions x̂1 and x̂2 corresponding respec-

tively to lexmaxx∈X
(
f1(x), f2(x)

)
and lexmaxx∈X

(
f2(x), f1(x)

)
. We use the method proposed by Przybylski

et al. [25] to compute a lexicographic optimal solution. We �rst solve two BOCO problems: one by only
considering the �rst objective; the weight set is this equal to (1, 0) (the optimal solution of this problem
is called x1) and one by only considering the second objective; the weight set is this equal to (0, 1) (the
optimal solution of this problem is called x2). Then, for computing the lexicographic optimal solution x̂1

corresponding to lexmaxx∈X
(
f1(x), f2(x)

)
, we improve the second objective without degrading the �rst ob-

jective by solving the single-objective problem with a weight set de�ned by the normal to the line through(
f1(x1), f2(x1)

)
and

(
f1(x1)− 1,max f2(x2) + 1

)
, that is λ =

(
max f2(x2) + 1− f2(x1), 1

)
, since we suppose

that Y ⊂ N2. The optimal solution x̂1 obtained is an optimal solution of lexmaxx∈X
(
f1(x), f2(x)

)
.

The second lexicographic optimal solution x̂2 corresponding to lexmaxx∈X

(
f2(x), f1(x)

)
is found in the

same way by using x2, solution of the BOCO problem with only the second objective considered, and solving
an additional single-objective problem with λ =

(
1,max f1(x1) + 1− f1(x2)

)
.

Once both lexicographic optimal solutions have been generated, the dichotomic scheme starts and the
Algorithm 2, called SolveRecursion, is run.

The dichotomic scheme is initialized with both lexicographic points f(x̂1) and f(x̂2) (f(xr) = f(x̂1) and
f(xs) = f(x̂2)). We also specify the search space Xr, in this case, Xr = X . Then, a single-objective problem
with a weight set de�ned by the normal to the line through f(xr) and f(xs) is solved. The corresponding
weight set is equal to

(
f2(xr)− f2(xs), f1(xs)− f1(xr)

)
. The solution of this problem is called xt.

Let us note the line segment joining two points yr and ys in R2, by yrys.
If f(xt)∩ f(xr)f(xs) = ∅, that is if f(xt) is not on the line segment joining both points f(xr) and f(xs),

we start again the dichotomic scheme two times: with xr and xt, and with xt and xs as starting solutions of
the SolveRecursion algorithm.

When the dichotomic scheme stops, the set Xws has been obtained and the other C-optimal solutions
have to be generated.
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Algorithm 1 Generation of XC

Parameters ↓: a BOCO problem, with f1(x) and f2(x) both objectives.
Parameters ↑: the set XC .

- -| Computation of one lexicographically optimal solution for (f1(x),f2(x))
Solve lexmax

x∈X

(
f1(x), f2(x)

)
(1)

Let x̂1 one optimal solution of (1)

- -| Computation of one lexicographically optimal solution for (f2(x),f1(x))
Solve lexmax

x∈X

(
f2(x), f1(x)

)
(2)

Let x̂2 one optimal solution of (2)

- -| Computation of Xws

Xws = {x̂1, x̂2}
SolveRecursion(f(x̂1) ↓, f(x̂2) ↓,X ↓,Xws ↕)

XC = Xws

- -| Computation of f(m)
Solve f+

1 = max
x∈X+

f1(x)

Solve f+
2 = max

x∈X−
f2(x)

f1(m) = f2(m) = max(f+
1 , f+

2 )

- -| Computation of x̂ws+ and x̂ws−

Solve max
x∈{Xws∩X+}

f1(x) (3)

Let x̂ws+ one optimal solution of (3)
Solve max

x∈{Xws∩X−}
f2(x) (4)

Let x̂ws− one optimal solution of (4)

- -| Computation of XC

SolveRecursion(f(x̂ws+) ↓, f(m) ↓,X+ ↓,XC ↕)
SolveRecursion(f(m) ↓, f(x̂ws−) ↓,X− ↓,XC ↕)

4.3.2. Generation of {M+
ws ∪M−

ws}\Xws

We want now to generate the rest of the C-optimal solutions, that is the C-optimal solutions that do not
optimize aWS.We have �rst to generate the �ctitious point f(m), with f1(m) = f2(m) = max(maxx∈X+ f1(x),
maxx∈X− f2(x)) = maxx∈X min(f1(x), f2(x)).

To compute f1(m) and f2(m), we simply solve two single-objective problems: f+
1 = maxX+ f1(x) and

f+
2 = maxX− f2(x). We have then f1(m) = f2(m) = max(f+

1 , f+
2 ).

Afterwards, we use the dichotomic scheme two times: �rstly, from the point f(x̂ws+), optimal for
maxx∈{Xws∪X+} f1(x) (easily obtained as Xws has been previously generated) and f(m), and secondly, from
f(m) and the point f(x̂ws−), optimal for maxx∈{Xws∪X−} f2(x). In the �rst case, the search space Xr is
limited to X+ and in the second case to X−.

If we come back to Figure 4, we will apply the dichotomic scheme from f(x2) and f(m) (x3 will be
generated), and from f(m) and f(x7) (x6 will be generated).

5. Results

As examples, we experiment the algorithm on the biobjective knapsack problem, and then on the biob-
jective minimum spanning tree.

The computer used for the experiments has a Intel Core i7-950 with 3.07 GHz and 11.8 GB of RAM.
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Procedure 2 SolveRecursion

Parameters ↓: f(xr), f(xs) (with f1(xr) < f1(xs)), Xr

Parameters ↕: Xsr.

- -| Creation of a weight set λ normal to the line segment connecting f(xr) and f(xs)
λ1 = f2(xr)− f2(xs), λ2 = f1(xs)− f1(xr)

- -| Solve the WS single-objective problem
Solve max

x∈Xr

(
λ1f1(x) + λ2f2(x)

)
(3)

Let xt one optimal solution of (3)
- -| Update of Xsr

Xsr = Xsr ∪ {xt}

- -| Search for new optimal solutions
if f(xt) ∩ f(xr)f(xs) = ∅ then

SolveRecursion(f(xr) ↓, f(xt) ↓,Xr ↓,Xsr ↕)
SolveRecursion(f(xt) ↓, f(xs) ↓,Xr ↓,Xsr ↕)

end if

5.1. Biobjective knapsack problem

We have tested the algorithm on the classic version of the knapsack problem, with two objectives (BOKP).
This problem has been widely studied in multiobjective optimization [18] (but essentially the generation of
the P -optimal solutions). The BOKP is formulated as follows.

Given n items (i = 1, . . . , n) having one characteristic wi�typically the weight�and two pro�ts cik
(k = 1, 2), some items should be selected to maximize the two total pro�ts while not exceeding the knapsack
capacity W .

The BOKP problem is formulated as follows:

�max � fk(x) =

n∑
i=1

cikxi k = 1, 2

subject to

n∑
i=1

wixi ≤ W

xi ∈ {0, 1} i = 1, . . . , n

where xi = 1 means that the item i is selected to be in the knapsack. It is assumed that all coe�cients
cik, w

i and W are nonnegative.
We have used the instances of the BOKP generated by Bazgan et al. [3]. Four types of instances have

been de�ned: random (type A: the pro�ts and the weights are randomly generated), correlated (type B: the
two pro�ts are correlated and the weights are randomly generated), uncorrelated (type C: the two pro�ts are
uncorrelated and the weights are randomly generated) and uncorrelated with correlated weights (type D: the
two pro�ts are uncorrelated and the weights are correlated with the sum of the pro�ts). For each type of
instances and for each number of items, ten di�erent instances are considered.

To solve the WS problems, we have used the minknap algorithm developed by D. Pisinger [23]. The
constrained knapsack problems (that is with f1(x) ≥ f2(x) or with f2(x) ≥ f1(x)) have been solved with
CPLEX since we have not found particular methods to solve these problems.

The results are given in Table 2 for the four types of instances and for di�erent number of items. Ten
di�erent instances are considered for each type of instances and for each number of items. We indicate
the following values: the mean number of WS optimal solutions generated, the mean number of C-optimal
solutions generated and the mean number of P -optimal solutions (obtained by Bazgan et al. [3]). We also
indicate the CPU time, in seconds, needed to generate the WS optimal solutions, the C-optimal solutions
(included the WS optimal solutions), and the P -optimal solutions (in this case, the CPU time corresponds
to the CPU time of the method proposed by Bazgan et al. [3], on a 3.4 GHz computer with 3 GB of RAM).

We can observe from Table 2:
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Instances # CPU(s)

Type n WS Choquet Pareto WS Choquet Pareto

A
400 68.4 71.3 1713.3 0.007 0.739 307.10

700 115.0 118.7 4814.8 0.014 1.537 5447.92

B
2000 38.8 39.8 477.7 0.016 0.483 251.06

4000 76.4 78.4 1542.3 0.046 2.484 6773.26

C
300 66.5 69.9 2893.6 0.011 1.015 373.1

500 111.9 115.9 7112.1 0.019 9.045 4547.98

D
100 35.5 38.7 1765.4 0.009 1.335 40.87

200 63.8 68.0 5464.0 0.018 3.328 1145.92

Table 2: Results for the biobjective knapsack problem.

• The number of C-optimal solutions is only lightly higher than the number of WS optimal solutions.
The di�erence (mean) is included between one and �ve. There are not signi�cant di�erences between
the four types of instances. However, the higher the number of items is, the higher the di�erence is.
This small di�erence between the number of C-optimal solutions and WS optimal solutions can be
explained by the fact that the solutions that are C-optimal but not WS optimal are only located in
the small area of the objective space de�ned by the two consecutive supported P -non-dominated points
located on each side of the bisector.

• The C-optimal solutions represent only a small part of the P -optimal solutions (between 1% and 9%).

• The CPU time to generate the C-optimal solutions is much less than the CPU time needed to generate
all the P -optimal solutions (from 30 to 3500 times faster). But if we compare the CPU times to
generate the C-optimal solutions and to generate the WS optimal solutions, we see that is much faster
to generate only the WS optimal solutions (from 30 to 480 times faster). This can be explained by the
fact that a particular solver has been used to solve the WS problems, while to obtain the additional
C-optimal solutions, CPLEX is needed to solve the constrained knapsack problems (harder to solve
than the WS problems).

We have seen through the BOKP that this new approach to generate the C-optimal solutions is e�cient
since the solutions are rapidly obtained comparing to the generation of the whole set of P -optimal solutions.

However, we will see in the following section, that is not true for all BOCO problems.

5.2. Biobjective minimum spanning tree problem

We apply now the algorithm to the biobjective spanning tree problem (BOMSTP). The BOMSTP is
formulated as follows. We have a connected graph G = (V,E), with n = |V | vertices and m = |E| edges,
and the set X of feasible solutions is the set of spanning trees (a connected subgraph of G which contains no
cycle and all vertices of G). Each edge is evaluated by two integer costs, ce1 and ce2. The value of a spanning
tree in the objective space is f(x) = (f1(x), f2(x)) where fk(x) = xic

ei
k (k = 1, 2), with xi = 1 if the edge ei

belongs to the tree and xi = 0 otherwise.
The single-objective MSTP can be easily solved in polynomial time with the Prim's [24] or Kruskal [17]

greedy algorithm. However, generating the P -optimal solutions of the BOMSTP has been proved NP-Hard
by Emelichev and Perepelitsa [7].

Also, to generate the C-optimal solutions that are not WS-optimal solutions, we need to solve the MSTP
with an additional constraint (f1(x) ≥ f2(x) or f2(x) ≥ f1(x)), that we will further call �constrained MSTP�,
which is NP-Hard [1].

We have used three types of instances:

• Random: the costs ce1 and ce2 are randomly generated between 1 and 100. The graphs used are cliques
(complete graphs).
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• Grid: the costs ce1 and ce2 are also randomly generated between 1 and 100, but the graphs are not
complete. The graphs form a grid, with n = a2 vertices and with edges joining the neighboring vertices
horizontally and vertically.

• Hard: these instances are particular instances introduced by Knowles and Corne [16]. These instances
are considered as hard because there are many P -non-dominated points located far away from any
supported P -non-dominated points (in the middle of the Pareto front, see Figure 5). To create these
hard instances, three special vertices (labeled 0,1 and 2) are considered. We restrict the costs to lie in
[0,100]. The costs used are the following: ce(0,1) = (ξ, ξ), ce(0,2) = (0, 100−ξ), ce(1,2) = (100−ξ, 0). The
costs of all the other edges are randomly generated between ξ and η if i, j > 3 and between (100 − ξ)
and 100 if (i xor j) ≤ 3, with i, j ∈ V , ξ a small positive value of the order of 1/n and ξ < η << 100−ξ.
We have used ξ = 5 and η = 20.

 200

 250

 300

 350

 400

 450

 200  250  300  350  400  450

f2

f1

Pareto

Figure 5: Pareto front of a hard instance with 25 vertices.

To solve the MSTP, the Prim's algorithm has been implemented. To solve the constrained MSTP, we
have considered a single commodity �ow formulation [19] of the minimum spanning tree problem, solved
with the CPLEX solver (with the network algorithm of CPLEX). To generate the P -optimal solutions, we
have used the ϵ-constraint method [14] (the related constrained problems are solved with the CPLEX solver
from the single commodity �ow formulation), for its simplicity, even if more e�cient approaches have been
developed [28]. However, with this method, we were not able to solve the random instances with 50 and 100
nodes, the grid instances with 100 nodes and the hard instances with 30 nodes (CPLEX ran out of memory
while trying to solve the constrained MSTP).

The results are given in Table 3, for the three types of instances. We have used three di�erent numbers
of vertices for each instance. For each type of instances and for each number of items, ten di�erent instances
are considered.

For the random and grid instances, we can draw the same conclusion that with the BOKP: the number
of C-optimal solutions is only slightly higher than the number of WS optimal solutions, but these additional

15



 200

 250

 300

 350

 400

 450

 200  250  300  350  400  450

f2

f1

WS

 200

 250

 300

 350

 400

 450

 200  250  300  350  400  450

f2

f1

Choquet

Figure 6: Representation of the WS and C-optimal solutions of a hard instance with 25 vertices.
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Instances # CPU(s)

Type n WS Choquet Pareto WS Choquet Pareto

Random

25 40.8 42.8 219.7 0.006 7.18 460.87

50 100.9 102.3 / 0.027 5.18 /

100 216.5 218.5 / 0.2 303.67 /

Grid

25 12.2 13.7 43.4 0.002 0.72 5.54

49 24.5 25.9 158.75 0.008 3.58 169.82

100 56.4 58.6 / 0.049 21929.81 /

Hard

20 18.6 29.0 94.7 0.001 9.71 86.86

25 27.2 37.6 112.4 0.001 91.97 271.51

30 29.7 39.5 / 0.003 1494.22 /

Table 3: Results for the biobjective minimum spanning tree problem.

solutions are much harder to compute.
For the hard instances, we see that the number of C-optimal solutions can be quite higher than the

number of WS optimal solutions. But these additional solutions are harder to generate. For example, for
the hard instances with 30 nodes, we only need 3ms to generate all the WS optimal solutions, while we need
1494s to generate all the C-optimal solutions (that is 498000 times more, on average). We see thus that it
will be necessary to develop speci�c approaches to solve the constrained MSTP to reduce the CPU time.

We observe however through the Figure 6 the interest to generate the C-optimal solutions comparing to
the generation of the WS optimal solutions: with the WS, no solution in the middle of the Pareto front is
generated.

5.3. Additional remark

The optimization of a Choquet integral is an arduous task. Moreover, the elicitation of the parameters
of a Choquet integral in order to represent a real-life preference relation is also di�cult [11].

Therefore, it is worth to investigate whether the obtained optimal solutions for a given capacity could be
obtained through a more simple optimization problem. In order to do so, we have investigated the whole
space of parameters of a biobjective Choquet integral and we determine if the optimal solution for a given
set of parameters of a capacity can also be simply obtained through a WS optimization or not.

We have represented the results in Figure 7 for one instance of the BOKP (type C, 300 items) and for
one instance of the BOMSTP (hard type, 25 items). The �lled squares (■) represent capacities for which
no solution is optimal for the Choquet integral and the WS, at the same time, while the empty squares (□)
represent capacities for which there is a solution optimal for the Choquet integral and the WS.

We observe for both problems that the optimization of about 75% of the possible Choquet integrals leads
to a solution which is also optimal for a WS. Therefore, the interest to try to elicitate a Choquet integral
comparing to the use of the WS is not high if only two objectives are considered. In theory, the WS can be
obtained from the Choquet integral if the capacity v is additive, which only represents a small area in the
capacity space, as exposed in Figure 2. But in practice, with two objectives, it seems, that solutions that are
WS optimal are also optimal for Choquet integral with capacities that are not additive.

We have only exposed the results of two instances, but similar results have been obtained for the other
instances.

6. Conclusion and perspectives

We have introduced in this paper the �rst method to obtain all the C-optimal solutions of biobjective
combinatorial problems. The method is based on a general property, and can easily be applied to any BOCO
problems.

Through this property, we have shown that the C-optimal solutions that are not optimal solutions of
WS problems are located in a speci�c area of the objective space: between the two consecutive supported
P -non-dominated points located on each side of the bisector.
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Figure 7: Results obtained with one instance of the BOKP of type C, 300 items (above) and with one instance of the BOMSTP
of hard type, with 25 nodes (below). The �lled squares (■) represent capacities for which no solution is optimal for the Choquet
integral and the WS, at the same time, while the empty squares (□) represent capacities for which there is a solution optimal
for the Choquet integral and the WS.
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The method has been applied to two BOCO problems: the biobjective knapsack problem and the biob-
jective minimum spanning tree problem. We have shown through these two problems that the number of
C-optimal solutions is relatively low comparing to the number of P -optimal solutions. Also, computing the
C-optimal solutions that are not WS optimal solutions is harder than computing WS optimal solutions since
a single-objective problem with additional constraints has to be solved.

This �rst work about generating all the C-optimal solutions opens many perspectives:

• The property will have to be generalized to problems with more than two objectives. We think that the
basis of the property will be the same, that is C-optimal solutions that are not WS optimal solutions
will be located between the consecutive supported P -non-dominated points along the di�erent bisectors
of the objective space. The issue will be how to de�ne the consecutive supported P -non-dominated
points and the bisectors in a high-dimensional objective space.

• It will be also interesting to study and to de�ne what brings exactly and concretely the C-optimal
solutions that are not WS optimal solutions, given that they are harder to compute.

• We also have seen for di�erent problems and instances that the optimization of the Choquet integral
with about 75% of the possible values of the capacities leads to solutions which can also be obtained by
simply optimizing a WS. It will be interesting to study how this percentage evolves with the number
of objectives.

• Finally, through the biobjective spanning tree problem, we have shown that it can be very time-
consuming to apply the general method developed in this paper. Therefore, speci�c methods to compute
all the C-optimal solutions (branch and bound methods) or speci�c methods to optimize the single-
objective problems with additional constraints could be studied.
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