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2 Université de Lyon, ERIC, France
antoine.rolland@univ-lyon2.fr

Abstract. In this paper, we propose a sufficient condition for a solution
to be optimal for a 2-additive Choquet integral in the context of mul-
tiobjective combinatorial optimization problems. A 2-additive Choquet
optimal solution is a solution that optimizes at least one set of param-
eters of the 2-additive Choquet integral. We also present a method to
generate 2-additive Choquet optimal solutions of multiobjective combi-
natorial optimization problems. The method is experimented on some
Pareto fronts and the results are analyzed.
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1 Introduction

Multiobjective combinatorial optimization problems (MOCO) aim at finding
the Pareto optimal solutions among a combinatorial set of feasible solutions. A
Pareto optimal solution is a solution that is not Pareto dominated by any other
solutions; the set of all these solutions is named the Pareto optimal set (or the
Pareto front, in the objective space). However, the set of all the Pareto optimal
solutions can be huge, especially in the case of several objectives [1]. Therefore
it is worth to study the set of solutions that optimize a specific function, for
example a weighted sum, as it generally reduces the size of the set of interesting
Pareto optimal solutions. In this latter case, it is well-known that the set of
potential optimal solutions is the convex envelop of the feasible solutions set. In
order to attain solutions located in the non-convex part of the feasible solutions
set, other aggregation operators could be used as function to be optimized. In
this paper, we will focus on a specific aggregation operator: the Choquet integral.

The Choquet integral [2] is one of the most powerful tools in multicriteria
decision making [3, 4]. A Choquet integral can be seen as an integral on a
non-additive measure (or capacity or fuzzy measure), that is an aggregation
operator that can model interactions between criteria. It presents extremely
wide expressive capabilities and can model many specific aggregation operators,
including, but not limited to, the weighted sum, the minimum, the maximum, all
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the statistic quantiles, the ordered weighted averaging operator [5], the weighted
ordered weighted averaging operator [6], etc.

However, this high expressiveness capability needs a great number of param-
eters. While a weighted sum operator with p criteria requires p− 1 parameters,
the definition of the Choquet integral with p criteria requires the setting of 2p−2
values, which can be high even for low values of p. The notion of k-additivity
has been introduced by Grabisch [7] in order to reduce the number of needed
parameters while keeping the possibility to take into account the interactions

between k criteria among the p criteria; typically for k = 2, one only needs p2+p
2

parameters.
Some papers already deal with the optimization of the Choquet integral of

MOCO problems [8–10] when the Choquet integral is completely defined by the
decision maker. Recently, Lust and Rolland investigated a method to generate
the whole set of Choquet optimal solutions. The aim is to compute all the solu-
tions that are potentially optimal for at least one parameter set of the Choquet
integral. This method was studied in the particular case of biobjective combina-
torial optimization problems [11], and for the general case in [12]. A characteri-
zation of the Choquet optimal solutions through a set of weighted-sum optimal
solutions has been stated.

In this contribution, we focus on the specific case of the 2-additive Choquet
integral. In the next section, we recall the definition of the Choquet integral.
We propose then a sufficient condition for a solution to be Choquet optimal
with a 2-additive capacity. We finally present some experimental results where
we study the difference between the exact set of Choquet optimal with a 2-
additive capacity and the set obtained with the sufficient condition proposed in
this paper.

2 Aggregation Operators and Choquet Integral

We introduce in this section the basic concepts linked to multiobjective combi-
natorial optimization problems, the weighted sum and the Choquet integral.

2.1 Multiobjective Combinatorial Optimization Problems

A multiobjective (linear) combinatorial optimization (MOCO) problem is gen-
erally defined as follows:

“max
x

”f(x) = Cx = (f1(x), f2(x), . . . , fp(x))

subject to Ax ≤ b

x ∈ {0, 1}n

x ∈ {0, 1}n −→ n variables
C ∈ R

p×n −→ p objective functions
A ∈ R

r×n and b ∈ R
r×1 −→ r constraints
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A feasible solution x is a vector of n variables, having to satisfy the r con-
straints of the problem. Therefore, the feasible set in decision space is given
by X = {x ∈ {0, 1}n : Ax ≤ b}. The image of the feasible set is given by
Y = f(X ) = {f(x) : x ∈ X} ⊂ R

p. An element of the set Y is called a cost-
vector or a point.

Let us consider in the following, without loss of generality, that all the objec-
tives have to be maximized and we design by P the set of objectives {1, . . . , p}.
The Pareto dominance relation (P -dominance for short) is defined, for all y1, y2 ∈
R

p, by:
y1 �P y2 ⇐⇒ [∀k ∈ P , y1k ≥ y2k and y1 �= y2]

The strict Pareto dominance relation (sP -dominance for short) is defined as
follows:

y1 �sP y2 ⇐⇒ [∀k ∈ P , y1k > y2k]

Within a feasible set X , any element x1 is said to be P -dominated when
f(x2) �P f(x1) for some x2 in X , P -optimal (or P -efficient) if there is no
x2 ∈ X such that f(x2) �P f(x1) and weakly P -optimal if there is no x2 ∈ X
such that f(x2) �sP f(x1). The P -optimal set denoted by XP contains all the P -
optimal solutions. The image f(x) in the objective space of a P -optimal solution
x is called a P -non-dominated point. The image of the P -optimal set in Y, equal
to f(XP ), is called the Pareto front, and is denoted by YP .

2.2 Weighted Sum

Instead of generating the P -optimal set, one can generate the solutions that op-
timize an aggregation operator. One of the most popular aggregation operator is
the weighted sum (WS), where non-negative importance weights λi(i = 1, . . . , p)
are allocated to the objectives.

Definition 1. Given a vector y ∈ R
p and a weight set λ ∈ R

p (with λi ≥ 0 and∑p
i=1 λi = 1), the WS fws

λ (y) of y is equal to:

fws
λ (y) =

p∑

i=1

λiyi

Definition 2. Let x ∈ X and y = f(x) be its image in Y. If ∃λ ∈ R
p
+ (λi > 0)

such that fws
λ (y) ≥ fws

λ (y2) ∀ y2 ∈ Y then x is a supported P -optimal solution,
and its image y a supported P -non-dominated point.

Note that there exist P -optimal solutions that do not optimize a WS, and
they are generally called non-supported P -optimal solutions [1].

2.3 Choquet Integral

The Choquet integral has been introduced by Choquet [2] in 1953 and has been
intensively studied, especially in the field of multicriteria decision analysis, by
several authors (see [3, 4, 13] for a brief review).

We first define the notion of capacity, on which the Choquet integral is based.
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Definition 3. A capacity is a set function v: 2P → [0, 1] such that:

– v(∅) = 0, v(P) = 1 (boundary conditions)
– ∀A,B ∈ 2P such that A ⊆ B, v(A) ≤ v(B) (monotonicity conditions)

Therefore, for each subset of objectives A ⊆ P , v(A) represents the impor-
tance of the coalition A.

Definition 4. The Choquet integral of a vector y ∈ R
p with respect to a capacity

v is defined by:

fC
v (y) =

p∑

i=1

(
v(Y ↑

i )− v(Y ↑
i+1)

)
y↑i

=

p∑

i=1

(y↑i − y↑i−1)v(Y
↑
i )

where y↑ = (y↑1 , . . . , y
↑
p) is a permutation of the components of y such that 0 =

y↑0 ≤ y↑1 ≤ . . . ≤ y↑p and Y ↑
i = {j ∈ P , yj ≥ y↑i } = {i↑, (i + 1)↑, . . . , p↑} for i ≤ p

and Y ↑
(p+1) = ∅.

We can notice that the Choquet integral is an increasing function of its argu-
ments.

We can also define the Choquet integral through the Möbius representa-
tion [14] of the capacity. Any set function v: 2P → [0, 1] can be uniquely ex-
pressed in terms of its Möbius representation by:

v(A) =
∑

B⊆A
mv(B) ∀A ⊆ P

where the set function mv : 2P → R is called the Möbius transform or Möbius
representation of v and is given by

mv(A) =
∑

B⊆A
(−1)(a−b)v(B) ∀A ⊆ P

where a and b are the cardinals of A and B.
A set of 2p coefficients mv(A) (A ⊆ P) corresponds to a capacity if it satisfies

the boundary and monotonicity conditions [15]:

1. mv(∅) = 0,
∑

A⊆P
mv(A) = 1

2.
∑

B⊆A, i∈B
mv(B) ≥ 0 ∀A ⊆ P , i ∈ P

We can now write the Choquet integral with the use of Möbius coefficients.
The Choquet integral of a vector y ∈ R

p with respect to a capacity v is defined
as follows:

fC
v (y) =

∑

A⊆P
mv(A)min

i∈A
yi
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A Choquet integral is a versatile aggregation operator, as it can express pref-
erences to a wider set of solutions than a weighted sum, through the use of a
non-additive capacity. When solving a MOCO problem, with the Choquet in-
tegral, one can attain non-supported P -optimal solutions, while it is impossible
with the weighted sum [11].

However, this model needs also a wider set of parameters to capture this
non-additivity. For p criteria, one only needs p − 1 weights to use a weighted
sum, where 2p − 2 weights are needed to use a Choquet integral based on a
capacity. Therefore, the concept of k-additivity has been introduced by [7] to
find a compromise between the expressiveness of the model and the number of
needed parameters.

Definition 5. A capacity v is said to be k-additive if

– ∀A ⊆ P ,mv(A) = 0 if card(A) > k
– ∃A ⊆ P such that card(A) = k and mv(A) �= 0

We will specially focus in this paper on 2-additive capacities and propose a
sufficient condition for a solution of a MOCO problem to be 2-additive Choquet
optimal.

3 Characterization of Choquet Optimal Solutions

3.1 Choquet Optimal Solutions

A characterization of the set of Choquet optimal solutions of a MOCO problem
has been proposed in [12]. We briefly recall it here.

We denote the set of Choquet optimal solutions of a MOCO problem with p
objectives XC : it contains at least one solution x ∈ X optimal for each possible
Choquet integral, that is ∀v ∈ V , ∃xc ∈ XC | fC

v (f(xc)) ≥ fC
v (f(x)) ∀x ∈ X ,

where V represents the set of capacity functions defined over p objectives. Note
that each Choquet optimal solution is at least weakly P -optimal [11].

In [11], Lust and Rolland studied the particular case of two objectives and
they showed that XC could be obtained by generating all WS-optimal solutions
in each subspace of the objectives separated by the bisector (f1(x) ≥ f2(x)
or f2(x) ≥ f1(x)), and by adding a particular point M with M1 = M2 =
max
x∈X

min(f1(x), f2(x)).

In [12], Lust and Rolland extended this characterization to the general case.
Let σ be a permutation on P . Let Oσ be the subset of points y ∈ R

p such
that y ∈ Oσ ⇐⇒ yσ1 ≥ yσ2 ≥ . . . ≥ yσp .

Let pOσ be the following application:

pOσ : Rp → R
p, (pOσ (y))σi = (min(yσ1 , . . . , yσi)), ∀i ∈ P

For example, if p = 3, for the permutation (2,3,1), we have:

pOσ (y) =
(
min(y2, y3, y1),min(y2),min(y2, y3)

)
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We denote by POσ (Y) the set containing the points obtained by applying the
application pOσ (y) to all the points y ∈ Y. As (pOσ (y))σ1 ≥ (pOσ (y))σ2 ≥ . . . ≥
(pOσ (y))σp , we have POσ(Y) ⊆ Oσ.

Theorem 1
YC ∩Oσ = Y ∩WS(POσ (Y))

where WS(POσ (Y)) designs the set of WS-optimal points of the set POσ (Y).
This theorem characterizes the solutions which can be Choquet optimal in

the set of feasible solutions as being, in each subspace of the objective space Y
where yσ1 ≥ yσ2 ≥ . . . ≥ yσp , the solutions that have an image corresponding
to a WS-optimal point in the space composed of the original subspace plus the
projection of all the other points following the application pOσ .

Proof: see [12].

3.2 2-additive Choquet Optimal Solutions

We are now interested in the definition of the set of solutions of a MOCO prob-
lem that potentially optimize a 2-additive Choquet integral (and not a general
Choquet integral). How does the constraints of 2-additivity restrict the set YC?
We will denote YC2 the set of 2-additive Choquet optimal solutions. As stated
above, σ is a permutation on P and Oσ is the subset of points y ∈ R

p such that
y ∈ Oσ ⇐⇒ yσ1 ≥ yσ2 ≥ . . . ≥ yσp .

Theorem 2

∀δ ∈ Δ, if y ∈ Y ∩WS(Pδ
σ(Y)) ⇒ y ∈ YC2 ∩Oσ

where:

– δ is an application P → P such that δ(1) = 1 and δ(i) < i ∀i �= 1. Let Δ be
the set of all applications δ.

– pδσ is an application on Y such that (pδσ(y))σi = min(yσδ(i)
, yσi).

For example, if p = 4, for the permutation (1,2,3,4) and δ = (1, 1, 2, 3), we
have:

• (pδσ(y))1 = min(y1, y1) = y1
• (pδσ(y))2 = min(y1, y2)
• (pδσ(y))3 = min(y2, y3)
• (pδσ(y))4 = min(y3, y4)

– Pδ
σ(Y) is the set containing the points obtained by applying the application

pδσ to all the points y ∈ Y.
– WS(Pδ

σ(Y)) designs the set of supported points of the set Pδ
σ(Y).
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Proof

In the following, we will denote Oσ as simply O for the sake of simplicity, and
we will consider, without loss of generality, that the permutation σ is equal
to (1, 2, . . . , p), that is y ∈ O ⇔ y1 ≥ y2 ≥ · · · ≥ yp. We will consequently
note pδσ as simply pδ and Pδ

σ(Y) as Pδ(Y). We know that YC2 ⊆ Y and then
YC2 ∩O ⊆ Y ∩O.

Let us suppose that y ∈ O. Let y ∈ WS(Pδ(Y)) ∩ Y. Then there are

λ1, . . . , λp ≥ 0 such that

p∑

i=1

λi = 1 and

∀z ∈ Y,
∑

i∈P
λiyi ≥

∑

i∈P
λip

δ(z)i

By definition, pδ(z)i = min(zδ(i), zi), ∀i ∈ P .
Let A ⊆ P . Let us define a set functionm such thatm(A) = λi if A = {δ(i), i}

and m(A) = 0 if not.
Then

∑

i∈P
λi(p

δ(z))i =
∑

i∈P
λi min(zδ(i), zi)

=
∑

A⊆P
m(A)min

i∈A
zi

Let us remind that the set function m corresponds to a capacity v if:

1. m(∅) = 0,
∑

A⊆P
m(A) = 1

2.
∑

B⊆A, i∈B
m(B) ≥ 0 ∀A ⊆ P , i ∈ P

All these conditions are satisfied:

– m(∅) = 0 by definition

–
∑

A⊆P
m(A) =

p∑

i=1

λi = 1

– all m(B) are non-negative as λi ≥ 0

Moreover, as m(A) = 0 ∀A such that card(A) > 2, v is a 2-additive capacity.
Therefore we have a capacity v and its set of Möbius coefficients such that
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∀z ∈ Y,

fC
v (y) =

∑

A⊆P
m(A)min

i∈A
yi

=
∑

i∈P
λiyi

≥
∑

i∈P
λip

δ(z)i

≥
∑

A⊆P
m(A)min

i∈A
zi

≥ fC
v (z)

So y ∈ YC2 . �

From this theorem, we can derive an algorithm to generate a set XC2 contain-
ing solutions of a MOCO problem that optimize a 2-additive Choquet integral.

For all the permutations σ on P , we have to:

1. Consider an application δ such that δ(1) = 1 and δ(i) < i ∀i �= 1.
2. Determine the set Pδ

σ(Y) containing the projections obtained with the ap-
plication pδσ for each y ∈ Y.

3. Determine the solutions in Oσ that optimize a WS considering Pδ
σ(Y).

4 Experiments

We have applied the algorithm for defined Pareto fronts, that is, a Pareto front
is given, and the aim is to determine, among the P -non-dominated points, the
2-additive Choquet optimal points.

To generate Pareto fronts, we have applied a heuristic to multiobjective knap-
sack instances. We have used knapsack instances with random profits. The
heuristic is an adaptation of the one presented in [16]. Note that the aim is
only to generate a set of non-dominated points to experiment the sufficient con-
dition.

The results are given in Table 1 for p = 4, k = 2, and 250 points, and in
Table 2 for p = 4, k = 2, and 500 points.

We have considered all possible applications δ. We have also computed the
exact number of 2-additive Choquet optimal solutions with a linear program: for
each point of the Pareto front, we check if there exists a 2-additive capacity v
such that the Choquet integral of this point is better that all the other points.
Note that this method can be applied since we consider the particular case of
a given Pareto front. For the problem with 250 points, 140 points optimize a
2-additive Choquet integral and for the problem with 500 points, 200 points
optimize a 2-additive Choquet integral. We see that our method can only reach
a subset of this set (since the method is only based on a sufficient condition).
The number of 2-additive Choquet optimal points generated depends on the
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Table 1. Random multiobjective knapsack instances (250 points, 140 are 2-additive
Choquet optimal)

δ #2C-Optimal

(1,1,1,1) 124
(1,1,1,2) 124
(1,1,1,3) 131
(1,1,2,1) 131
(1,1,2,2) 131
(1,1,2,3) 139

Table 2. Random multiobjective knapsack instances (500 points, 200 are 2-additive
Choquet optimal)

δ #2C-Optimal

(1,1,1,1) 164
(1,1,1,2) 164
(1,1,1,3) 174
(1,1,2,1) 186
(1,1,2,2) 187
(1,1,2,3) 196

application δ. For the set with 250 points, with δ = (1, 1, 1, 1), 124 points are
generated, while with the application (1, 1, 2, 3), 139 points are computed. For
the set with 500 points, with δ = (1, 1, 1, 1), 164 points are generated, while
with the application (1, 1, 2, 3), 196 points are computed. Some application δ
allows thus to reach more 2-additive Choquet optimal solutions. However, even
by merging the sets obtained with all possible applications δ, they are still 2-
additive Choquet optimal solutions that cannot be reached with our method
based on the sufficient condition.

5 Conclusion

We have introduced in this paper a sufficient condition to produce 2-additive
Choquet optimal solutions of multiobjective combinatorial optimization prob-
lems. We have also presented an algorithm to obtain these solutions based on
this condition. The algorithm can be applied to generate an interesting subset of
the Pareto optimal set (in case of the size of this set is too high). This work about
generating 2-additive Choquet optimal solutions opens many new perspectives:

– As our condition is only sufficient, a necessary and sufficient condition will
be required to generate all the 2-additive Choquet optimal solutions of a
MOCO problem. The condition will also have to be generalized to k > 2.
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– Following [17], it will be interesting to study and to define what brings
exactly and concretely (for a decision maker) the 2-additive Choquet optimal
solutions that are not WS optimal solutions, given that they are harder to
compute.

– More experiments will be needed to show the differences between WS op-
timal solutions, Choquet optimal solutions and 2-additive Choquet optimal
solutions of MOCO problems.
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