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Abstract. We study in this paper the computation of Choquet opti-
mal solutions in decision contexts involving multiple criteria or multiple
agents. Choquet optimal solutions are solutions that optimize a Choquet
integral, one of the most powerful tools in multicriteria decision making.
We develop a new property that characterizes the Choquet optimal solu-
tions. From this property, a general method to generate these solutions
in the case of several criteria is proposed. We apply the method to differ-
ent Pareto non-dominated sets coming from different knapsack instances
with a number of criteria included between two and seven. We show that
the method is effective for a number of criteria lower than five or for high
size Pareto non-dominated sets. We also observe that the percentage of
Choquet optimal solutions increase with the number of criteria.

Keywords: Choquet integral, Multicriteria decision making, Multia-
gent optimization, Fuzzy measure, Multiobjective optimization.

1 Introduction

The Choquet integral [1] is one of the most powerful tools in multicriteria decision
making [2, 3]. A Choquet integral can be seen as an integral on a non-additive
measure (or capacity or fuzzy measure). It presents extremely wide expressive
capabilities and can model many specific aggregation operators, including, but
not limited to, the weighted sum, the minimum, the maximum, all the statistic
quantiles, the ordered weighted averaging operator [4], the weighted ordered
weighted averaging operator [5], etc.

However, this high expressiveness capability has a price: while the definition
of a simple weighted sum operator with p criteria requires p− 1 parameters, the
definition of the Choquet integral with p criteria requires setting of 2p−2 values,
which can be a problem even for low values of p.

Many approaches have been studied to identify the parameters of the Cho-
quet integral [6]. Generally, questions are asked to the decision maker and the
information obtained is represented as linear constraints over the set of parame-
ters. An optimization problem is then solved in order to find a set of parameters
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which minimizes the error according to the information given by the decision
maker.

The approach considered in this paper is quite different: we will not try to
identify the parameters of the Choquet integral but we will compute the solu-
tions that are potentially optimal for at least one parameter set of the Choquet
integral. Therefore, the parameters of the Choquet integral will not have to be
determined. Instead, a set of solutions of smaller size comparing to the set of
Pareto optimal solutions (which can be very huge in the case of multiobjective
or multiagent problems) will be presented to the decision-maker. Each solu-
tion proposed will have interesting properties since they optimize at least one
Choquet integral. Also, by computing all the Choquet optimal solutions, all the
solutions that optimize one of the operators that the Choquet integral can model
(weighted sum, ordered weighted averaging operator, etc.) will be generated.

We will present in the paper a new property that characterizes the Cho-
quet optimal solutions. From this property, a general method to generate the
Choquet optimal solutions is proposed. The method can be applied in different
decision contexts involving multiple criteria or agents. The first application is
in multicriteria decision making [7]: different alternatives are proposed to a de-
cision maker and each alternative is evaluated according to a set of p criteria.
No alternative Pareto dominates another and therefore no alternative can be a
priori rejected. However, if we plan to use the Choquet integral in order to select
the best alternative according to the preferences of the decision maker, we can
first generate the solutions that are potentially optimal for at least one Choquet
integral. This can be done in the absence of the decision maker. At the end, a
smaller set comparing to the Pareto optimal set is proposed.

Another context in which the method can be applied is in decision contexts
involving multiple agents, like multiagent knapsack problems [8], paper assign-
ment problems [9], marriage problems in social networks [10], etc. In these prob-
lems, each agent has its own cost function and the aim is to generate a solution
which is fair according to all the agents. Since the Choquet integral can model
fairness operators like the max-min operator, the ordered weighted averaging
and the weighted ordered weighted averaging operators, we can first compute all
the potentially Choquet optimal solutions of these multiagent problems in order
to generate a first set of candidate solutions.

The last application of the method is in multiobjective combinatorial op-
timization (MOCO) problems, which model situations where a decision-maker
has to optimize several objectives simultaneously. These situations often come
from a problem with a combinatorial number of solutions, for example span-
ning tree, shortest path, knapsack, traveling salesman tour, etc. [11]. To solve a
MOCO problem, three different approaches are usually followed. In the a pos-
teriori approach, all the Pareto optimal solutions are first generated. Once this
has been done, the decision-maker is free to choose among all solutions the one
that corresponds the best to his/her preferences. Another possibility, called the
a priori approach, is to first ask the decision-maker what are his/her preferences
among all the objectives and to compute an aggregation function [3] with spec-
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ified parameters. The aggregation function is then optimized and at the end,
only one solution is generally proposed to the decision-maker. A last possibility
is to interact with the decision-maker along the process of generation of the so-
lutions [12]. In this interactive approach, we ask the decision-maker to establish
his/her preferences among different solutions, in order to guide the search, and
to finally obtain a solution that suits him/her.

We propose here a new approach, between the a posteriori approach and the
a priori approach, that consists in trying to find the set of solutions that are
potentially optimal for at least one set of parameters of an aggregation function,
and more specifically in this paper the Choquet integral.

Some papers already deal with the optimization of the Choquet integral of
MOCO problems [13–15] but only when the Choquet integral is completely de-
fined by the decision-maker. To our knowledge, the development of a method to
generate the whole set of Choquet optimal solutions has not yet been studied,
except the recent work of [16], where Lust and Rolland study the particular case
of biobjective combinatorial optimization problems. They characterize the Cho-
quet optimal solutions through a property and they define a method to generate
all the Choquet optimal solutions. They apply the method to the biobjective
knapsack problem and the biobjective minimum spanning tree.

We focus here on the general problem where the number of criteria can be
more than two. We present a new property that characterizes the Choquet op-
timal set and develop a method based on this property to generate the Choquet
optimal set, containing the solutions that are optimal solutions of Choquet in-
tegrals. We analyze the computational property of the method and we propose
results for Pareto non-dominated sets. We will show that the Choquet integral
becomes more expressive (can attain more Pareto optimal solutions) than the
weighted sum, especially if the number of objectives increase.

The paper is placed in the context of MOCO problems and is organized as
follows. In the next section, we first recall the definition of a MOCO problem
and the Choquet integral. In section 3 we expose a property that characterizes
the Choquet optimal set. In Section 4, we experiment the method on different
instances of the multiobjective knapsack problem.

2 Aggregation operators

In this section, we first introduce the formalism of a MOCO problem, and then
present the weighted sum as it is the most popular aggregation operator. We
then introduce the Choquet integral.
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2.1 Multiobjective combinatorial optimization problems

A multiobjective (linear) combinatorial optimization (MOCO) problem is gen-
erally defined as follows:

“max
x

”f(x) = Cx = (f1(x), f2(x), . . . , fp(x))

subject to Ax ≤ b

x ∈ {0, 1}n

x ∈ {0, 1}n −→ n variables, i = 1, . . . , n
C ∈ Rp×n −→ p objective functions, k = 1, . . . , p

A ∈ Rr×n and b ∈ Rr×1 −→ r constraints, j = 1, . . . , r

A feasible solution x is a vector of n variables, having to satisfy the r con-
straints of the problem. Therefore, the feasible set in decision space is given
by X = {x ∈ {0, 1}n : Ax ≤ b}. The image of the feasible set is given by
Y = f(X ) = {f(x) : x ∈ X} ⊂ Rp. An element of the set Y is called a cost-
vector or a point.

Let us recall the concept of Pareto efficiency. We consider that all the objec-
tives have to be maximized and we design by P the set of objectives {1, . . . , p}.

Definition 1 The Pareto dominance relation (P -dominance for short) is de-
fined, for all y1, y2 ∈ Rp, by:

y1 ≻P y2 ⇐⇒ [∀k ∈ P, y1k ≥ y2k and y1 ̸= y2]

Definition 2 The strict Pareto dominance relation (sP -dominance for short)
is defined as follows:

y1 ≻sP y2 ⇐⇒ [∀k ∈ P, y1k > y2k]

Within a feasible set X , any element x1 is said to be P -dominated when
f(x2) ≻P f(x1) for some x2 in X , P -optimal (or P -efficient) if there is no
x2 ∈ X such that f(x2) ≻P f(x1) and weakly P -optimal if there is no x2 ∈ X
such that f(x2) ≻sP f(x1). The P -optimal set denoted by XP contains all the P -
optimal solutions. The image f(x) in the objective space of a P -optimal solution
x is called a P -non-dominated point. The image of the P -optimal set in Y, equal
to f(XP ), is called the Pareto front, and is denoted by YP .

2.2 Weighted sum

The most popular aggregation operator is the weighted sum (WS), where non-
negative importance weights λi(i = 1, . . . , p) are allocated to the objectives.

Definition 3 Given a vector y ∈ Rp and a weight set λ ∈ Rp (with λi ≥ 0 and∑p
i=1 λi = 1), the WS fws

λ (y) of y is equal to:

fws
λ (y) =

p∑
i=1

λiyi

Note that there exist P -optimal solutions that do not optimize a WS, and
they are generally called non-supported P -optimal solutions [11].
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2.3 Choquet integral

The Choquet integral has been introduced by Choquet [1] in 1953 and has been
intensively studied, especially in the field of multicriteria decision analysis, by
several authors (see [7, 2, 3] for a brief review).

We first define the notion of capacity, on which the Choquet integral is based.

Definition 4 A capacity is a set function v: 2P → [0, 1] such that:

– v(∅) = 0, v(P) = 1 (boundary conditions)
– ∀A,B ∈ 2P such that A ⊆ B, v(A) ≤ v(B) (monotonicity conditions)

Therefore, for each subset of objectives A ⊆ P, v(A) represents the impor-
tance of the coalition A.

Definition 5 The Choquet integral of a vector y ∈ Rp with respect to a capacity
v is defined by:

fC
v (y) =

p∑
i=1

(
v(Y ↑

i )− v(Y ↑
i+1)

)
y↑i

=

p∑
i=1

(y↑i − y↑i−1)v(Y
↑
i )

where y↑ = (y↑1 , . . . , y
↑
p) is a permutation of the components of y such that 0 =

y↑0 ≤ y↑1 ≤ . . . ≤ y↑p and Y ↑
i = {j ∈ P, yj ≥ y↑i } = {i↑, (i+ 1)↑, . . . , p↑} for i ≤ p

and Y ↑
(p+1) = ∅.

We can notice that the Choquet integral is an increasing function of its
arguments.

We can also define the Choquet integral through the Möbius representa-
tion [17] of the capacity. Any set function v: 2P → [0, 1] can be uniquely ex-
pressed in terms of its Möbius representation by:

v(A) =
∑
B⊆A

mv(B) ∀A ⊆ P

where the set functionmv : 2P → R is called the Möbius transform or Möbius
representation of v and is given by

mv(A) =
∑
B⊆A

(−1)(a−b)v(B) ∀A ⊆ P

where a and b are the cardinals of A and B.
A set of 2p coefficients mv(A) (A ⊆ P) corresponds to a capacity if it satisfies

the boundary and monotonicity conditions [18]:

1. mv(∅) = 0,
∑
A⊆P

mv(A) = 1
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2.
∑

B⊆A, i∈B

mv(B) ≥ 0 ∀A ⊆ P, i ∈ P

We can now write the Choquet integral with the use of Möbius coefficients.
The Choquet integral of a vector y ∈ Rp with respect to a capacity v is defined
as follows:

fC
v (y) =

∑
A⊆P

mv(A)min
i∈A

yi

3 Characterization of Choquet optimal solutions

We present in this section a characterization of the Choquet optimal solutions
based on WS-optimal solutions, that is solutions that optimize a weighted sum.
The set of Choquet optimal solutions of a MOCO problem with p objectives is
called XC , and contains at least one solution x ∈ X optimal for each possible
Choquet integral, that is ∀v ∈ V, ∃xc ∈ XC | fC

v (f(xc)) ≥ fC
v (f(x)) ∀x ∈ X ,

where V represents the set of capacity functions defined over p objectives. Note
that each Choquet optimal solution is at least weakly P -optimal [16].

In [16], Lust and Rolland studied the particular case of two objectives and
they showed that XC could be obtained by generating all WS-optimal solutions
in each subspace of the objectives separated by the bisector (f1(x) ≥ f2(x)
or f2(x) ≥ f1(x)), and by adding a particular point M with M1 = M2 =
max
x∈X

min(f1(x), f2(x)). We show here how this property can be generalized to

more than two objectives.
We will work with the image of XC in the objective space, YC , equal to

f(XC). To each point yc ∈ YC corresponds thus at least one solution xc in XC .
Let σ be a permutation on P. Let Oσ be the subset of points y ∈ Rp such

that y ∈ Oσ ⇐⇒ yσ1 ≥ yσ2 ≥ . . . ≥ yσp .
Let pOσ be the following application:

pOσ : Rp → Rp, (pOσ (y))σi = (min(yσ1 , . . . , yσi)), ∀i ∈ P

For example, if p = 3, for the permutation (2,3,1), we have:

pOσ (y) =
(
min(y2, y3, y1),min(y2),min(y2, y3)

)
We denote by POσ

the set containing the points obtained by applying the
application pOσ (y) to all the points y ∈ Y. As (pOσ (y))σ1 ≥ (pOσ (y))σ2 ≥ . . . ≥
(pOσ

(y))σp
, we have POσ

⊆ Oσ.

3.1 Characterization theorem

We propose a new characterization of the Choquet optimal set.

Theorem 1.
YC ∩Oσ = Y ∩WS(POσ )
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where WS(POσ
) designs the set of WS-optimal points of the set POσ

.
This theorem characterizes the solutions which can be Choquet optimal in

the set of feasible solutions as being, in each subspace of the objective space Y
where yσ1 ≥ yσ2 ≥ . . . ≥ yσp , the solutions that have an image corresponding
to a WS-optimal point in the space composed of the original subspace plus the
projection of all the other points following the application pOσ .

Proof

In the following, we will denote Oσ as simply O for the sake of simplicity,
and we will consider, without loss of generality, that the permutation σ is equal
to (1, 2, . . . , p), that is y ∈ O ⇔ y1 ≥ y2 ≥ · · · ≥ yp.

We know that YC ⊆ Y and then YC ∩ O ⊆ Y ∩ O. We also know that
WS(PO) ⊆ O and then YC ∩WS(PO) ⊆ Y ∩O. Let y be in YC ∩O.

– [y ∈ YC ∩O ⇒ y ∈ Y ∩WS(PO)]
Let us write the Choquet integral of y ∈ O related to a capacity v, with
Yi = {1, . . . , i} and Y0 = ∅:

fC
v (y) =

p∑
i=1

(
v(Yi)− v(Yi−1)

)
yi

=

p∑
i=1

λiyi

As v is monotonic for the inclusion, λi = v(Yi)− v(Yi−1) is always positive.

We have also

p∑
i=1

λi =

p∑
i=1

(v(Yi)− v(Yi−1)) = v(P)− v(∅) = 1.

Let z ∈ Y . As y ∈ YC , we have fC
v (y) ≥ fC

v (z). We also have ∀i ∈ P, zi ≥
min{z1, z2, . . . , zi} = (pO(z))i, and as the Choquet integral is an increasing
function of its arguments, we have fC

v (z) ≥ fC
v (pO(z)). And since pO(z) ∈ O,

we have fC
v (pO(z)) =

p∑
i=1

λipO(z)i. Therefore we have ∀z ∈ Y:

∑
i∈P

λiyi = fC
v (y) ≥ fC

v (z) ≥ fC
v (pO(z)) =

∑
i∈P

λipO(z)i

where λi ≥ 0 ∀i ∈ P and

p∑
i=1

λi = 1. So y ∈ WS(PO) and as y ∈ Y,

y ∈ Y ∩WS(PO).

– [y ∈ WS(PO) ∩ Y ⇒ y ∈ YC ∩O]

Let y ∈ WS(PO) ∩ Y. Then there are λ1, . . . , λp ≥ 0 such that

p∑
i=1

λi = 1

and
∀z ∈ Y,

∑
i∈P

λiyi ≥
∑
i∈P

λipO(z)i
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By definition, (pO(z))i = min(z1, . . . , zi), ∀i ∈ P.
Let A ⊆ P. Let us define a set function m such that m(A) = λi if A =
{1, . . . , i} and m(A) = 0 if not.
Then ∑

i∈P
λi(pO(z))i =

∑
i∈P

λi min(z1, . . . , zi)

=
∑
A⊆P

m(A)min
i∈A

zi

Let us remind that the set function m corresponds to a capacity if:

1. m(∅) = 0,
∑
A⊆P

m(A) = 1

2.
∑

B⊆A, i∈B

m(B) ≥ 0 ∀A ⊆ P, i ∈ P

All these conditions are satisfied:
• m(∅) = 0 by definition

•
∑
A⊆P

m(A) =

p∑
i=1

λi = 1

• all m(B) are non-negative as λi ≥ 0
So we have a set of Möbius coefficients such that ∀z ∈ Y,

fC
v (y) =

∑
A⊆P

m(A)min
i∈A

yi

=
∑
i∈P

λiyi

≥
∑
i∈P

λipO(z)i

≥
∑
A⊆P

m(A)min
i∈A

zi

≥ fC
v (z)

2

4 Generation of Choquet optimal solutions

4.1 Algorithm for generating XC

We present in this section an algorithm to generate the set XC containing all
the Choquet optimal solutions of a MOCO problem. The algorithm straightly
follows from Theorem 1.

For all the permutations σ on P, we have to:

1. Determine the projections with the application pOσ



Choquet optimal solutions in multicriteria decision contexts 9

2. Solve a WS problem

The projections are defined with the application

(pOσ (y))σi = (min(yσ1 , . . . , yσi)), ∀i ∈ P

for each y ∈ Y.
However, among these projections, only the P -non-dominated points are in-

teresting (since if a point is P -dominated, its WS is inferior to the WS of at least
another point). Therefore, to determine the projections, the following MOCO
problem (called Pσ) has to be solved:

“max ”p(x) = “max ”
x∈X\Xσ

(fσ1(x),min(fσ1(x), fσ2(x)), . . . ,min(fσ1(x), fσ2(x), . . . , fσp(x)))

where Xσ is the set such that x ∈ Xσ ⇐⇒ fσ1
(x) ≥ fσ2

(x) ≥ . . . ≥ fσp
(x).

Once the projections have been defined, a WS problem has to be solved, in
Xσ, and by adding the P -non-dominated points obtained from Pσ.

We give the main lines of the method in Algorithm 1.

Algorithm 1 Generation of XC

Parameters ↓: a MOCO problem
Parameters ↑: the set XC

Let σ be a permutation on P, and Σ the set of permutations
Let Xσ be the set such that x ∈ Xσ ⇐⇒ fσ1(x) ≥ fσ2(x) ≥ . . . ≥ fσp(x)
XC ← {}
for all σ ∈ Σ do

- -| Determination of the projections:
Solve the following MOCO problem, called Pσ, in x ∈ X\Xσ:
“max ”p(x) = “max ”

x∈X\Xσ

(fσ1(x),min(fσ1(x), fσ2(x)), . . . ,min(fσ1(x), fσ2(x), . . . , fσp(x)))

Let YPσ the Pareto non-dominated points obtained from solving (Pσ)
Solve the WS problem (called WSσ) max

x∈Xσ

fws
λ (f(x)) with the additional points of

YPσ .
Let Xwsσ the solutions obtained from (WSσ)
XC ← XC ∪ Xwsσ

end for

4.2 Experiments

We present results for defined Pareto fronts, that is, a Pareto front is given,
and the aim is to determine, among the P -non-dominated points, the Choquet
optimal points.

To generate Pareto fronts with different numbers of objectives, we have ap-
plied a heuristic to several multiobjective knapsack instances. We have used
knapsack instances with random profits. The heuristic is an adaptation of the
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one presented in [19]. Note that the aim is not to generate the best possible
approximation of the Pareto front of these instances, but only to generate a set
of P -non-dominated points. The results are given in Table 1, for p = 2, . . . , 7,
and for 3000 points.

# Crit # WS # C % WS % C % C not WS

2 123 128 4.10 4.27 3.91
3 184 240 6.13 8.00 23.33
4 240 380 8.00 12.67 36.84
5 282 485 9.40 16.17 41.86
6 408 676 13.6 22.53 39.64
7 528 1016 17.6 33.87 48.03

Table 1. Random multiobjective knapsack instances (3000 points).

We respectively indicate the number of criteria, the number of WS-optimal
points, the number of Choquet optimal points, the proportion of WS-optimal
points under the total number of points, the proportion of Choquet optimal
points under the total number of points and the proportion of Choquet optimal
points that are not WS-optimal.

We see that if the number of Choquet optimal points and the number of
Choquet optimal points that are not WS-optimal points are very small for p = 2,
these number grows rapidly with the number of criteria: for p = 7, we have
that 33.87% of the P -non-dominated points are Choquet optimal points, and
48.03% of them are not WS-optimal. We see thus that when the number of
criteria increases, the Choquet integral allows to attain considerably more P -
non-dominated points than the WS.

In table 2, we indicate the CPU times needed to generate the Choquet opti-
mal points of these sets (on a Intel Core i7-3820 at 3.6GHz). We see that if the
CPU times are reasonable for p ≤ 5, they become rapidly high for p = 6 (more
than 4 minutes) or p = 7 (more than 1 hour). We also compare the CPU times
obtained with the Algorithm 1 with a method based on a linear program: for
each point of the Pareto front, we check if there exists a capacity v such that
the Choquet integral of this point is better that all the other points. We see that
this method is more effective once p ≥ 6.

In table 3, we compare the CPU times obtained by both methods, for p = 5,
according to the number of solutions (between 100 and 3000). We see that until
the number of solutions is equal to 2000, the method based on the linear program
is more effective. It is only for sets with at least 2000 solutions that the method
based on the Algorithm 1 becomes faster, since it is only for high size sets that
we can take the most of enumerating all the permutations.
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# Crit CPU(s) Algorithm 1 CPU(s) LP

2 19.91 46.32
3 12.26 32.22
4 19.89 44.76
5 33.43 66.80
6 291.58 88.78
7 4694.23 110.56

Table 2. CPU Random multiobjective knapsack instances (3000 points).

# Sol CPU (s) LP CPU (s) Algorithm 1

100 0.54 3.11
250 0.85 3.49
500 2.01 5.34
1000 6.78 9.95
2000 24.72 20.57
3000 73.65 33.43

Table 3. CPU Random multiobjective knapsack instances (5 criteria).

5 Conclusion

We have introduced in this paper a new characterization of the Choquet optimal
solutions in multicriteria decision contexts, and more specifically for multiobjec-
tive combinatorial optimization problems. We have also presented an algorithm
to obtain these solutions based on this characterization. The experimentations
showed that increasing the number of objectives increase the expressiveness of
the Choquet integral comparing to the WS (more P -non-dominated points can
be attained). This work about generating all Choquet-optimal solutions opens
many new perspectives:

– Following [20], it will be interesting to study and to define what brings
exactly and concretely (for a decision maker) the Choquet optimal solutions
that are not WS optimal solutions, given that they are harder to compute.

– We have shown that it can be very time-consuming to apply the general
method developed in this paper due to the increase of parameters of the
Choquet integral. Therefore, dedicated methods to compute all the Choquet
optimal solutions of specific problems could be studied.

– It will be interesting to study if we can adapt the characterization of the
Choquet optimal solutions to more restrictive set of capacities, such that
k-additive capacities [21].
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