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ARTICLE HISTORY

Compiled June 16, 2019

ABSTRACT
In a multivariate framework, ranking a data set can be done by using an aggregation
function in order to obtain a global score for each individual, and then by using these
scores to rank the individuals. The choice of the aggregation function (e.g. a weighted
sum) and the choice of the parameters of the function (e.g. the weights) may have
a great influence on the obtained ranking. We introduce in this communication a
ratio index that can quantify the sensitivity of the data set ranking up to a change
of weights. This index is investigated in the general case and in the restricted case
of top k rankings. We also illustrate the interest to use such an index to analyze
ranked data sets.
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1. Ranking issues

Ranking items using composite indices is a very common issue that can be faced
in several application fields. For example, ranking universities using the well-known
Shanghai index [2] or others [16]; ranking countries regarding their development level
[7]; ranking various topics in newspapers (like ”best place to live, to study,...”); but
also in information retrieval as when a web search engine ranks web pages following a
specific query, to mention but a few.

The methodology to obtain such rankings often follows the same procedure. First,
an appropriate set of evaluation criteria is identified. Then, data are collected in order
to obtain a complete multivariate dataset. In Multi Criteria Data Analysis (MCDA)
jargon the individuals of this dataset are called alternatives and the variables are called
criteria. Last, this information is aggregated into a single score in order to obtain a
general ranking which is, mathematically speaking, a total pre-order (i.e. a complete
order on the set of individuals possibility including ex-aequo).

The choice and construction of the set of variables for a composite index concerns
delicate issues about quality, precision and availability of the data are crucial. They
can have a great influence on the final ranking. However, in an optimistic point of
view, we assume that all the difficulties pointed out above have been overcome in the
first steps. In this paper we focus on the last step of the rank construction, i.e. the
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aggregation process.
A unique synthesized score from several variables can be obtained through the use of

an aggregation function. A relatively large number of aggregation functions have been
identified in the literature [1, 10, 11]. In this work we choose to study the weighted
mean as aggregation function, since it has the advantages of making intuition simpler
and computations faster. In a weighted mean the final score, and therefore the ranking,
is of course highly dependent on the chosen weights. On the other hand, if an individual
a Pareto-dominates an individual b (i.e. a has a better score than b on each variable)
then a should necessarily be better ranked than b in the final ranking, no matter what
the weights are. The final ranking then appears to depend both on the data and on
the aggregation function parameters. If we consider the choice of the variables weights
as a political act by the ranking-maker, i.e. a real choice from a human being and not
a given parameter, then we can wonder if this choice has a weak or strong influence
on the final ranking. This question is equivalent to studying the rank sensitivity with
respect to the parameters (i.e. the weights) of the aggregation function.

Several previous works studied the ranking sensitivity up to the data, but not much
have explored the ranking sensitivity up to the weights. Among others, in [15] Saisana,
Saltelli and Tarantola present a methodology to test the sensitivity of a composite in-
dicator, using sensitivity and uncertainty analysis, and pointed out several sources
of uncertainty to obtain a composite ranking. In [12] Permanyer presents descriptive
tools that can be seen as a measure of sensitivity of a given ranking with respect to
changes in the chosen weighting scheme. In [6] Forster, McGillivray and Seth focus
on the relationship between sensitivity and the statistical association between com-
ponent variables. In [3], D’Agostino and Dardanoni have investigated the problem
of measuring social mobility when the social status of individuals is given by their
rank. However, in these different works the sensitivity has merely ever been precisely
quantified.

We propose in this paper a global index which measures the sensitivity of a ranking
with respect to the weights. The index proposed in this paper can be extended to
aggregation functions more generalized than the weighted mean, modulo perhaps for
computational reasons that are out of the scope of this paper.

The rest of the article is structured as follows. On the next section we give some
intuitive examples that ground the construction of our index. Section 3 presents the
new Rank Sensitivity Index (RSI) which aims at answering the question raised. In
section 4 we study the RSI in the case of top-k lists, i.e. only the first k items of the
ranking are a matter of interest. Numerical experiments are detailed in section 5 and
we conclude in section 6.

2. Introducing examples

We consider three different examples, each one containing 3 individuals X3 = {x, y, z}
and 3 variables v1, v2, v3. The aggregation function used to determine the ranking by
increasing order is a weighted sum, i.e. the individual with the lowest weighted sum
of the 3 variables will be ranked first. As shown in table 1 it exists 6 different possible
rankings on X3.

Let us now present three different situations. In situation 1, shown in table 2, x is
preferred to y and z for all the variables, and y is preferred to z for all the variables.
Whatever the vector of weights is, the global score of x, y and z would always be the
same (10 for x, 20 for y and 30 for z), and so the ranking in this situation is x first, y
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rank R1 R2 R3 R4 R5 R6

1 x x y y z z
2 y z x z x y
3 z y z x y x

Table 1. The 6 different possible rankings (in columns) for X3 = {x, y, z}

second and z third. The weights have no influence on the final ranking.

v1 v2 v3

x 10 10 10
y 20 20 20
z 30 30 30

Table 2. Situation 1: In presence of an absolute winner the ranking is fully determined by data

In situation 2, as shown in table 3, the 3 individuals have totally symmetric eval-
uations on the 3 variables. So each of the 6 rankings presented in table 1 is equally
possible and the choice of the weights totally determine the final ranking. The ranking
is very sensitive to a change of weights.

v1 v2 v3

x 10 30 20
y 20 10 30
z 30 20 10

Table 3. Situation 2: The ranking is fully determined by the weight vector.

Finally, we analyse situation 3, shown in table 4. The rank of x is always 1, whereas
rank of y is 2 in half of the cases and 3 in the other half (same for z). The final ranking
is then dependent of the chosen weights, but in a less sensitive way than situation 2,
as only 2 out of 6 possible rankings can be obtained. This last example shows that a
quantitative index of the respective contributions of parameters choice and variables
values can give an insight on the ranking sensitivity with respect to the parameters.

This last example shows that a quantitative index of the respective contributions of
parameters choice and variables values can give an insight on the ranking sensitivity
with respect to the parameters. We introduce in the next section such an index based
on an analysis of variance approach.

3. Ranking Sensitivity index (RSI)

Following [1], we formally introduce the aggregation functions as follows:
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v1 v2 v3

x 10 10 20
y 20 30 30
z 30 20 30

Table 4. Situation 3: the ranking will be determined by both data and parameters.

Definition 3.1. [1] Let I = [a, b] be an interval of R. An aggregation function f is a
function of p > 1 arguments that maps the p-dimensional cube Ip onto I, f : Ip 7→ I,
with the properties:

(1) f(a, a, . . . , a︸ ︷︷ ︸
p times

) = a and f(b, b, . . . , b︸ ︷︷ ︸
p times

) = b

(2) ∀j = 1, . . . , p, xj ≤ yj =⇒ f(x) ≤ f(y) ∀x = (x1, . . . , xp), y = (y1, . . . , yp) ∈ Ip.

For the sake of simplicity, and as already mentioned, we focus in this paper only on
weighted mean as aggregation function. The study of the Ranking Sensitivity Index
for other aggregation function is out of the scope of this paper and will be developed
in future works.

Definition 3.2. We denote W the simplex in Rp, i.e. the set of probability vectors of
p positive real values W = {(w1, . . . , wp) ∈ Rp|wj ≥ 0, j = 1, . . . p;

∑p
j=1wj = 1}.

Definition 3.3. A weighted mean fw, w ∈ W is an aggregation function fw : Ip 7→ I
such that, ∀x = (x1, . . . , xp),

fw(x) =

p∑
j=1

wjxj =< w, x > .

A specific weighted mean depends on a vector of parameters w = (w1, . . . , wp).
We also consider a multicriteria data set containingm individuals (alternatives) each

described by a set of p variables (criteria). Let xij be the value of the j-th criterion on
the i-th individual, with i = 1, . . . ,m and j = 1, . . . , p. We use the weighted mean fw
to determine a preference ranking for the m considered individuals, with respect to
the values taken on the variables and the weight vector w. The question we try to ask
is the following: given a set of individuals and the weighted mean family {fw, w ∈ W},
what is the influence of the parameters w on the final ranking? In other words, is the
final ranking sensitive to a modification of weights in the aggregation function?

Our goal is to answer this question through the use of a global index measuring the
sensitivity of a ranking on a specific data set with respect to a change of the aggregation
function parameters. We suppose in the following that a specific multicriteria data set
containing m individuals is given and denoted Xm. The Rank Sensitivity Index (RSI)
of Xm is based on an analysis of variance approach. Two sources of variation are to
be considered:

(1) the values taken by each individual x on each variable j ∈ {1, . . . , p},
(2) the parameter set w for the aggregation function.

In order to measure how different choices of the vector w ∈ W induces different

4



rankings on the m individuals, we propose in section 3.1 to introduce RSI in the finite
case and in section 3.2 in the general case.

3.1. Rank Sensibility Index : the finite case

R1 R2 R3 . . . Rn . . .
x1 1 1 5 . . . 2 . . .
x2 2 4 2 . . . 5 . . .
x3 3 2 1 . . . 4 . . .
. . . . . . . . . . . . . . . . . . . . .
xm 5 3 3 . . . 1 . . .

Table 5. Example of different rankings on a set Xm of m individuals

We consider in this section that the weight vectors w are from an arbitrary finite
subset of W of size n that we call Wn = {w1, . . . , wn} ⊂ W. Each vector wl ∈ Wn

leads to a possibly different ranking Rl on the m individuals of Xm. Table 5 presents
an example of such a situation where rankings are in columns. Such a table, for a
subset Wn ⊂ W contains rich information about the influence that a weight vector
has on the specific rank of an individual. Intuitively, the lower the variability across
the rows, the less influence the parameters have on the ranking.

The classical analysis of variance theory (ANOVA) is then a natural framework to
study the influence of the weights on the global ranking. We note ril the rank that fwl

attributes to the ith individual, i = 1, . . . ,m, with the use of weights set wl ∈ Wn. The
global variability for a vectors set Wn is expressed as the sum of square deviations
(SSD) of the rankings ril, i ∈ {1, . . . ,m}, l ∈ {1, . . . , n},

SSDXm,Wn

total =

m∑
i=1

n∑
l=1

(ril − r̄··)2,

where r̄·· = (nm)−1
∑m

i=1

∑n
l=1 ril is the global mean. Applied to our framework,

the SSDXm,Wn

total can be split into two factors: the variability due to the parameters

(SSDXm,Wn

parameters) and the intrinsic variability of the individual ranks that does not

depends on the parameters (SSDXm,Wn

intrinsic). As in usual ANOVA, we can compute the
part of variance which is due to parameters variation, and the part of the intrinsic
variance, i.e. the rank variability that is not sensitive to a change of weights.

The total Sum of Squared Deviations (SSD) can easily be computed. It only depends
of n an m and is equal to

SSDXm,Wn

total = SSDn,m
total =

n(m− 1)m(m+ 1)

12
.

We define the SSD due to the parameters by:

SSDXm,Wn

parameters =

m∑
i=1

n∑
l=1

(ril − r̄i.)2

where r̄i. is the mean rank of individual i. The term
∑n

l=1(ril − r̄i.)2 is therefore the
exact sum of square deviations of n different rankings of xi. For all i = 1, . . . ,m, let
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denote varni the exact variance of the ranks rik, wk ∈Wn:

varni = n−1
n∑

l=1

(ril − r̄i.)2

Therefore,

SSDXm,Wn

parameters = n

m∑
i=1

varni

We define the intrinsic SSD by:

SSDXm,Wn

intrinsic = n

m∑
i=1

(r̄i. − r̄··)2

where as above r̄·· = (nm)−1
∑m

i=1

∑n
l=1 ril is the global mean and r̄i. is the mean rank

of individual i. As in usual ANOVA we have:

SSDXm,Wn

total = SSDXm,Wn

parameters + SSDXm,Wn

intrinsic. (1)

As in usual ANOVA, we can focus on the ratio SSDXm,Wn
intrinsic

SSDXm,Wn
total

, which determine the ratio

between the intrinsic SSD and the global SSD, and which can be interpreted as the
proportion of the global variance which is explained by the intrinsic variance of the
data. We have:

SSDXm,Wn

intrinsic

SSDXm,Wn

total

= 1−
SSDXm,Wn

parameters

SSDXm,Wn

total

= 1−
12n

∑m
i=1 var

n
i

nm(m2 − 1)
. = 1−

12
∑m

i=1 var
n
i

m(m2 − 1)
.

For any data set Xm and any weight vectors set Wn, we can therefore define a rank
sensibility index RSIn as

RSI(Xm,Wn) = 1−
12
∑m

i=1 var
n
i

m(m2 − 1)

RSI(Xm,Wn) expresses the sensibility of a ranking on Xm obtained through the
use of a weighted mean, with respect to the weight vectors set Wn. We propose in
the following section to extend the definition of RSI with respect to W, the set of all
possible weight vectors.

3.2. Rank Sensibility Index : the general case

We formally state the RSI. Let us consider a given set of m alternatives Xm =
{x1, . . . , xm}, each one containing an evaluation over p criteria, i.e. xi ∈ Rp, i =
1, . . . ,m. Then, we define a random variable W taking value on the simplex W. The
law of W is denoted L(W ) For each alternative, we may define the random weighted
averages Yi =< W,xi >, i = 1, . . . ,m. We are interested in the ranking of these
random weighted averages {ρi := rank(Yi), i = 1, . . . ,m}.
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Under mild conditions, for instance if L(W ) admits an absolute continuous proba-
bility density function, we may define the expectation ρ̄i = EW [ρi] and the variance
vari = EW [ρi − ρ̄i]2. Then, we set two non random quantities that are of interest in
what follows. On one side the mean value of the ranks ρ̄ = m−1

∑m
i=1 ρi = m+1

2 , and
on the other side the sum-of-squares of the total variation

SSDXm,W
total =

m∑
i=1

(ρi − ρ̄)2.

Notice that each one of the terms on the last expression can be analysed using the
famous Huygens decomposition as follows

EW [ρi − ρ̄]2 = vari + EW [ρ̄i − ρ̄]2.

We define the RSI index as the ratio of mean square error explained by the variation
on the mean ranks, or analogously as the remaining part of variation, i.e.

RSI(Xm,L(W )) = 1−
12
∑m

i=1 vari
m(m2 − 1)

(2)

A case of particular interest is the case where L(W ) is the uniform distribution onW.
We develop further an estimation procedure of the RSI using n parameters sets.

Beforehand, we discuss the examples given in section 2 and the link our index has
with the Friedman statistic.

3.3. Examples

Let us analyse the situations introduced above by means of the RSI index. In
situation 1, shown in table 2, the ranking variances are varx = vary = varz = 0,
thus RSI = 1. This means that whatever the parameters, the rank of a specific
individual is always the same: the final ranking is not sensitive to any change in the
parameters set. In situation 2, as shown in table 3, the 3 individuals have totally
symmetric evaluations on the 3 variables. So the three variances are identical, varx =
vary = varz, and coincides with the variance of the ranking {1, 2, 3} which is 2/3.

Hence, RSI = 1− 12×(3×2/3)
3×(9−1) = 0. This means that the whole variation comes from the

parameters, and therefore that the final ranking is extremely sensitive to a modification
of weights. In situation 3, as shown in table 4, the rank of x is always 1, whereas the
rank of y is 2 for half of the cases and 3 for the other half. The situation for z is similar.

Therefore varx = 0, vary = varz = 0.25. Hence, RSI = 1 − 12×(0+0.25+0.25)
3×(9−1) = 0.25.

The interpretation is that the variance of the final ranking is dependent for 1/4 on the
intrinsic variance of the data and 3/4 on the choice of the parameters: the ranking is
quite sensitive to a change of weights.
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3.4. Links with Friedman statistic

Friedman non parametric test (see e.g. [9]) is an independence test on ranks for re-
peated measures. The test is based on the Friedman statistic

Fr =
12

n×m× (m+ 1)

m∑
i=1

S2
i − 3n(m+ 1)

with n treatments/blocks and m samples. The quantity Si is the sum of ranks for each
sample. Our RSIn is linked to Fr as the individuals can be seen as samples and the
different parameters set as different treatments on the samples. It is straightforward
to see that n(m − 1)RSIn = Fr; therefore RSIn can be interpreted as the mean of
the Friedman statistic on the samples. It is well known that under the assumption of
independence Fr converges when n→∞ to a χ2 law with m− 1 degrees of freedom.
In our framework this means that under the assumption of a total independence of the
ranking from the parameters, n(m− 1)RSIn converge to a χ2 law with m− 1 degrees
of freedom. The exact distribution of Fr under the assumption of partial dependence
is not known. Therefore the distribution of observed RSIn on a sample under the
assumption of RSI = α, α 6= 0 is not known either, and we are unable to estimate
a confidence interval of RSI using statistical inference theory. To circumvent this
obstacle we turn to an approximated estimate of the distribution.

3.5. Estimation and computational issues

We now tackle the problem of estimating the RSI. For this, our approach is to approx-
imately compute the ranking variances vari, i = 1, . . . ,m. The nature of the possible
space of weights generally makes impossible to obtain an exact computation of the
values of vari, except for very simple cases like the ones presented above. Therefore,
we have to determine an estimate of RSI. We propose to use a Monte Carlo method
to determine RSI as follows. Weight vectors are randomly generated using a Dirich-
let distribution of parameters (1/p, . . . , 1/p) as it is well known that this distribution
corresponds to the uniform distribution on the simplex W.

(1) Generate n different sets of weights drawing randomly from the space of weights
vectors. Then use these n parameters sets to obtain n different score vectors and
so n different rankings on the set of m individuals.

(2) Compute the exact rank variance of each individual var∗i of the n sampled rank-
ings obtained in the previous step.

(3) Compute the estimation R̂SI as one minus the ratio of the mean of individual
variances divided by the exact total variance:

R̂SI = 1−
12
∑m

i=1 var
∗
i

m(m2 − 1)

(4) It is possible to repeat the point estimation to estimate also the variance of

the estimator, and then to obtain a confidence interval of R̂SI. We call RSI
the average value of n estimates of the RSI, and s2 is the estimated variance
associated. Then, a confidence interval of RSI estimator is ]RSI−zs/

√
n;RSI+

zs/
√
n[, with z the normal corresponding value of the chosen quantile (typically

z = 1.96 for a 95% confidence interval).
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Experiments show that the estimator converges very quickly to the RSI when n
grows. Typically, simulation of only 500 parameters set leads to very precise estimates
of RSI. As an example, figure 1 and table 6 show the variation of RSI through the
(estimated) standard deviation obtained by our procedure. For this illustration, the
set of individuals is described by 3, 5 or 7 variables, the aggregation function is the
weighted mean and the average RSI is around 0.75. The standard deviation is around
10−3.

Figure 1. Estimates of the RSI standard deviation as a function of n

n 3 var. 5 var 7 var
100 1.7 10−3 1.9 10−3 1.8 10−3

500 4.1 10−4 3.4 10−4 3.6 10−4

1000 2.0 10−4 1.8 10−4 1.5 10−4

Table 6. Estimates of theRSIstandard deviation as a function of n

3.6. Links with ranking distances

We discuss now alternative approaches to our ANOVA based definition of a rank
sensitivity index. An interesting variant could be to use a metric between two rankings
(see working papers [13] and [14]). The metric can be for example the Kendall distance
or the Spearman’s foot-rule distance (see [8] or [4] for an introduction to these metrics).
Let us denote by d(R,R′) the similarity measure between two ranking R and R′. Now
let RSId(f,X ) be the distance-based Rank Sensitivity Index of set X with respect to
the parameters of the function f . The main idea in RSId is to compute the ratio of
the average distance between two rankings obtained with two different weight vectors,
and the average distance between all the possible rankings. Therefore RSId(f,X ) is
defined as follow:

RSId(f,X) =
df,W (R,R′)

d
, (3)

where

• d = E[d(R,R′), R,R′ ∈ X] is the average distance between two rankings of X
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• df,W (R,R′) = E[d(R,R′), R,R′ ∈ XW ] is the average distance between two
rankings obtained by using the aggregation function f and the set of possible
parameters W

While appealing from a robust point of view, this approach has poorer properties
than the ANOVA-based index proposed above.

• It is not proved that RSId(f,X) is always less than 1. First, at the best of our
knowledge, there is no theoretical result that proves that d ≥ E[d(R,R′), R,R′ ∈
RP ] where RP represents the set of all possible rankings on X, each ranking
associated with a probability p ∈ P . Second, the experiments we made show
that sometimes we obtain RSI estimations that are greater than 1.
• The RSId(f,X) index is very dependent on the distance used. The value ob-

tained for RSId(f,X) is not the same using Kendall or Spearmann distance. So
it is almost impossible to use RSId(f,X) as an absolute index of sensitivity. We
can only use it in a comparison framework.
• Therefore it is difficult to have a semantic interpretation of RSId(f,X) and to

use it to determine the real sensitivity to the parameters of a ranking situation.

4. Top k-list and ranking sensitivity index (RSI)

4.1. Top k list definition

Until now we studied the case of an RSI index computed on the whole ranking. But
often only the first elements of a ranking are a matter of interest. For example, a
page-rank user will be interested in the first 10 results. A newspaper will typically
focus on top 3 rankings. Therefore it is interesting to focus on the sensitivity of the
top-k ranking to a variation of parameters. In this case, the RSI index will be more in
accordance with the ranking user’s impression. As a matter of fact, variations in the
first (or last) elements of a ranking appear to be more important than variations in
the middle of the ranking. Please note that we focus on top-k rankings. Similar results
can be obtained for bottom-k rankings.

Let us take for example the situation A (on the left) described in table 7, where the
objective is to minimize the value on each variable (the less is better). It is obvious to
see that as the individual a get the lowest values on each variable, a will be ranked first
independently from the choice of the weights for the weighted average. With a similar
reasoning the individual b will be ranked in the second place. As c, d and e have totally
symmetric evaluations on the three variables, c, d and e will be equi-probably ranked
3rd, 4th and 5th. Hence, this case gives vara = 0, varb = 0, varc = vard = vare = 2/3,

which results on a global RSI = 1− 12×(0+0+2/3+2/3+2/3)
5×(25−1) = 0.8. However, if we focus

only on the first two elements of the ranking we obtain RSI2 = 1 (as they are always
the same in the same order). This indicates that the top-2 ranking does not depend
on the parameters of the aggregation function.

In situation B, described in the same table 7, individuals d and e present the highest
two value and so will be at the bottom of the ranking, while a, b and c will be equi-
probably ranked as 1st, 2nd and 3rd. In this case, we have obviously the same global
value RSI = 0.8, as in situation A. However, if we focus only on the first two elements
of the ranking (i.e. by giving the same rank 3 to all the individuals not ranked in the
first two), we obtain the value RSI2 = 0.375 (see computation below), which shows
that the top-2 depends largely on the choice of the parameters.
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c1 c2 c3 c1 c2 c3

a 10 10 10 a 10 20 30
b 20 20 20 b 20 30 10
c 30 40 50 c 30 10 20
d 40 50 30 d 40 40 40
e 50 30 40 e 50 50 50

Table 7. Top-k analysis, an example through two situations: A (left) and B (right).

Following Fagin et al. [5], we use top-k list, i.e. the top-k members of the ordering
given by a ranking. Formally speaking a top-k list R is a bijection from a domain
D (intuitively, the members of the top-k list) to the set {1, . . . , k}. In our paper, we
extend this definition assuming that D is a subset of a discrete and possibly infinite
set N of size n ∈ N ∪+∞. In order to formalize this presentation of a top-k list into
a set of n elements, we then choose what is called the optimistic approach in [5] and
assume that all the n− k elements that are not in the top k list are ranked ex aequo
at the k + 1−th position. Therefore, a top-k list R is a bijection from N to the set
{1, 2, 3..., k, k + 1, ..., k + 1}.

4.2. Computing RSI on top-k lists

RSI for top k lists has the same definition as the one proposed in equation 2, that
is the ratio between the sum of squares due to the intrinsic variance and the total
one. For top-k list, the only difference is on the specific form taken for the quantities
SSDintrinsic and SSDtotal.

Proposition 4.1. RSI for top k lists (RSIk) can be expressed as:

RSIk =
SSD

(k)
intrinsic

SSD
(k)
total

= 1−
6
∑m

i=1 vari

k(k + 1)
(
k + (k + 1)(1− 3k

2m)
) . (4)

Proof. The mean of the set {1, 2, . . . , k, k+1, . . . k+1} is (k+1)(m−k/2)
m and its variance

can be computed as the mean of squares minus the squared mean. The mean of squares
is

1

m

(
k(k + 1)(2k + 1)

6
+ (k + 1)2(m− k)

)
,

and the square of the mean is

(k + 1)2(m− k/2)2

m2
.

Thus, the wanted variance is

vartot =
1

m

(
k(k + 1)(2k + 1)

6
+ (k + 1)2(m− k)

)
− (k + 1)2(m− k/2)2

m2

=
k(k + 1)

6m

(
k + (k + 1)(1− 3k

2m
)

)
.
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Therefore as SSD
(k)
total = SSD

(k)
parameters + SSD

(k)
intrinsic we have that the RSI for top-k

lists can be written as:

RSIk =
SSD

(k)
intrinsic

SSD
(k)
total

= 1−
SSD

(k)
parameters

SSD
(k)
total

= 1−
∑m

i=1 vari
m× vartot

= 1−
6
∑m

i=1 vari

k(k + 1)
(
k + (k + 1)(1− 3k

2m)
)

As before, the computation of RSIk needs to determine the variance of the rank of
each individual. We use an estimation via a Monte Carlo procedure as in section 3.5.

5. Experiments

We explore in this section three different rankings as study cases where RSI can help
to better understand the importance of the weights concerning a ranking. Most of these
rankings use normalized scores on each criterion where the best score is automatically
set to 100. Although this should be avoided since it can lead to rank reversals, we
are not interested here in the criticism of the procedure to obtain each ranking. We
focus on the fact that these rankings are obtained by a weighted average over several
criteria, which is exactly the situation where RSI is useful. In what follows, all the
estimates are obtained using simulated samples of 1000 parameters vectors, which
allows one to obtain an estimated value of RSIk as proposed in section 3.5. Repeating
this estimation 100 times gives also an estimate of the variance of RSIk. The estimates
of RSIk are the mean of 100 estimations of RSIk. We present results for the the top-k
positions with k ∈ {1, 2, 3, 5, 10,m}.

5.1. Three different situations

We present here the computations concerning three real-life cases of rankings. Results
and discussion are postponed until section 5.2. Graphs representing RSIk distributions
for each situation can be found in appendix.

5.1.1. OECD’s countries ranking

In May 2011, the Organization for Economic Co-operation and Development (OECD)
proposed a new well-being index named “Better Life Index” (BLI)1. The BLI evaluates
the 34 states members of the OECD. It uses 11 criteria labelled as housing, income,
education, governance, etc. Each criterion is evaluated on a scale ranging between
0 and 10. A global country score is obtained by a weighted mean of the criteria.

1http://www.oecdbetterlifeindex.org/
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As emphasized by OECD, the innovative aspect of the BLI is the possibility offered
to anyone to choose her/his own weights (weights are integers between 0 and 5) in
order to represent her/his own preferences on well-being indicators: “The OECD is
NOT deciding what makes for better lives. YOU decide for yourself.” A study of this
index was proposed in [7], and enlightened the fact that the final ranking was poorly
dependant of the selected parameters, i.e. whatever the parameters are, it is always
one of the same three countries which is ranked at the first place.

We present in table 8 the estimation of the Rank sensitivity Index (and its standard
deviation σRSI) for OECD’s Better Life index (data obtained in may 2012).

k 1 2 3 5 10 34
RSIk 0.245 0.345 0.422 0.571 0.770 0.927
σRSI 0.010 0.010 0.009 0.008 0.004 0.001

Table 8. OECD’s Better Life Index RSI estimation.

5.1.2. “Where-to-study” cities ranking

The French magazine “L’Etudiant” is specialized in issues concerning student life,
student jobs, student housing and particularly student guidance. It publishes each year
a ranking of 41 French cities to determine “where is the best city to study in France”.
It does not rank universities, but the cities where the universities are installed. For
this, 9 criteria are considered including for example life quality, housing possibilities,
employment possibilities or international environment. Each city is evaluated on these
9 criteria, and the scores are averaged into a global score which is used to rank the
cities. We present in table 9 the estimation of the Rank sensitivity Index for ”Where
to study”.

k 1 2 3 5 10 20 41
RSIk 0.237 0.361 0.438 0.527 0.623 0.692 0.720
σRSI 0.010 0.011 0.012 0.011 0.009 0.010 0.007

Table 9. “Where to study” cities ranking RSI estimation

5.1.3. Universities ranking

Since the famous Shanghai ranking appeared in 2003, many others organisms pro-
posed a world universities ranking, all based more or less on the same scheme, i.e.
evaluating the universities by giving a score on several criteria, and then averaging
these scores on a global value. The Academic Ranking of World Universities (ARWU
- best known as ”Shanghai ranking”2) considers every university that has any Nobel
Laureates, Fields Medalists, Highly Cited Researchers, or papers published in Nature
or Science. In addition, universities with significant amount of papers indexed by Sci-
ence Citation Index-Expanded (SCIE) and Social Science Citation Index (SSCI) are
also included. The ranking is obtained by averaging normalized score on 6 criteria
with specific weights. The QS World University Ranking3 has been also chosen for our
study as the data are easily available, and the ranking is obtained by averaging the
score on 6 criteria which weights are given in the methodology section of the website.
We restrict our study to the 20 first universities in the final ranking.

2http://www.shanghairanking.com/ARWU2017.html
3http://www.topuniversities.com/qs-world-university-rankings
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Figure 2. RSIk for three different example rankings.

We present in table 10 some estimation of the Rank Sensitivity Index for ARWU
(dated 2017) and QS World University Ranking (dated 2018).

k 1 2 3 5 10 20
ARWU RSIk 0.995 0.858 0.798 0.820 0.884 0.845

σRSI 0.003 0.002 0.003 0.004 0.003 0.004
QS RSIk 0.744 0.662 0.590 0.536 0.603 0.673

σRSI 0.018 0.012 0.009 0.005 0.004 0.005
Table 10. Universities ARWU and QS ranking RSI estimation.

5.2. Discussion

Results of the precedent section are plotted in figure 2. As we can see, the RSI changes
according to k. In OECD’s index, the RSI increases with k, which means that the
first elements of the ranking are more sensitive to a change on the weights than the
global ranking, i.e. the top of the ranking is relatively more dependent on the weights.
The RSI score of 0.92 for the whole ranking shows the whole ranking is very robust
with respect to the parameters, i.e. that countries ranked on the top of the ranking
are always ranked in the top, whatever the weights are, and similarly for countries
ranked in the bottom of the ranking. The RSI score of 0.57 for the top 5 shows that
when focusing on the only first five countries, their ranks (inside the top 5) are more
dependent of the weights. The RSI score is even 0.25 for the first place of the ranking,
which corresponds to the situation where two different countries can be ranked first
with about the same probability of 50% each (see [7] for a detailed study). In this
situation 25% of the variance for the first ranked country is given by the data (mainly
only two countries can be ranked first) and 75% of the variance is due to the weights
of the weighted sum (these two countries can be equally ranked first depending of the
weights).

In the “where to study” ranking, the RSI for the whole ranking is 0.72, which
means that this ranking can be significantly modified by changing weights. Note that
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the magazine “L’Etudiant” generally focus on the best 3 cities. The RSI for k = 3 is
about 0.44, which means that the best 3 ranking reflects at least the political choice
from the magazine, through the choice of parameters, than just an objective situation.

In world universities ranking, the RSI is about 0.8 for ARWU and 0.6 for QS. It
means that the rankings (and specially the first position) depend marginally of the
chosen weights. It means also that the QS ranking is more dependent to the choice of
weights than the ARWU ranking, which is less sensitive to the set of weights. Please
note that ARWU data are also product of political choices from the ranking builder,
and then RSI=1 does not mean that the ranking is the ground truth, but that the
ranking isn’t sensitive to changes on the weights.

6. Conclusion

We propose in this paper a Ranking Sensitivity Index based on an ANOVA approach.
This index is able to determine whether a specific ranking obtained by multicriteria
aggregation is robust to a modification of the aggregation operator parameters. The
main interest of such an index is to specify if a given ranking is highly dependent
on the choice of the parameters or not. As illustrated by the examples, application
fields of RSI are various and covers most of the public rankings with available criteria
data. Readers and users of these rankings (such as universities rankings) can then
measure the influence of choices done by the ranking maker. Of course, RSI is just an
index which gives an useful insight when comparing two rankings. It gives no absolute
information about a single ranking since the same value can recover several different
situations. We recommend using RSI more as a relative index for the ranking compar-
ison, like for instance as we did in the examples to compare ARWU and QS rankings.
Experiments have been done only on weighted average. Future work should focus on
other aggregation operators like Ordered Weighted Average or Choquet integral.
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Appendix

Figures below represent more in detail the information summarized in figure 2. For
each of them, a boxplot of RSIk is represented as a function of k. Boxplots show that
the variability of the estimates is reasonably low.

(a) OECD ranking (b) ”L’Etudiant” ranking

(c) QS ranking (d) ARWU ranking

Figure 3. RSIk for the different examples studied.
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