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Abstract In some multi-criteria decision-making problems, it is more convenient

to express the decision maker (DM) preferences in bipolar scales. In such cases, the

bipolar Choquet integral with respect to bi-capacities was introduced as a versatile

tool to model these kind of preferences. However, this aggregation function is useful

in practice only if its parameters can be set up easily. To this end, elicitation

techniques aim at finding the parameters values that best fit some given examples. In

this paper, we address the problem of eliciting a bipolar Choquet integral with

respect to a 2-additive bi-capacity. We present several techniques based on solving

an optimization problem, taking into account the possible interaction, or not, with

the DM. We deal with possible inconsistencies in the observed preferences and we

also discuss the parsimonious character of the different models to favor simple

models when several solutions exist.
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1 Introduction

Multi-criteria decision making (MCDM) aims at representing the preferences of a

decision maker (DM) over a set of options (or alternatives) X ¼ X1 � � � � � Xn, in

regard to a finite set of criteria N ¼ f1; . . .; ng or attributes X1; . . .;Xn. It then seeks

to formalize the DM’s decision process through mathematical tools in order to help

her to make decisions over X. The DM’s decision process is assumed to be guided

by the importance and the relationships she wants to take into account regarding the

criteria. Concerning the preferences representations, one possible model is the

Multi-Attribute Utility Theory (MAUT) which assumes that each attribute Xi (or

criterion i 2 N) provides a utility value (or score) over the set of alternatives

ui : Xi ! R, i 2 N. Then, an aggregation function is used to combine, for each

option, its scores distribution (or profile) in an overall score. The latter global utility

values are then employed to make decisions. There are many types of aggregation

functions to model a decision process. The Choquet integral has been proved to be a

versatile tool to construct overall scores (see for example Choquet 1954; Grabisch

1997; Grabisch and Labreuche 2005c). This aggregation function is intimately

based on the concept of a capacity (or fuzzy measure). In particular, it assumes that

partial utilities belong to non-negative or unipolar scales.

Unipolar scales are not always appropriate to represent the DM’s preferences (see

the motivating example in Grabisch and Labreuche 2008). In some problems, bipolar

scales are more convenient. These type of scales are typically composed of a negative,

a positive and a neutral part which respectively allow representing a negative, a

positive and a neutral affect towards an option. The bipolar Choquet integral (BCI)was

introduced in Grabisch and Labreuche (2002) and Greco et al. (2002) to apply the

Choquet integral in the case of bipolar scales. In this paper, we particularly focus on

BCI which uses the concept of a bi-capacity (BC) introduced in Grabisch and

Labreuche (2002) and which was further studied in Grabisch and Labreuche (2005a,

b), Fujimoto (2004) and Fujimoto and Murofushi (2005). The BCI typically requires

the DM to set 3n � 3 values where n is the number of attributes. This cardinal

corresponds to 3n possible disjoint subsets minus 3 normalized parameters. When n

exceeds some units, it is impossible for the DM to set all parameters of her decision

model. To better cope with this combinatorial burden, the BCIwith respect to (w.r.t.) a

2-additive bi-capacity (2A-BC) was introduced Fujimoto (2004) and Grabisch and

Labreuche (2003). The 2-additivity property implies that only subsets of at most two

elements are considered. This property enables to reduce the number of parameters

from 3n � 3 to 2n2. Hence the bipolar Choquet integral w.r.t. a 2-additive bi-capacity

appears more useful in practice.

Even though there have been many papers studying bi-capacities (Fujimoto et al.

2007; Grabisch and Labreuche 2005a, b, c; Greco et al. 2002; Greco and Rindone

2013, 2014), most of them have focused on theoretical aspects. In this contribution,

we study the practical problem of identifying a 2-additive bi-capacity on the basis of

information provided by the DM. This problem is also known as preference

elicitation, which is an important step of a decision process. The DM gives her

preferences represented by a binary relation % over X, where � (respectively � ) is

A. Rolland et al.

123

Author's personal copy



the asymmetric (respectively the symmetric) part of % . There are different contexts

in which we can proceed to the elicitation of the preference model of a DM. In our

case, we assume that the DM provides the bipolar scores for a subset of (real or

fictitious) options w.r.t. all criteria of the decision problem. In addition, she provides

the overall bipolar scores of the same set of alternatives. These evaluated examples

constitute the only information we have at our disposal. Then, the elicitation model

consists in inferring from this information, the parameters of a 2A-BC such that the

associated BCI is consistent with the given preferences of the DM. We propose

optimization models to tackle this kind of preference elicitation problem.

Eliciting preference models is a research topic that has been studied by many

researchers (see for example Grabisch et al. 2008; Jacquet-Lagreze and Siskos

1982). However, the BCI w.r.t. 2A-BC has not been studied very much so far. The

elicitation process we deal with has many relationships with the problems addressed

in statistical machine learning. The interconnections between preference elicitation

on the one hand and machine learning on the other hand were highlighted in

Waegeman et al. (2009). There has been a growing interest for the last years about

cross-fertilizing these two domains by studying how the concepts developed in one

field can be applied in the other one. For example, the research works described in

Fallah Tehrani et al. (2012), Hullermeier and Fallah Tehrani (2012) and Huller-

meier et al. (2012) investigated the use of Choquet integral in classification tasks.

Elicitation processes for bi-capacities have been introduced in Mayag et al.

(2012) with ternary alternatives and in Ah-Pine et al. (2013) with evaluated

examples provided by the DM. This paper aims at extending these two approaches

into a more global point of view. Note that the use of a BCI for the PROMETHEE

method was already proposed in Greco and Figueira (2003) and an elicitation

process was framed in Corrente et al. (2014) as well. However, the latter research

works are specific to the PROMETHEE method as it includes specific features like

bi-capacity symmetry. We are not concerned with such aspects so our proposal is

different from these papers. In the next section, after recalling the basic definitions,

we motivate, by some examples, the need for an elicitation process based on bi-

capacities. In Sect. 3, we present a formal process to elicit the parameters of a 2A-

BC that generalizes the ones introduced in Mayag et al. (2012) and Ah-Pine et al.

(2013). In the last section, we study the parsimonious aspect of the proposed

elicitation process and we present a real-life example.

2 Bi-capacities and bipolar Choquet integral

2.1 Choquet integral and its limitations

The Choquet integral (Grabisch and Labreuche 2005c) is an aggregation function

known as the generalization of the arithmetic mean. One of its most notable

properties is to take into account interactions between criteria. This function is

based on the notion of capacity l defined as a set function from the power set of

criteria 2N to ½0; 1� such that:
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1. lð;Þ ¼ 0

2. lðNÞ ¼ 1

3. 8A;B 2 2N ; ½A � B ) lðAÞ	 lðBÞ� (monotonicity).

The Choquet integral of a vector ðy1; . . .; ynÞ 2 R
n
þ w.r.t. a capacity l is defined by:

Clðy1; . . .; ynÞ :¼
Xn

i¼1

ysðiÞ � ysði�1Þ
� �

l fsðiÞ; . . .; sðnÞgð Þ ð1Þ

where s is a permutation on N such that

ysð1Þ 	 ysð2Þ 	 � � � 	 ysðn�1Þ 	 ysðnÞ; and ysð0Þ :¼ 0:

The preferences of a DM cannot always be represented by a Choquet integral. The

following examples allow us to illustrate this point:

Example 1 The limitation of Choquet integral: a classical example when utility

functions are fixed.

A classical example that shows the limitation of the Choquet integral model is

given in Grabisch and Labreuche (2005c): the students of a faculty are evaluated on

three subjects Mathematics (M), Statistics (S) and Language skills (L). Each course

can be represented, in a natural way, on a bipolar scale where the neutral level is the

aspiration level of the dean of the faculty. Hence we assume that all marks are taken

from the same scale from 0 to 20 with the mark 10 corresponding to the neutral

level. The evaluations of eight students are given by the table below:

1: Mathematics (M) 2: Statistics (S) 3: Language (L)

A 16 13 7

B 16 11 9

C 6 13 7

D 6 11 9

E 14 16 7

F 14 15 8

G 9 16 7

H 9 15 8

To select the best students, the dean expresses his preferences:

– For a student good in Mathematics, Language is more important than Statistics

¼) A 
 B and E 
 F;

– For a student bad in Mathematics, Statistics is more important than Language

¼) D 
 C and H 
 G:
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The two preferences A 
 B and D 
 C lead to a contradiction with the arithmetic

mean model because

A 
 B ) 16wM þ 13wS þ 7wL\16wM þ 11wS þ 9wL

D 
 C ) 6wM þ 11wS þ 9wL\6wM þ 13wS þ 7wL:

8
><

>:

Furthermore it is not difficult to see that the other two preferences, E 
 F and

H 
 G, cannot be modeled by a Choquet integral Cl since

E 
 F ) 7þ 7lðfM; SgÞ þ 2lðfSgÞ\8þ 6lðfM; SgÞ þ lðfSgÞ

H 
 G ) 8þ lðfM; SgÞ þ 6lðfSgÞ\7þ 2lðfM; SgÞ þ 7lðfSgÞ

8
><

>:

i:e:

E 
 F ) lðfM; SgÞ þ lðfSgÞ\1

H 
 G ) lðfM; SgÞ þ lðfSgÞ[ 1

8
><

>:

Example 1 shows a decision situation where the strategies of the DM depend on

some evaluations on criteria that are judged as good or bad. Therefore, the DM’s

decision behavior can be interpreted as a bipolar behavior (Grabisch et al. 2008).

Example 2 The limitation of Choquet integral: an example when utility functions

are not fixed a priori.

Let X1 ¼ fa1; b1; c1; d1; e1; f1g and X2 ¼ fa2; b2; c2; d2; e2; f2g. Suppose that the

relation % is such that:

ða1; e2Þ� ðb1; d2Þ

ðc1; d2Þ� ða1; f2Þ

ðc1; e2Þ 6� ðb1; f2Þ

ð2Þ

and

ðd1; b2Þ� ðe1; a2Þ

ðf1; a2Þ� ðd1; c2Þ

ðf1; b2Þ 6� ðe1; c2Þ

ð3Þ

If we assume that

u1ða1Þ	 u1ðb1Þ	 u1ðc1Þ	 u1ðd1Þ	 u1ðe1Þ	 u1ðf1Þ

u2ða2Þ	 u2ðb2Þ	 u2ðc2Þ	 u2ðd2Þ	 u2ðe2Þ	 u2ðf2Þ
ð4Þ

then it is proved in Bouyssou et al. (2012) that % cannot be represented by a

Choquet integral.
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Compared to Example 1 where utility functions are fixed, this example shows

that it is possible to find some preferences which cannot be modeled by a Choquet

integral whatever the utility functions.

2.2 Bi-capacities and bipolar Choquet Integral

In the previous examples, the Choquet integral based on capacities fails at modeling

preferences expressed in bipolar scales. A solution to this problem is to use a model

related to this type of scale, namely the bipolar Choquet integral. This aggregation

function is based on the concept of bi-capacities which is a set function defined over

3N :¼ fðA;BÞ 2 2N � 2N jA \ B ¼ ;g, the set of couples of subsets of N with an

empty intersection.

Definition 1 (Bi-capacity (BC) Grabisch and Labreuche 2005b, 2008) A function

m : 3N ! R is a BC on 3N if it satisfies the following two conditions:

mð;; ;Þ ¼ 0 ð5Þ

8ðA1;A2Þ; ðB1;B2Þ 2 3N : ½ðA1;A2ÞYðB1;B2Þ ) mðA1;A2Þ	 mðB1;B2Þ� ð6Þ

Where ðA1;A2ÞYðB1;B2Þ , ½A1 � B1 and B2 � A2�.

The condition (6) is a monotonicity condition. In addition, a BC is said to be

normalized if it satisfies :

mðN; ;Þ ¼ 1 and mð;;NÞ ¼ �1 ð7Þ

Besides, a BC is said to be additive if it holds:

8ðA1;A2Þ 2 3N : mðA1;A2Þ ¼
X

i2A1

m fig; ;ð Þ þ
X

fjg2A2

m ;; fjgð Þ ð8Þ

An additive BC assumes that the attributes are independent from each other and this

situation boils down to linear decision models.

To better formalize some of the properties of BC, the following definition of a

(bipolar) Möbius (Fujimoto 2004; Fujimoto et al. 2007) transform1 of a BC was

proposed.

Definition 2 (Bipolar Möbius transform of a bi-capacity Fujimoto 2004; Fujimoto

et al. 2007) Let m be a BC on 3N . The bipolar Möbius transform of m is a set function
b : 3N ! R defined for any ðA1;A2Þ 2 3N by:

1 Grabisch and Labreuche (Grabisch and Labreuche 2003, 2005a, b) proposed a definition of the Möbius

transform of a BC different to the one given in Fujimoto (2004). However, there is a one-to-one

correspondence between the two Möbius transform definitions. This equivalence was established in

Fujimoto and Murofushi (2005).
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bðA1;A2Þ :¼
X

B1�A1

B2�A2

ð�1ÞjA1nB1jþjA2nB2jmðB1;B2Þ

¼
X

ð;;A2ÞYðB1;B2ÞYðA1;;Þ
ð�1ÞjA1nB1jþjA2nB2jmðB1;B2Þ

ð9Þ

Conversely, for any ðA1;A2Þ 2 3N , it holds that :

mðA1;A2Þ :¼
X

B1�A1

B2�A2

bðB1;B2Þ: ð10Þ

Note that using b, condition (5) is equivalent to:

bð;; ;Þ ¼ 0 ð11Þ

BC on 3N generally require 3n � 3 parameters. To reduce this number, Grabisch and

Labreuche (2005a, b, 2008) proposed the concept of k-additivity of a BC. This

concept translates as follows in terms of the bipolar Möbius transform.

Definition 3 (Fujimoto et al. 2007) Given a positive integer k\n, a BC m is k-

additive if and only if the two following conditions are satisfied:

8ðA1;A2Þ 2 3N : jA1 [ A2j[ k ) bðA1;A2Þ ¼ 0 ð12Þ

9ðA1;A2Þ 2 3N : jA1 [ A2j ¼ k ^ bðA1;A2Þ 6¼ 0 ð13Þ

Note that if condition (13) is omitted, then the BC is said to be ‘‘at most k’’-

additive. For the sake of simplicity, we will suppose in the elicitation process that

we are seeking for ‘‘at most 2’’-additive BC and not ‘‘2-additive’’ BC strictly

speaking, and we will use abusively the notation 2A-BC for ‘‘at most 2’’-additive bi-

capacities.

To avoid a heavy notation, we use the following shorthands for all i; j 2 N, i 6¼ j:

• mij :¼ mðfig; ;Þ, mjj :¼ mð;; fjgÞ, mijj :¼ mðfig; fjgÞ, mijj :¼ mðfi; jg; ;Þ,
mjij :¼ mð;; fi; jgÞ,

• bij :¼ bðfig; ;Þ, bjj :¼ bð;; fjgÞ, bijj :¼ bðfig; fjgÞ, bijj :¼ bðfi; jg; ;Þ,
bjij :¼ bð;; fi; jgÞ.

Whenever we use i and j together, it always means that they are different.

Using the above definitions, we propose the following properties of a 2A-BC m
and its bipolar Möbius transform b:
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Proposition 1

1. Let m be a 2A-BC and b its bipolar Möbius transform. For any ðA1;A2Þ 2 3N we

have:

mðA1;A2Þ ¼
X

i2A1

bij þ
X

j2A2

bjj þ
X

i2A1

j2A2

bijj þ
X

fi;jg�A1

bijj þ
X

fi;jg�A2

bjij ð14Þ

2. If the coefficients bij, bjj, bijj, bijj, bjij are given for all i; j 2 N, then the necessary

and sufficient conditions to get a 2A-BC generated by (14) are:

8ðA;BÞ 23N ; 8k 2 A : bkj þ
X

j2B

bkjj þ
X

i2Ank

bikj � 0 ð15Þ

8ðA;BÞ 23N ; 8k 2 A : bjk þ
X

j2B

bjjk þ
X

i2Ank

bjik 	 0 ð16Þ

3. The inequalities (15) and (16) can be respectively reformulated in terms of the

BC m as follows:

8ðA;BÞ 23N ;8k 2 A :
X

j2B

mkjj þ
X

i2Ank

mikj � ðjBj þ jAj � 2Þmkj þ
X

j2B

mjj þ
X

i2Ank

mij

8ðA;BÞ 23N ;8k 2 A :
X

j2B

mjjk þ
X

i2Ank

mjik 	ðjBj þ jAj � 2Þmjk þ
X

j2B

mjj þ
X

i2Ank

mji

Proof (Sketch of)

1. Because m is 2-additive, the proof of (14) is given by using the relation (10)

between m and b.

2. The proof of the second point is based on the expression of mðA1;A2Þ given in

(14) and on these equivalent monotonicity properties (which are easy to check):

8ðA;BÞ 2 3N and 8A � A0,

(a) mðA;BÞ	 mðA0;BÞ , f8k 2 A : mðA n k;BÞ	 mðA;BÞg;
(b) mðB;A0Þ 	 mðB;AÞ , f8k 2 A : mðB;AÞ	 mðB;A n kÞg.

3. These inequalities are obtained departing from (15) and (16) and by using the

relation (10) between m and b.

h

Hence, according to Proposition (1) and (14), the computation of a 2A-BC m only
requires the values of b on the elements ði; ;Þ, ð;; iÞ, ði; jÞ, ðij; ;Þ, ð;; ijÞ, 8i; j 2 N.

However, to satisfy the monotonicity condition given in (6), a 2A-BC should also
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satisfy the inequalities (15) and (16). In addition, we can add the following

normalized conditions:

mNj ¼
X

i2N

bij þ
X

fi;jg�N

bijj ¼ 1 and mjN ¼
X

i2N

bji þ
X

fi;jg�N

bjij ¼ �1 ð17Þ

Example 3 The sign U in the following matrix corresponds to an element of 3N

which is required to compute a 2A-BC for N ¼ f1; 2; 3g.

ðA;BÞ ; 1 2 3 12 13 23 123

;
1

2

3

12

13

23

123

U

U

U

U

U

U

U

:

0

BBBBBBBBBBBBB@

U

:

U

U

:

:

:

:

U

U

:

U

:

:

:

:

U

U

U

:

:

:

:

:

U

:

:

:

:

:

:

:

U

:

:

:

:

:

:

:

U

:

:

:

:

:

:

:

:

:

:

:

:

:

:

:

1

CCCCCCCCCCCCCA

We now define the Choquet integral based on bi-capacities as follows:

Definition 4 (Bipolar Choquet integral (BCI) (w.r.t. a BC) Grabisch and

Labreuche 2005b) Let m be a BC on 3N and x ¼ ðx1; . . .; xnÞ 2 R
n. The expression

of the BCI of x w.r.t. m is given by

CmðxÞ :¼
Xn

i¼1

jxrðiÞj
h
m NrðiÞ \ Nþ;NrðiÞ \ N�� �

� m Nrðiþ1Þ \ Nþ;Nrðiþ1Þ \ N�� �i

ð18Þ

where Nþ ¼ fi 2 Njxi � 0g, N� ¼ N n Nþ, NrðiÞ :¼ frðiÞ; . . .; rðnÞg and r is a

permutation on N such that jxrð1Þj 	 jxrð2Þj 	 � � � 	 jxrðnÞj.

We also have the following equivalent expression of the BCI w.r.t. b, given by

Fujimoto and Murofushi (2005):

CbðxÞ ¼
X

ðA1;A2Þ23N

bðA1;A2Þ
^

i2A1

xþi ^
^

j2A2

x�j

 !

ð19Þ

where
xþi ¼ xi if xi [ 0

xþi ¼ 0 if xi 	 0

�
and

x�i ¼ �xi if xi\0

x�i ¼ 0 if xi � 0

�
.

Note that CmðxÞ ¼ CbðxÞ and the subscript is meant to clarify whether it is m or b

which is used in the computation. Besides, the BCI of x w.r.t. a 2A-BC represented

by b reduces to:
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CbðxÞ ¼
Xn

i¼1

bij xþi þ
Xn

i¼1

bji x�i þ
Xn

i;j¼1

bijj xþi ^ x�j

� �

þ
X

fi;jg�N

bijj xþi ^ xþj

� �
þ
X

fi;jg�N

bjij x�i ^ x�j

� � ð20Þ

Example 4 In Example 2, we saw that preferences (2) and (3) cannot be recovered by

the Choquet integral w.r.t. a capacity. In contrast, these relations can now be modeled

by a Choquet integral w.r.t. a bi-capacity m given by its Möbius transform b:

b1j ¼ 2 bj1 ¼ �2

b2j ¼ 3 bj2 ¼ �3

b1j2 ¼ �1 b2j1 ¼ 1

b12j ¼ 5 bj12 ¼ �5:

It is sufficient to choose the utility functions u1 and u2 as follows:

u1ða1Þ ¼ �1 u2ða2Þ ¼ 0:125

u1ðb1Þ ¼ 0 u2ðb2Þ ¼ 0:2

u1ðc1Þ ¼ 0:8=7 u2ðc2Þ ¼ 0:3

u1ðd1Þ ¼ 1=7 u2ðd2Þ ¼ 0:4

u1ðe1Þ ¼ 0:3 u2ðe2Þ ¼ 0:8

u1ðf1Þ ¼ 0:45 u2ðf2Þ ¼ 1:

and then we obtain

Cmða1; e2Þ ¼ 1:2 Cmðb1; d2Þ ¼ 1:2

Cmðc1; d2Þ ¼ 2 Cmða1; f2Þ ¼ 2

Cmðc1; e2Þ ¼ 3:2 Cmðb1; f2Þ ¼ 3

Cmðd1; b2Þ ¼ 1:6 Cmðe1; a2Þ ¼ 1:6

Cmðf1; a2Þ ¼ 1:9 Cmðd1; c2Þ ¼ 1:9

Cmðf1; b2Þ ¼ 2:5 Cmðe1; c2Þ ¼ 3:

3 Identifying a 2-additive bi-capacity

The use of a BCI based on 2A-BC as a decision-aiding tool requires to determine

the parameters of the model before computing the score of each considered solution.

This step is called the ‘‘elicitation process’’. In MCDM one can generally consider

two types of paradigms for elicitation processes: direct methods and indirect

methods. In a direct method, the DM is supposed to be able to directly provide the

value of each parameter. On one hand, it means that the parameters are not so

numerous. On another hand, it also implicitly means that the DM has understood the
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model totally so that she knows how to control the effect of each parameter on the

model outcomes to recover her preferences. In the case of a BCI, it is obvious that

these two conditions fail since a BC typically requires 3n � 3 values to be set. To

reduce this complexity, 2A-BC was introduced. Nevertheless, this latter case cannot

be applied in practice either. Even if the number of parameters reduces to 2n2, it

remains very high even when n is low. Moreover, a BCI is a too complex

aggregation operator to ensure that a DM will understand the influence of each

parameter on the final result. Even with simpler aggregation rules, it has been shown

that there is no clear link between the parameter values provided by the DM and the

way these values are used in the decision model (see Bouyssou et al. 2006).

In the indirect methods, the DM does not give information about her decision

model but she provides information on the outputs of her decision strategy. Then,

given these judged examples, we have to infer the parameter values of the DM

decision model which we assume to be based on a BCI w.r.t. a 2A-BC. The

estimated BCI should predict overall scores, CbðxÞ, that are consistent with the

preference relations provided by the DM. In other words, if x% x0, which means that

x is preferred or equivalent to x0, then the inferred decision model should satisfy

CbðxÞ� Cbðx0Þ.
Elicitation process

The key point is the type of information provided by the DM: does she give a

precise global score to each alternative, or does she only provide a (complete or not)

ordinal preference relation over the set of alternatives? As presented in Fig. 1, the

available pieces of information will determine the method to be used. As we shall

see, we can make the distinction between two situations:

– If only a preference relation over the alternatives is known, then a linear

program can be used to determine whether there exists a bi-capacity compatible

with the given preference relation or not. Note that if it is possible to interact

with the DM to know her preferences on specific alternatives, then the simpler

approach is to use some specific fictitious alternatives named ternary

alternatives.

Fig. 1 Choice of adequate elicitation method
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– If a global score SðxÞ is provided for each alternative x, then we frame other

optimization problems that we can solve by means of quadratic programming.

Note that in this case, the alternatives could be real or fictitious, but no

interaction with the DM is needed.

We detail the elicitation process with ternary actions in Sect. 3.1, with only ordinal

information in Sect. 3.2 and with cardinal information in Sect. 3.3

Constraints due to the 2-additivity

We argued that the use of a 2A-BC instead of a general BC is preferable to

alleviate the complexity of the model. In the same time, it reduces the complexity

for the user as the number of parameters to set falls from 3n � 3 to 2n2.

Furthermore, the number of constraints decrease as well, thanks to the monotonicity

property: in the case of a 2A-BC this number equals

2
Xn

i¼1

i �
n

i

� �
�

Xn�i

j¼0
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whereas in the case of a BC it is
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However, in both cases, the number of constraints exponentially increases with

respect to the number of criteria as shown in Table 1.

3.1 Elicitation process with ternary alternatives

The elicitation process of a 2A-BC with ternary alternatives was introduced in

Mayag et al. (2012). We present below the basic foundations of the elicitation

process. It consists of four steps:

1. Determine with the help of the DM three reference levels:

(a) A reference level 1i in Xi which she considers as good and completely

satisfying if she could reach it on criterion i, even if more attractive

elements could exist. This special element corresponds to the satisficing

level in the theory of bounded rationality of Simon (1956).

(b) A reference level 0i in Xi which she considers neutral on i. The neutral

level is the absence of attractiveness and repulsiveness. The existence of

Table 1 Number of constraints due to the use of a BC or a 2A-BC depending of the number of criteria

# Criteria 3 4 5 6 8 10

# Constraints (2A-BC) 48 208 800 2904 34976 393260

# Constraints (BC) 117 609 3093 15561 390369 9764601
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this neutral level has roots in psychology (Slovic et al. 2002), and is used

in bipolar models (Tversky and Kahneman 1992).

(c) A reference level �1i in Xi which she considers completely unsatisfying.

2. Build a set of ternary alternatives, i.e. options where all criteria are set to the

neutral level except at most two criteria which are set to the satisfactory or

unsatisfactory level.

3. Ask the DM to give her preferences over pairs of ternary alternatives.

4. Determine the different parameters of the model through a linear program.

The aim of this linear program is to find a 2A-BC that is able to represent the

preferences given by the DM, the objective function being MinCmðx0Þ, where x0 is

an arbitrary ternary alternative. The variables are the values

mij; mjj; mijj; mijj; mjij8i; j 2 N, i.e. 1þ 2n2 variables. There are two types of constraints:

– Constraints due to the monotonicity and the 2-additivity of the 2A-BC :

8ðA;BÞ 2 3N ; 8k 2 AsuchthatðjAj þ jBj � 2Þ� 0
X

j2B

mkjj þ
X

i2Ank

mikj � ðjBj þ jAj � 2Þmkj þ
X

j2B

mjj þ
X

i2Ank

mij
ð21Þ

X

j2B

mjjk þ
X

i2Ank

mjik 	ðjBj þ jAj � 2Þmjk þ
X

j2B

mjj þ
X

i2Ank

mji ð22Þ

– Constraints due to the representation of the preference relation:

CmðxÞ ¼ CmðyÞ; 8ðx; yÞ; x� y ð23Þ

dmin 	CmðxÞ � CmðyÞ; 8ðx; yÞ; x � y ð24Þ

where dmin is an arbitrary strictly positive constant.

The optimization problem considered above has 2n2 þ n þ 1 variables. The number

of constraints due to the representation of the preference relation is equal to the

number of observed preference and indifference relations. Note that, strictly

speaking, the constraints due to the monotonicity just guarantee that the bi-capacity

is at most 2-additive, i.e. it can be 2-additive or even only additive. We present in

the following example a model using 2A-BC that represents the preferences

presented in Example 1. This model is obtained using an elicitation process with

ternary alternatives.

Example 5 In Example 1, the Choquet integral fails at representing the given

preferences. Let us show how these preferences could be represented by the use of a

bi-capacity model. Suppose here that we set the neutral level at 10, the satisfactory

level at 20 and the unsatisfactory level at 0. The assessment rules are the following

ones:
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– For a student good in Mathematics, Language is more important than Statistics.

– For a student bad in Mathematics, Statistics is more important than Language.

They can be expressed as follows:

– ð1; 0; 1Þ � ð1; 1; 0Þ
– ð�1; 1; 0Þ � ð�1; 0; 1Þ

Then the constraints due to the representation of the preference relation are:

– m13j [ m12j
– m2j1 [ m3j1

For example the following bi-capacity can express the above preferences: m; ¼ 0,

m1j ¼ 0, m2j ¼ 0, m3j ¼ 0, mj1 ¼ �0:5, mj2 ¼ 0, mj3 ¼ 0, m1j2 ¼ 0, m1j3 ¼ 0,

m2j1 ¼ �0:2, m2j3 ¼ 0, m3j1 ¼ �0:4, m3j2 ¼ 0, m12j ¼ 0:6, m13j ¼ 0:8, m23j ¼ 0,

mj12 ¼ �0:6, mj13 ¼ �0:6, mj23 ¼ 0, m123j ¼ 1, , mj123 ¼ �1

3.2 Elicitation process with ordinal information

The elicitation process of a 2A-BC with real or fictitious alternatives has been

introduced in Ah-Pine et al. (2013), inspired by methods detailed in Grabisch et al.

(2008) in the case of the unipolar Choquet integral. In this section, we suppose that

the DM gives for some examples x 2 X0 � X their partial utilities for all criteria and

a (complete or not) preference relation on the set of examples. Then, we assume that

there is no further interaction with the DM. The aim of the elicitation process is to

find a 2A-BC which correctly represents the observed preference relation. We use a

linear program to reach this objective by extending the maximum split method

introduced in Marichal and Roubens (2000). The objective function consists in

maximizing the difference (split) CbðxÞ � Cbðx0Þ for any x 6¼ x0 2 X0 such that

x � x0.
The variables are the values of the Möbius transform of the bi-capacity bij, bjj,

bijj, bijj, bjij8i; j 2 N, i.e. 1þ 2n2 variables. We deal with the Möbius transform of

the bi-capacity as it is easier to represent the 2-additivity property using the latter set

function than with the corresponding bi-capacity.

There are three types of constraints:

– Constraints due to the monotonicity and the 2-additivity of the 2A-BC. To have

a normalized 2A-BC in terms of b, we need to integrate the following relations

in our optimization problems: (11), (12) with k ¼ 2, (15), (16) and (17).

– Constraints due to the representation of the preference relation on the subset of

examples X0. If x% x0 then the BCI should be in concordance with this

preference. Accordingly, we have the following second set of constraints:

8x; x0 2 X0; x 6¼ x0 : x% x0 ) CbðxÞ � Cbðx0Þ � dc ð25Þ
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where dc is a non-negative indifference threshold which is a parameter of the

model.

– Constraints related to the computation of the BCI. Indeed, in (25) or (26), we

need to calculate CbðxÞ for each x 2 X0. As a consequence, we need to add the

constraints provided by (20) in our models. Note that despite the fact that the

latter equations involve the minimum function, we can pre-compute the terms

ðx�i ^ x�j Þ since they are parameters of the models. Consequently, the constraints

(20) are linear equations.

Therefore, the linear program considered above has 2n2 þ n þ 1 variables,

2
Pn

i¼1 i � n

i

� �
�

Pn�i
j¼0

n � i

j

� �� �
� n

� �
constraints due to the monotonicity

property and the 2-additivity of the 2A-BC and jX0j � ðjX0j � 1Þ=2 constraints due

to the representation of the preference relation, where X0 is the subset of observed

alternatives.

3.3 Elicitation process with cardinal information

We suppose that the DM gives, for some examples x 2 X0 � X, not only their partial

utilities for all criteria but also their overall scores SðxÞ. We assume that there is no

further interaction with the DM. Then, the aim of the elicitation process is to find the

2A-BC that best fits the observed values.

Following a regression approach, the objective function seeks to minimize the

sum of square errors between S and Cb which results in the following objective

function: min
P

x;x02X0 ðSðxÞ � CbðxÞÞ2. It leads to a quadratic program.

The variables are still the values of the Möbius transform of the bi-capacity bij,

bjj, bijj, bijj, bjij8i; j 2 N, i.e. 1þ 2n2 variables. The constraints are the same as in

Sect. 3.2.

3.4 Inconsistencies

Consistency means that the inferred parameters of the Choquet integral are such that

CbðxÞ� Cbðx0Þ whenever x% x0. It might happen that this condition is not fulfilled for

some pairs ðx; x0Þ. There are two main reasons for that: either the judgements

provided by the DM herself are not consistent or the restriction of the decision

model to 2A-BC does not allow one to fit the DM preferences correctly. In MCDM,

inconsistencies are usually treated in an interaction loop with the DM (see Mayag

et al. 2010 for example). It is assumed that the DM preferences can change to fix

these inconsistencies when they are encountered. In our setting, the interaction loop

is not permitted. Note that in the linear programs presented above, the set of

constraints does not allow inconsistencies. Indeed, the inferred 2A-BC b could not

be flexible enough to satisfy CbðxÞ � Cbðx0Þ � dc for some pairs ðx; x0Þ. In that case

the optimization problem is infeasible.

Consequently, to cope with this issue, we propose a second version of our models

which allows inconsistencies and attempts to infer a model that minimizes the errors
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due to such situations as much as possible. We transform the previous constraints as

follows:

8x; x0 2 X0; x 6¼ x0 : x% x0 � 0 ) CbðxÞ � Cbðx0Þ � dc � nxx0 ð26Þ

where nxx0 are non-negative slack variables which allow inconsistencies. However,

we want nxx0 to be as low as possible and thus there should be a term in the objective

function seeking to minimize
P

x;x0:x% x0 nxx0 as well. Note that when the latter term is

null, it means that the inferred model does not produce any inconsistency. On the

contrary, if for some pairs ðx; x0Þ, nxx0 [ dc then the optimal solution of the problem

has not been able to satisfy the preference relations on these pairs.

3.5 Example

Let us consider again the situation introduced in Example 1. Suppose that the DM is

able to give a global utility to each student such that these overall scores are

consistent with the expressed preferences (see Table 2).

Let us consider the neutral level to be 10. Then we center all the scores with

respect to 10 to obtain a bipolar scale (see Table 3).

Afterwards, we solve the optimization problem using the regression approach to

obtain the Möbius coefficients (rounded to 10�2), presented in Table 4.

Table 2 Data given by the DM
1(M) 2(S) 3(L) Score

A 16 13 7 13

B 16 11 9 14

C 6 13 7 8

D 6 11 9 7

E 14 16 7 11

F 14 15 8 12

G 9 16 7 9

H 9 15 8 10

Table 3 Data transformed to

bipolar scale
1(M) 2(S) 3(L) Score

A 6 3 �3 3

B 6 1 �1 4

C �4 3 �3 �2

D �4 1 �1 �3

E 4 6 �3 1

F 4 5 �2 2

G �1 6 �3 �1

H �1 5 �2 0
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The obtained scores are described in Table 5. We can see that, even if the

obtained values are not exactly equal to the observed scores, the preference relation

is preserved since 8x; x0 2 X, x% x0 () CbðxÞ� Cbðx0Þ.
Suppose now that an inconsistency occurs in the observed scores given by the

DM. It happens for example., if the score of alternative G is 7.5 (instead of s9).

There is an inconsistency as G has a better value than C on each criterion, but G’s

global score is worse than C’s global score. Then, we should use the regression

approach with the constraint (26). The obtained values are detailed in Table 6. We

Table 4 Möbius coefficients related to example 1

b[*,*] ; M S MS L ML SL MSL

; 0 �0:88 0.2 0.08 �0:45 0.33 0.12 0

M 0.78 – �0:57 – �0:2 – 0 –

S 0.1 0.55 – – 0 0 – –

MS -0.1 – – – 0 – – –

L 0.2 �0:2 0 0 – – – –

ML -0.2 – 0 – .– – – –

SL 0.22 0 – – – – – –

MSL 0 – – – – – – –

Table 5 Result scores obtained

by regression approach
sc choq val

A 3 2.69

B 4 4

C �2 -1.95

D �3 -3

E 1 1.33

F 2 1.89

G �1 -0.77

H 0 -0.41

Table 6 Result scores obtained

by regression approach
sc choq val

A 3 2.79

B 4 4

C �2 -2.31

D �3 -2.73

E 1 1.26

F 2 1.87

G �2:5 -1.58

H 0 -1.05
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can see that these scores are consistent with a dominance relation, but they fit the

observed scores worse.

4 Parsimony and example

4.1 Parsimony

Parsimony is an interesting property when trying to elicit parameters of a given

model: does the solution proposed by the elicitation program is as simple as

possible? In our case, it means that a simple additive bi-capacity should be preferred

to a 2A-BC, and that a 2-additive capacity should be preferred to a bi-capacity. Then

the questions are:

1. Does the elicitation program give the parameters of an additive bi-capacity if a

2-additive bi-capacity is not needed to obtain the observed results?

2. Does the elicitation program give the parameters of a capacity if no bi-capacity

is needed to obtain the observed results?

In its basic form, our elicitation process does not guarantee the parsimony of the

model. The chosen constraints due to the monotonicity just guarantee that the bi-

capacity is at most 2-additive. Thus, we can obtain an additive bi-capacity, or even a

capacity with the proposed optimization programs. But if the aim is to obtain the

simplest possible model, then we have to modify our program to cope with

parsimony. We propose to add a penalty term in the objective function which favors

simpler solutions. In that case, we would prefer a 1A-BC (1 additive bi-capacities)

in comparison with a 2A-BC. To this end, we would like the terms of the bipolar

Möbius transform for elements ðA1;A2Þ such that jA1 [ A2j ¼ 2, to be as low as

possible. We thus propose to minimize
P

ðA1;A2Þ23N :jA1[A2j¼2 jbðA1;A2Þj as well. It is
well-known in machine learning that penalizing a vector w.r.t. its L1 norm leads to

sparse solutions. However, since we have several criteria to take into account, one

way to solve our general problem is to consider a linear combination of the different

measures we want to optimize. Accordingly, the general objective function we

propose is the following one:

min a
X

x;x02X0
ðSðxÞ � CbðxÞÞ2

þ b
X

x;x0:SðxÞ� Sðx0Þ
nxx0

þ c
X

ðA1;A2Þ23N :jA1[A2j¼2

jbðA1;A2Þj

ð27Þ

where a; b; c are non-negative real numbers that allow balancing the importance of

each criteria.

Let us take again Example 1, with the new scores presented in Table 7.
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We first decide to not penalize the complexity of the BC, by setting a ¼ b ¼ 1

and c ¼ 0. This weighting scheme assumes that it is as important to recover as much

as possible the original scores provided by the DM as satisfying his underlying

preference relations among the alternatives. The obtained preference model is able

to exactly reproduce the original scores given by the DM. The bipolar Möbius

transform b is given in Table 8 and we can observe that it is a 2A-BC.

Suppose now, that we are interested in finding a simpler preference model than

this 2A-BC. In that perspective we set a ¼ 1, b ¼ 2 and c ¼ 4. For simplicity, if we

assume that the sub-criteria are commensurable, then this weighting scheme states

that finding a simple model is twice as important as the satisfaction of the preference

relations which is twice as important as recovering the same scores given by the

DM. Solving this problem on the example given in Table 7, we obtain the inferred

overall scores given in Table 9. With the penalty term, the obtained model does

make errors in regard to the original overall scores. However, the preference

relations are all satisfied, meaning that the learned model does not generate any

inconsistency regarding to the DM preferences. Then, the most interesting fact is

that the obtained preference model is actually a 1A-BC as shown in Table 10.

It is also interesting to give the related BC m which is shown in Table 11. In this

table we can easily see that 8ðA1;A2Þ 2 3N : mðA1;A2Þ ¼ m1ðA1Þ � m2ðA2Þ with m1
and m2 being two additive capacities such that m1ðfMgÞ ¼ 0:33, m1ðfSgÞ ¼ 0:18,

Table 7 Data given by the DM
1(M) 2(S) 3(L) Score

A 16 13 7 11.2

B 16 11 9 12

C 6 13 7 8.6

D 6 11 9 9

E 14 16 7 11.1

F 14 15 8 11.3

G 9 16 7 10.1

H 9 15 8 10.3

Table 8 Möbius coefficients

without penalty
b[*,*] ; M S MS L ML SL MSL

; 0 �0:2 �0:2 �0:2 �0:4 �0:2 �0:2 0

M 0.4 – �0:2 – 0 – 0 –

S 0.3 0.2 – – �0:1 0 – –

MS -0.2 – – – 0 – – –

L 0.2 0 0 0 – – – –

ML -0.2 – 0 – – – – –

SL 0.5 0 – – – – – –

MSL 0 – – – – – – –
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m1ðfLgÞ ¼ 0:49 and m2ðfMgÞ ¼ 0:18, m2ðfSgÞ ¼ 0:44, m2ðfLgÞ ¼ 0:38. This case

reduces to a preference model of CPT (Cumulative Prospect Theory) type as

explained in Grabisch and Labreuche (2005a).

However, note that it is not possible to favor a model based on a simple capacity

instead of a bi-capacity without adding new penalty terms. As shown in Grabisch

and Labreuche (2005b), a bi-capacity can be reduced to a capacity if it can be

expressed in a CPT way:

Table 9 Result scores obtained

by regression approach
sc choq_val

A 1.2 1.35

B 2 1.75

C -1.4 -1.32

D -1 -0.92

E 1.1 1.25

F 1.3 1.45

G 0.1 -0.23

H 0.3 -0.03

Table 10 Möbius coefficients

with penalty
b[*,*] ; M S MS L ML SL MSL

; 0 �0:18 �0:44 0 �0:38 0 0 0

M 0.33 – 0 – 0 – 0 –

S 0.18 0 – – 0 0 – –

MS 0 – – – 0 – – –

L 0.49 0 0 0 – – – –

ML 0 – 0 – – – – –

SL 0 0 – – – – – –

MSL 0 – – – – – – –

Table 11 Bi-Capacity coefficients with penalty

bb*,*] ; M S MS L ML SL MSL

; 0 �0:18 �0:44 �0:62 �0:38 �0:56 �0:82 �1

M 0.33 – �0:11 – �0:05 – �0:49 –

S 0.18 0.0 – – �0:2 �0:38 – –

MS 0.51 – – – 0.13 – – –

L 0.49 0.31 0.05 �0:13 – – – –.

ML 0.82 – 0.38 – – – – –

SL 0.67 0.49 – – – – – –

MSL 1 – – – – – – –
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mðA;BÞ ¼ lþðAÞ � l�ðBÞ

with the adding property that l should be a symmetric (lþ ¼ l�) or asymmetric

(lþ ¼ �l�) capacity. Including these constraints into the mathematical program

should lead to a very complex model with a great number of penalty terms. As an

answer to the second question, we decide not to take into account these penalty

terms, and so we cannot guarantee that our approach outputs the simplest possible

preference model.

4.2 Real-world example

Preference relations based on the use of bipolar scales are not only interesting in ad

hoc examples. In real-life situations, one can also face many situations where

preferences are expressed using a bipolar scale. The following example allows us to

illustrate this comment.

Example 6 A restaurant measures the satisfaction of its consumers concerning its

services using a sample survey. The survey contains 198 exploitable consumers.

The consumers’ satisfaction is assessed through scores obtained on four criteria:

quality/price ratio (C1); cleanliness (C2); team service (C3); food quality (C4). A

global satisfaction score is also given by the customer. All these scores are between

0 (worst score) and 10 (best score). The aim is to find a model which can explain the

global score by a combination of the criteria scores.

Since there are interactions between criteria, a simple weighted mean cannot

represent the global satisfaction score. For example in Table 12, lines 5, 6 show that a

global score of 8 can be obtainedwith combination (8,9,8,7) or (9,8,8,7). But we can see

on line7 that combination (9,9,8,7) doesnot give a better global score : there is a negative

interaction between C1 and C2 which cannot be modeled with a weighted mean.

The satisfaction score appears also to be bipolar: the customer uses different

scales to express her satisfaction or her unsatisfaction. The restaurant specified that

a score of 7 should be considered as neutral. For our study we have then to center all

the scores w.r.t. 7. Scores higher than 7 should be considered as positive scores,

Table 12 Satisfaction scores—

example data
C1 C2 C3 C4 Sglob

1 3 6 8 2 3

2 6 6 8 5 5

3 4 6 9 9 7

4 10 8 8 10 10

5 8 9 8 7 8

6 9 8 8 7 8

7 9 9 8 7 8

8 8 7 7 7 7

9 6 7 7 7 6

. . . . . . . . . . . . . . . . . .
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whereas scores under 7 should be considered as negative. Then the 2A-BC seems to

be an adequate model to represent such a satisfaction function.

Following the recommendations developed in Sect. 3, we used a split linear

method to determine the parameters of the BCI. The results are presented in Table

13. The interpretation of such parameters is not easy. We can however notice that,

among others:

– The bi-capacity is not symmetric since bðfC1g; ;Þ 6¼ bð;; fC1gÞ.
– The inequality jbðfC3g; ;Þj[ jbð;; fC3gÞj, shows that the satisfaction on

criterion C3 has a greater impact on the global satisfaction than the

unsatisfaction on criterion C3 has on the global unsatisfaction. Inspired by a

terminology introduced in the field of social psychology in Helzberg et al.

(1959) or in marketing in Llosa (1999), we can say that criterion C3 appears to

be a bonus criterion: a good score on C3 contributes to increase the global

satisfaction, but a bad score on C3 has only a small effect to the global

unsatisfaction.

– On another hand, criterion C4 appears to be important both in satisfaction and

unsatisfaction cases, as jbðfC4g; ;Þj ¼ jbð;; fC4gÞj. We can then see criterion

C4 as a key criterion: the score on criterion C4 has an influence both on global

satisfaction and unsatisfaction.

With the split method, we are able to represent 91.4 % of the 39204 preference

relations deduced from the scores comparisons. Note that a weighted mean, with

parameters obtained by a simple multivariate linear regression, can represent

89.1 % of the preference relations. A simple Choquet integral obtained by a mean

Table 13 Möbius coefficients related to restaurant satisfaction

b ; ½ � ; C1 C2 C1 C2 C3 C1 C3 C2 C3 C4

; 0 �0:22 �0:22 0.04 �0:06 0 0 �0:70

C1 0.16 . �0:08 – �0:01 . . 0.22

C2 0.18 0.03 – – 0 – . �0:010

C1 C2 -0.08 – – – . – – –

C3 0.15 0.10 0 – – – . �0:15

C1 C3 0.02 – – – – – – –

C2 C3 0.07 – – – – – – .

C4 0.70 �0:15 �0:52 . �0:04 – – –

C1 C4 -0.07 – – – – – – –

C2 C4 -0.10 – – – – – – –

C3 C4 -0.04 – – – – – – –

b[*,*] C1 C4 C2 C4 C3 C4

; �0:08 0.17 0.06

. . . – – –
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square method described in Grabisch et al. (2008) represents 87.2 % of the

preference relations.

If we want to focus on the ability of the model to fit the real scores (and not the

preference relation), we can notice that the squared sum distance between the real

score and the estimate one is 23.22 for the BCI (with a regression method) and 30.04

for the weighted mean, which shows that a BCI model better fits the data.

It is not surprising that a bi-capacity leads to a small improvement of the

performances over a weighted mean. In most cases, the use of a weighted mean is

sufficient to explain the global satisfactory score and a bi-capacity is used only to

refine the weighted mean.

5 Conclusion

A general process to determine the parameters of a 2A-BC from the data has been

proposed. The decision model is inferred from examples that the DM evaluated both

regarding their partial utilities and their global scores. Several methods have been

proposed whether an interaction with the DM is possible or not. Whatever the

context, our techniques all lead to the resolution of optimization problems. We

investigated both the traditional preference elicitation setting where no inconsis-

tency is allowed and the more flexible case where we have to cope with such

inconsistencies. We also proposed a parsimonious BC model through the use of

penalty terms.

The main next step we intend to undertake is to study the variation of computing

time as a function of the number of criteria and the number of alternatives in the

learning set.

References

Ah-Pine J, Mayag B, Rolland A (2013) Identification of a 2-additive bi-capacity using mathematical

programming. In: Proceeding of ADT ’13

Bouyssou D, Couceiro M, Labreuche C, Marichal J-L, Mayag B (2012) Using Choquet integral in

machine learning: What can MCDA bring? In: DA2PL, 2012 Workshop: From Multiple Criteria

Decision Aid to Preference Learning. Mons, Belgique

Bouyssou D, Marchant T, Pirlot M, Tsoukias A, Vincke P (2006) Evaluation and Decision models with

multiple criteria: stepping stones for the analyst, volume 86 of International Series in Operations

Research & Management Science. Springer, New York

Choquet G (1954) Theory of capacities. Annales de l’institut Fourier 5:131–295

Corrente S, Figueira JR, Greco S (2014) Dealing with interaction between bipolar multiple criteria

preferences in PROMETHEE methods. Ann OR 217(1):137–164

Fallah Tehrani A, Cheng W, Dembczynski K, Hullermeier E (2012) Learning monotone nonlinear models

using the Choquet integral. Mach Learn 89(1):183–211

Fujimoto K (2004) New characterizations of k-additivity and k-monotonicity of bi-capacities. In: Joint

2nd Int. Conf. on Soft Computing and Intelligent Systems and 5th International Symposium on

Advanced Intelligent Systems

Fujimoto K, Murofushi T (2005) Some characterizations of k-monotonicity through the bipolar möbius
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