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Abstract

DOAN Thi Van Thao

Securing Online Analytics of Shared Data Warehouses

With the increased need for data confidentiality in different applications of our
daily life, homomorphic encryption (HE) arises as a promising cryptographic topic.
HE allows to perform computations directly on encrypted data (ciphertexts) without
decryption in advance. Since the results of calculations remain encrypted and can
only be decrypted by the data owner, confidentiality is warranted and any third party
can operate on ciphertexts without access to decrypted data (plaintetxts). Applying
a homomorphic cryptosystem in a real-world application depends on its resource ef-
ficiency. Several works compared different HE schemes and gave the stakes of this
research field. However, the existing articles either do not deal with recently proposed
HE schemes (such as CKKS) or focus only on one type of HE.

Within the context of the BI4people project (Business intelligence for the people),
our objective is to conduct an extensive comparison and evaluation of homomorphic
cryptosystems’ performance based on their experimental results. This evaluation aims
to explore, analyze, and compare existing solutions to data confidentiality problem
using Homomorphic Encryption, followed by proposing the most appropriate and
sufficient solution for BI4people. Moreover, the obtained results of performance eval-
uation can also be used to a variety of other situations. The study covers all three
families of HE, including several notable schemes such as BFV, BGV, CKKS, RSA,
El-Gamal, and Paillier. In addition, we present the basics of the HE schemes, in a
great part of their principles and mathematical models, as well as their implemen-
tation specification in most-used HE libraries, namely Microsoft SEAL, PALISADE,
and HElib.
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Chapter 1

Introduction

For a long time, security has always been a controversial topic due to its im-
portance in technology particularly and in society generally. When implementing a
technological tool or service, the first and foremost concern of researchers is about the
applicable security that it can provide.

By the dramatically inevitable data growth of nearly all organizations, the demand
for data storage and computation has been increasing significantly in the last decades.
A traditional infrastructure for data management, such as in-house or local services,
can provide only a limited storage and access controls. In the Internet-based world,
this method is no longer applicable with a huge amount of sensitive data being gener-
ated every second from business transactions. One potential solution for this problem
is to seek a third-party expert outside of the company to place its trust. However, to
apply this model, we need to face one of its biggest challenges: data confidentiality.

In this situation, cryptography has come to the forefront to provide both data
confidentiality and computation for this outsourcing problem. As the foundation of
modern security systems, cryptography helps to ease the concern of data leakage to
an untrusted third party or server side. An user must now encrypt the data before
sending it to the server. Later, after retrieving encrypted data from the server, only
the user can decrypt it using his secret key and get its value. Although this technique
would preserve the data privacy, the encrypted data is not meaningful for the server, so
it is not able to maintain its computation’s efficiency. That was why for the moment,
a new cryptographic topic, called Homomorphic Encryption, got a major attention
when it allows to perform certain computable functions on the encrypted data while
preserving the features of the function and format of the ciphertexts. In [Aca+18], A.
Acar and his colleagues beautifully illustrated this process on Figure 1.1, where C is
a Client and S is a Server.

Figure 1.1: A simple client-server HE scenario.

Also, following this survey, HE can be categorized under three types of schemes
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with respect to the number of allowed operations on the encrypted data: (1) Partially
Homomorphic Encryption (PHE) allows only one type of operation with an unlimited
number of times. (2) Somewhat Homomorphic Encryption (SWHE) allows some types
of operations with a limited number of times. (3) Fully Homomorphic Encryption
(FHE) allows an unlimited number of operations for an unlimited number of times.
Figure 1.2 presents the most known HE-based systems and their timeline, while their
application scenarios are demonstrated in Table 1.1.

Figure 1.2: Timeline of several important HE schemes.

So far, there are many HE schemes that have been introduced. Within the scope
of the project, we focus on the ones which are the most widely used in cryptography
applications and are the basis for other schemes. Being introduced in 1978, RSA is one
of the first public-key encryption methods for securing communication on the Inter-
net, inspired by Diffie-Hellman’s research ([DH19], 1976). Little while later, El-Gamal
([ElG85], 1985) and Paillier cryptosystems ([Pai99], 1999) were proposed respectively,
marking an important milestone for PHE. The calculation on ciphertexts remained
limited until 2009, when C. Gentry presented a FHE scheme ([Gen09], 2009). Three
years later, based on the Gentry’s work, two main FHE schemes to perform exact com-
putations over finite fields and integers were born, Brakerski-Gentry-Vaikuntanathan
(BGV) [BGV14] and Brakerski/ Fan-Vercauteren (BFV) [FV12]. The latest newcomer
to join SWHE recently is CKKS ([Che+17], 2016), which allows to perform computa-
tions over approximated numbers. CKKS is an indispensable element of HE family,
where it complements previous schemes by natively dealing with real and complex
numbers.

Scheme Application

RSA, 1978 [RSA78] Banking and credit card transaction (Parmar et al.,
[Par+14])

ElGamal, 1985 [ElG85] In Hybrid Systems (Parmar et al., [Par+14])
Paillier, 1999 [Pai99] E-Voting (Parmar et al., [Par+14])

BGN, 2005 [BGN05] A Novel IoT Data Protection Scheme Based on BGN
Cryptosystem (S. Halder et al., [HC21])

BGV, 2011 [BGV14] For the Security of Integer Polynomials (Parmar et al.,
[Par+14])

BFV, 2012 [FV12] A fast oblivious linear evaluation (OLE) protocol (Leo de
Castro [De 20])

CKKS, 2016 [Che+17] Homomorphic Machine Learning Big Data Pipeline for
the Financial Services Sector (Masters et al., [Mas+19])

Table 1.1: HE schemes and their applications.
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Before moving on to the following section, Figure 1.3 shows how HE is applied to
the BI4people context. In the project, there are two main participants, a server and
a user. The local system belongs to the user’s part. Depending on whether data con-
fidentiality is required or not, the context is divided into two different possibilities. In
case the data is not very sensible or important, the user has the option to send data to
the server without encryption. On the other hand, he/she can select to encrypt data
before sending them. In this situation, he/she will be prompted to choose between
encrypting full data (all of his data) or partial data (a part of them). In both cases,
he/she goes forward by selecting needed operations on his/her data, such as addition,
multiplication, etc. After that, the local system takes charge by automatically gener-
ating key pair, encrypting required data, and sending them, together with the public
key to the server. The server then does necessarily required computations and returns
the results. Using secrete key owned by the user only, the local system will decrypt
received results and give the user access to the values in plaintext.

Figure 1.3: HE application in BI4people project.

Organization of the report

The rest of the thesis is structured as follows: chapter 2 reviews some of the
related works in the similar field, regarding the performance evaluation of different
HE schemes. The most important properties of HE schemes and their libraries are
discussed in chapter 3. Then, chapter 4 elaborates the implementation method and
results of evaluation analysis. In chapter 5, a discussion on the security of HE under
notable security notions and Shor’s quantum algorithm is given. Finally, chapter 6
presents a conclusion and indicates directions of future work.
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Chapter 2

Previous Work in the Field

As mentioned above, one of our related works is a survey conducted by A. Acar
et al. in 2018 [Aca+18], which covers important PHE, SWHE, and all the main FHE
schemes. Similarly, in 2017 the survey of P. Martins et al. [MSM17] presents funda-
mental concepts of FHE schemes and their performance, mainly from an engineering
perspective, refraining from introducing complex mathematical definitions. However,
the articles do not mention CKKS encryption [Che+17], an usefully practical HE pro-
posed recently in 2016, which allows to compute real and complex input numbers.
Lately, a study of Kim et al. [KPZ21], published in 2021, implements their improved
variants of BFV and BGV in PALISADE and evaluate their experimental performance
for several benchmark computations. From a same point of view, Lepoint and Naehrig
in [LN14] offers theoretical and practical comparisons of different HE schemes, as well
as explains how to choose parameters to ensure algorithms’ correctness and security.
Even so, the papers delve deeply into the mathematics, which is more suitable for
expert readers and mathematicians. In contrast, the survey conducted by Alaya et al.
in [ALM20] makes a easy-to-understand comparison of advantages and limitations of
different HE algorithms. Unfortunately, it only presents the theoretical information
of the schemes, while implementation aspect has not been brought up. Most recently,
Sidorov and his colleagues [SWN22] publish an article relating to performance anal-
ysis of HEs in several libraries, but the paper does not specify which homomorphic
schemes were used in each libraries, either the input parameters. In opposition to
[SWN22], Migliore et al. [MBF16] proposes a study of the current best solutions for
setting up parameters of HE schemes, but only approaches to SWHEs.

Considering the related works and their scopes summarized in Table 2.1, it is obvi-
ous that among existing HE surveys, they either do not study newborn schemes (such
as CKKS) or do not cover all three HE families or are too mathematical. Therefore in
this field, there is still a need for a comprehensively up-to-date survey which provides
key concepts of the main encryption schemes in all three HE categories, together with
their experimental performance comparison. The survey needs to be practical and
show newly interested users how to build their own HE-based projects in popular HE
libraries.

Our contribution

Our work aims to provide readers with fundamental principles of HEs without
delving too deep into the mathematics. Furthermore, the thesis conducts a compre-
hensively theoretical and practical comparison of important HEs, covering all three HE
categories: FHE, SWHE, and PHE. For different HE schemes in each family, we anal-
yse their input parameters, together with their constraints, and then compare them
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together. This hands-on experience helps unprofessional practitioners distinguish li-
braries’ properties and makes them easy to apply in building their own HE-based
projects. In addition, we provide experimental results on performance evaluation of
each HE scheme in most-used libraries such as SEAL [Lai17], PALISADE [Pol+22],
HELib [HS14], and HEAAN [Che+21]. Although PHE schemes are now not available
in mentioned open-source libraries, our own implementations of Paillier, El-Gamal,
and RSA are used as partially homomorphic cryptosystems in the emulation. For
each execution case, we also come up with assessments and results’ explanations.
Furthermore, in the last part, we deliver a concrete discussion on the security of
aforementioned schemes against IND-CPA, IND-CCA, as well as integer factorization
attacks on classical and quantum computers.

Authors Description Scope
Schemes Libraries

C. Fontaine et
al., 2007 [FG07]

Providing nonspecialists with a sur-
vey of HE techniques - -

T. Lepoint et al.,
2014 [LN14]

Conducting a comparison of FV and
YASHE schemes and explaining how
to choose parameters to ensure cor-
rectness and security against lattice
attacks

BGV
YASHE FLINT

V. Migliore et al.,
2016 [MBF16]

Proposing a study of the current
best solutions, providing a deep
analysis of how to setup and size
their parameters

BFV
SHIELD -

P. Martins et al.,
2017 [MSM17]

Studying SWHE and FHE schemes
supported by their performance and
security from an engineering stand-
point

BGV
BFV

Paillier
El-Gamal

-

A. Acar et al.,
2018 [Aca+18]

Providing a comprehensive survey
of the main FHE, PHE and SWHE
schemes, including the FHE imple-
mentations

RSA
Paillier

El-Gamal

SEAL
HELib

B. Alaya et al.,
2020 [ALM20]

Presenting different HE cryptosys-
tems, joined with a final comparison
between the adopted techniques

- -

A. Kim et al.,
2021 [KPZ21]

Revisiting BGV and BFV, together
with proposing an improved variant
of BFV

BGV
BFV PALISADE

C. Zaraket et al.,
2021 [Zar+21]

Proposing SAVHO homomorphic
scheme and its performance analy-
sis in comparison with Pailler cryp-
tosystem

Paillier
SAVHO SageMath

V. Sidorov et al.,
2022 [SWN22]

Conducting an extensive study of
homomorphic cryptosystems’ per-
formance for practical data process-
ing

Paillier
El-Gamal

SEAL
PyAono
HELib

S. J. Mohamme
et al., 2022
[MT22]

Evaluating performance of RSA, El-
Gamal, and Paillier homomorphic
encryption algorithms

RSA
El-Gamal
Paillier

-

Table 2.1: Related works and their scopes.
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Chapter 3

Background and Preliminaries

3.1 Libraries

HElib (Homomorphic-Encryption Library) [HS14] is the first open source library
implementing HE. Being published in 2013, it focuses on effective use of BGV and
CKKS schemes, together with ciphertext packing techniques and the Gentry-Halevi-
Smart optimizations. Helib is still under development by Shai Halevi (IBM), Vic-
tor Shoup (NYU, IBM) and available on GitHub [HEl20]. In 2018, the authors im-
plemented several algorithmic improvements, including Faster Homomorphic Linear
Transformations[HS18], that made Helib 30–75 times faster than those previously
built for typical parameters.

PALISADE [Pol+22] is a C++ open-source project, which provides efficient imple-
mentations of lattice cryptography building blocks. The library now supports varied
HE schemes, such as: BGV, BFV, CKKS, FHEW, and TFHE. In addition, it also
supports multi-party extensions of certain schemes and related cryptography primi-
tives, namely digital signature schemes, proxy re-encryption, and program obfusca-
tion. PALISADE is also available on GitHub [PAL20].

SEAL (Simple Encrypted Arithmetic Library) [Lai17] is also a HE library, devel-
oped by the Cryptography and Privacy Research Group at Microsoft. According to
his author, Kim Laine, the first version of SEAL was released in 2015 with the specific
goal of providing a well-engineered and documented HE library. SEAL was designed
to use both by experts and by non-experts with little or no cryptographic background.
The updated version of Microsoft SEAL, which can be found on GitHub [SEA20], has
implemented various forms of HE schemes, including BGV, BFV, and CKKS. Besides,
there is a SEAL version in Python, called SEAL - Python [SEA22]. This is a Python
wrapper implementation of the SEAL library, using pybind11 [pyb21].

HE scheme/Library SEAL PALISADE HElib HEAAN
BFV ✓ ✓
BGV ✓ ✓ ✓
CKKS ✓ ✓ ✓ ✓

Table 3.1: HE schemes in HE open-source libraries.

To have an extensive comparison for CKKS encryption, apart from these three
mentioned libraries, we also measure its running time in HEAAN library [Che+21], de-
veloped in 2016 by its own authors. HEAAN (Homomorphic Encryption for Arithmetic
of Approximate Numbers) is an open-source cross platform software library which
implements the approximate HE scheme proposed by Cheon, Kim, Kim and Song
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(CKKS). HEAAN executes only CKKS schemes with its complete properties. Fol-
lowing its owners, the library allows additions and multiplications to be performed
by fixed point arithmetics and approximate operations between rational numbers.
Table 3.1 illustrates the distribution of several encryption schemes in each library.

3.2 Homomorphic encryption schemes

In this part, we explain basic properties of HE, followed by a brief description of
some notable PHE, SWHE, and FHE schemes, based on five main homomorphic oper-
ations: Key generation (KeyGen), Encryption (Enc), Decryption (Dec), Homomorphic
addition (Add), and Homomorphic multiplication (Mult). The performance evalua-
tion of mentioned schemes will be presented with greater detail in chapter 4, but first
of all, we define a homomorphic encryption. In [Aca+18], an encryption scheme is
called homomorphic over an operation “⋆” (e.g., Add, Mult) if it supports the following
equation:

E(m1) ⋆ E(m2) = E(m1 ⋆ m2),∀m1,m2 ∈M,

where E is the encryption algorithm and M is the set of all possible messages.

3.2.1 RSA

This HE was first introduced by Rivest et al. [RSA78]. The security of the cryp-
tosystem relies on the practical hardness of factoring the product of two large prime
numbers [Mon94], called the factoring problem. Given a security parameter λ, RSA
is defined as follows:

• KeyGen(λ): First, two large prime numbers (p and q) are randomly chosen, then
N = pq and ϕ(N) = (p− 1)(q − 1) are computed. The secret large integer d is
picked such that gcd(d, ϕ(N)) = 1. The last public component e is calculated
by computing the multiplicative inverse of d (i.e., ed ≡ 1 mod ϕ(N)). Finally,
set the public key pk = (e,N), and the secret key sk = (d, p, q).

• Enc(pk,m ∈ ZN ): The message m is an integer between 0 and N − 1. The
encryption of m is c, such that: c = E(m) = me (mod N).

• Dec(sk, c): The message m can be recovered from the ciphertext c by: m =
cd (mod N).

• Mult(c1, c2): c1c2 = E(m1)E(m2) = [me
1 (mod N)][me

2 (mod N)]
= (m1m2)

e (mod N) = E(m1m2).

3.2.2 El-Gamal

The encryption system is a widely-used HE in public-key cryptography, proposed
by T. ElGamal in 1985 [ElG85]. The advent of El-Gamal algorithm is based on the
Diffie–Hellman key exchange, while its security strength is relied on the hardness of
solving discrete logarithms.

• KeyGen(λ): Firstly a cyclic group G of order N and its generator g ∈ Z∗
N are

generated. After randomly drawing an integer x from {1, . . . , N − 1}, h = gx

is computed. The public key pk consists of (G,N, g, h), while sk = x is kept
secret.

• Enc(pk,m ∈ ZN ): A message m is encrypted by choosing an integer y randomly
from {1, . . . , N − 1}, then computing s = hy. the output of the encryption is a
ciphertext c = (c1, c2), where c1 = gy and c2 = ms.
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• Dec(sk, c): To decrypt the ciphertext, firstly s′ = cx1 needs to be calculated.
Next, m is recovered by m = c2s

′−1.

• Mult(c1, c2):
c1c2 = E(m1)E(m2) = (gx1 ,m1h

x1) · (gx2 ,m2h
x2) = (gx1+x2 ,m1m2h

x1+x2) =
E(m1m2).

3.2.3 Paillier

The encryption of Paillier (1999) [Pai99] is an additively homomorphic cryptosys-
tem, which is based on the composite residuosity problem and gathers many good
properties.

• KeyGen(λ): Two primes numbers p, q of k bits are randomly generated such that
N = pq and ρ = N−1 (mod ϕ(N)), where ϕ(N) = (p − 1)(q − 1). One can
publish pk = N and sk = ρ.

• Enc(pk,m ∈ ZN ): To encrypt a message m, first an integer r from {1, . . . , N−1}
is chosen randomly. The output is the ciphertext c = (1 +mN)rN (mod N2).

• Dec(sk, c): To recover the message m, r = cρ (mod N) is computed. Then
m = (cr−N (mod N2))−1

N .

• Add(c1, c2): c1c2 = E(m1)E(m2) = (1+m1N)rN1 (1+m2N)rN2 (mod N2) = [1+
(m1+m2)N +m1m2N

2](r1r2)
N (mod N2) = [1+(m1+m2)N ]rN (mod N2) =

E(m1 +m2).

3.2.4 BFV

In 2012, J. Fan and F. Vercauteren ported the scheme proposed by Brakerski
[Bra12] from the learning-with-errors (LWE) setting to the Ring-LWE setting [FV12].
Using a simple modulus switching trick, BFV (so-called FV) simplifies the analysis of
the bootstrapping step. The security of BFV-type cryptosystems is based on the LWE
over rings (or RLWE) assumption [Reg09]. The RLWE(λ, q, χ) assumption states that
it is very hard to distinguish two distributions (a, b = a · s+ e) and (a, u), where a, s,
and u are randomly selected from Rq and e is selected from an error distribution χ,
referencing security parameter λ. This assumption has been proved hard over ideal
lattices in [LPR10].

Let R = Z[x]/f(x) be a ring of polynomials in which the operations of BFV will
be performed, where f(x) = xN +1 is a cyclotomic polynomial with N being a power
of 2. The ring is used to define the RLWE problem with coefficients in Zq, denoted
by Rq = Zq[x]/f(x). Additionally, the message space is defined as being Rt for an
integer t > 1.

• KeyGen(λ): For a B-bounded distribution χ over the ring R, a vector of secret key
sk = s is sampled s← χ. The public key is defined by: pk = ([−(a · s+ e)]q, a),
where e← χ and a← Rq.

• Enc(pk,m ∈ Rt): Given a plain message m, let p0 = pk[0], p1 = pk[1], and draw
u, e1, e2 ← χ, the ciphertext is: c = ([p0 · u + e1 +∆ ·m]q, [p1 · u + e2]), where
∆ = ⌊q/t⌋.

• Dec(sk, c): Let c = (c0, c1) be an encrypted message. The decryption returns m
such as m =

[⌊
t
q [c0 + c1 · s]q

⌉]
t
.
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• Add(c1, c2): Let c1, c2 be two encrypted messages such that c1 = (c10, c11) and
c2 = (c20, c21). The addition of two digits is c = ([c10 + c20]q, [c11 + c21]q).

• Mult(c1, c2): By multplying two ciphertexts c1(s) and c2(s), the result is c1(s) ·
c2(s) = c′0+ c′1 · s+ c′2 · s2. One encountered problem is that resulting ciphertext
has degree 2 and must be reduced to a degree 1 [FV12]. This process is called
relinearization, which is similar to modulus switching. To start, a relinearization
key rlk is generated by choosing an integer p and sampling a new a← Rpq and
e ← χ′(χ′ ̸= χ) satisfying rlk = ([−(a · s + e) + p · s2]pq, a). The output is
relinearizated 1-degree ciphertext: ([c0 + c2,0]q, [c1 + c2,1]q), where:

c0 =
[⌊ t(c10 · c20)

q

⌉]
q

c1 =
[⌊ t(c10 · c21 + c11 · c20)

q

⌉]
q

c2 =
[⌊ t(c11 · c21)

q

⌉]
q

(c2,0, c2,1) =
([⌊c2 · rlk[0]

p

⌉]
q
,
[⌊c2 · rlk[1]

p

⌉]
q

)
3.2.5 BGV

BGV encryption was invented in 2011 by Brakerski, Gentry, and Vaikuntanathan
[BGV14]. BGV is a FHE that works for both an LWE and an RLWE. The hardness
of the scheme is also based on RLWE problem [LPR10]. To keep the ciphertext error
within a given bound, they used the technique of modulus switching as introduced in
[BV14]. This modulo reduction maps a ciphertext c defined in a ring Rq, to a ring
Rp, where p < q [RLF19]. This keeps the error contained within the ciphertext at
the same level. In original BGV, public key and switch keys are matrices [YG20].
Given a security parameter λ and level L, corresponding to the maximum number
of multiplications that can be executed. First step is to generate L large primes
q0, . . . qL−1 satisfying q0 < · · · < qL−1 [YG20]. p is also chosen as a plaintext modulus.

• KeyGen(λ, χ, L): A vector s is selected randomly as a sk. Then b = −(a · s +
p · e) (mod qL−1) is computed, where a ← RqL−1 , e ← χ. The public key is
(a, b). Next, the switch keys (a0, b0, t0, 0), . . . , (aL−1, bL−1, tL−1, L − 1) will be
computed, where bi = −(ai · s + p · ei − ti · s2) (mod ti · qi), ai ← Rqi , ei ← χ,
and ti is an integer.

• Enc(pk,m ∈ Zp): A plaintext m can be encrypted by E(m) = (c0, c1) = ((b ·
v + p · e0 + m) (mod qL−1), a · v + p · e1 (mod qL−1)), where each element of
vector v, vi ∈ {0, 1,−1} and e0, e1 ← χ. We have c = (c0, c1, L− 1) is the initial
ciphertext.

• Dec(sk, c): A ciphertext c = (c0, c1, i), i = [0, L− 1] can be decrypted to find its
plaintext m by m = c0 + c1 · s (mod qi) (mod p).

• Add(c1, c2): The addition of two ciphertexts of a same level c1 = (c10, c11, i) and
c2 = (c20, c21, i) is computed by c = ((c10 + c20) (mod qi), (c11 + c21) (mod qi)).

• Mult(c1, c2): Similarly to BFV method, the first step is to compute a degree-2
ciphertext, where we denote c1(s) ·c2(s) = c′0+c′1 ·s+c′2 ·s2. The relinearization
procedure results a compressed ciphertext with degree 1: c∗ = (c∗0, c

∗
1), where

c∗0 = tic
′
0 + bi · c′2 (mod tiqi) and c∗1 = tic

′
1 + ai · c′2 (mod tiqi), with the switch
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Figure 3.1: Algorithms in CKKS.

key (ai, bi, ti, i). The ciphertext c∗ will be mapped to c ∈ Rqi−1 as the output
by SwitchModulus method.

• SwitchModulus(c = (c0, c1, i)): Supposing to have two modulus qi and qj where
i > j, and a ciphertext c in ring Rqi , we calculate modulo inverse element
rj =

qj
qi

in qj . The new ciphertext in ring Rqj is defined by c = (c0, c1, j) =
(c0rj (mod qj), c1rj (mod qj), j).

3.2.6 CKKS

As mentioned in the previous section, CKKS, a HE for approximate arithmetic,
was introduced in 2016 in [Che+17]. What makes CKKS draw attention to many
researchers is that it allows to perform approximate additions and multiplications of
ciphertexts, where its plaintexts can be vectors of real and complex values. This has
been done by encoding and decoding method, where the inputs are converted from
CN/2×R to R = Z[x]/(xN +1) and vice versa [Che+17]. In this step, we need to use
a rounding technique, which might destroy some significant numbers. Thus, if we had
an initial vector of real or complex values z, roughly speaking it will be multiplied
by a scale ∆ > 0 during encoding and then divided by ∆ during decoding to keep a
precision of 1

∆ . Figure 3.1 describes all algorithms in CKKS scheme [Yon19].

As well as many other HE schemes, the foundation of CKKS is also the RLWE
problem. Similarly to previously presented schemes, in this part, we simply describe
the five main algorithms of CKKS. To start, it begins with a integer p > 0, number
of multiplication L, and modulus q0. For 0 < l ≤ L, we define ql = plq0.

• KeyGen(λ, qL): First, a vector s is sampled from a set of signed binary vectors
in {0, 1,−1}N whose Hamming weight is exactly an integer h. Next, a ← RqL ,
and e ← χ. We set the secret key sk = (1, s), pk = (b, a) ∈ R2

qL
with b =

−as + e (mod qL). We choose an integer P , set a′ ← RP ·qL , e′ ← χ, and
evk = (b′, a′) ∈ R2

P ·qL with b′ = −a′s+ e′ + Ps2 (mod P · qL).
• Enc(pk,m): Given a distribution ZO(ρ) draws each entry in the vector from
{0, 1,−1}N , with probability ρ/2 for each of −1 and +1, and probability being
zero 1 − ρ. To encrypt a polynomial m, we sample polynomials v ← ZO(0.5),
e0, e1 ← χ, then output the ciphertext c = v · pk + (m+ e0, e1) (mod qL).

• Dec(sk, c): For a ciphertext c = (b, a) ∈ R2
ql
, the approximate result m′ of the

plaintext m can be recovered by m′ = m+ e = b+ a · s (mod ql).

• Add(c1, c2): For c1, c2 ∈ R2
ql
, its addition is c = c1 + c2 (mod ql).

• Mult(evk, c1, c2): Similarly to introduced HEs, the multiplication of CKKS also
accompanies a relinearlization step. For c1 = (b1, a1), c2 = (b2, a2) ∈ R2

ql
, let
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(c′0, c
′
1, c

′
2) = (b1b2, a1b2 + a2b1, a1a2) (mod ql). After being relinearlizated, it

outputs a degree-1 ciphertext c = (c′0, c
′
1) + ⌊P−1 · c′2 · evk⌉ (mod ql).

One problem produced is that underlying value contained in the plaintext and
ciphertext is ∆ · z as mentioned above. So after multiplying two ciphertexts
c1, c2, the result holds z1 · z2 ·∆2. By doing many multiplications, the resulting
ciphertext will have grown exponentially. To reduce its size, Rescale RSl→l′

is introduced with its goal being to actually keep the scale constant, and also
reduce the noise present in the ciphertext.

• RSl→l′(c): For a ciphertext c ∈ R2
ql

at level l > l′, we output c′ =
⌊ ql′
ql
c
⌉
∈

(mod ql′).

The schemes presented above are six homomorphic cryptosystems within the scope
of the project, which are also the most widely used in cryptography applications and
the basis for other schemes. In the following chapter, we will elaborate their imple-
mentation methods and results of evaluation analysis based on practical experiments.
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Chapter 4

Implementation and results

4.1 Notations

The main focus of this article is to compare each available scheme’s performance
in different libraries. For this reason, in each library, we built our own “simple”
project as a regular end-user. Each project is corresponding to one scheme, which
includes five main homomorphic operations: KeyGen, Enc, Dec, Add, and Mult. The
execution time needed to perform each operation will be recorded and then compared
to each other. Every program collecting the performance metrics is carried out on
an average commodity computer equipped with with an Intel(R) Core(TM) i7-10700
CPU running at 2.90GHz under Ubuntu 20.04. In the results presented in the next
section, the following notations are used:

Symbol Description
p The plaintext modulus of BGV, BFV schemes

Q
The maximum ciphertext modulus, the initial ciphertext
modulus after encryption

m The cyclotomic order of the ring R
N The degree of the ring R (N = ϕ(m))
n The number of slots or messages encoded in one ciphertext

L
Multiplication depth, the number of multiplications can be ex-
ecuted

∆
Scaling factor in CKKS scheme, multiplied to the floating-point
number of message to convert to integer number.

To ensure the consistency in test results, every experiment is executed according
to the strategy below:

• The time unit is microseconds (µs);

• Each operation was executed in 1000 iterations and the time presented is its
average;

• The parameters are chosen to ensure the 128-bit encryption security level;

• The time measured of encryption operation includes the execution time of ran-
dom values for message inputs, together with encoding and decoding timings for
batching;

• Bootstrapping is not applied.

Depending on different HE schemes’ properties, chosen plaintext will be differed.
BFV and BGV schemes allow modular arithmetic on encrypted integers, while CKKS
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supports homomorphic operations on real or complex ones. Within the scope of
the project, plaintext batching technique is applied for all evaluated FHE and SWHE
schemes. The first element of the batch is drawn randomly from a uniform distribution
over the same range p, and the remaining elements are set to be 0. The diversity in
input setting for each scheme will be explained with greater detail in the following
subsections.

4.2 Fully homomorphic encryption

4.2.1 BFV

Although the scheme is available in both SEAL and PALISADE as mentioned in
Table 3.1, they also have their differences in the implementation, indicated in Ta-
ble 4.1. PALISADE allows users to change the parameters p,N,L as inputs, whereas
SEAL-Python keeps L unchangeable from the user side. To accelerate the batching
technique, the two libraries require that the chosen plaintext modulus p needs to be
a prime number and congruent to 1 (mod 2n). This is the condition to operate on
n packed integers in a SIMD (Single Instruction, Multiple Data) manner [Lai17]. In
order to assess the relative practical efficiency of two libraries for BFV encryption,
different implementations are done with the same input parameters and working en-
vironment given in Table 4.2.

SEAL-Python PALISADE
Languages Python C++

Parameters

p changeable changeable
N changeable changeable
L not changeable changeable
Q not changeable not changeable

Batching n = N n = N

Condition p = 1 (mod 2n), p is a prime number

Table 4.1: Differences in libraries’ setups.

p log2Q required N

1032193 109 4096
1032193 218 8192
786433 438 16384
786433 881 32768

(a) SEAL

p (log2Q,L) required N

1032193 (120,1) 4096
1032193 (180, 2), (180, 3) 8192
786433 (240,4), (300,5), (300,6), (360,7), (360,8), (420,9) 16384
786433 (480,10), . . . , (780,19), (840,20), (840,21) 32768

(b) PALISADE

Table 4.2: BFV’s input parameters in PALISADE and SEAL.

Unlike SEAL, PALISADE can calculate required N and Q based on chosen L and
p to ensure a security level of 128 bits. In contrast, SEAL sets 128-bit encryption
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security level as default and allows users to enter N . SEAL then displays satisfied
Q and p with the entered inputs. Table 4.2 contains many options for PALISADE’s
inputs with the same p and N in order to have 128-bit security. However, to have
fair comparison between these two, the value of Q in PALISADE is chosen to be close
to the one in SEAL. In Table 4.3, we provide timings for five main cryptographic
functions, using the parameters recommended in Table 4.2.

HE parameters KeyGen Enc Dec Add Mult
N log2Q

4096 109 1028.119 1263.528 276.045 1.298 3274.257
8192 218 3003.509 3269.548 1179.682 144.531 11663.16
16384 438 10260.45 11378.441 5434.016 415.662 54918.967
32768 881 40251.496 41297.274 17442.857 1536.587 246427.201

(a) SEAL

HE parameters KeyGen Enc Dec Add Mult
N log2Q

4096 120 1137.556 1160.459 283.99 0.237 4296.438
8192 180 3170.82 2881.717 921.646 187.703 13585.75
16384 420 13507.743 11288.5535 3298.9775 1086.105 76565.506
32768 840 55941.007 45587.262 17171.713 7046.362 427795.343

(b) PALISADE

Table 4.3: Horizontal comparison of BFV’s execution time.

After examining these tables, it is clear that the ciphertext dimension N has a sig-
nificant effect on BFV’s performance. In most cases, the running times of decryption
and addition are less than the others. In general, when N increases, the execution
times of all operations are increased, especially multiplication, which approximately
grows up 4 times compared to the previous N in both two libraries. However, in
particular, the mean multiplication execution time of SEAL is less than that of PAL-
ISADE. One explanation for this is that the latter always counts the relinearization
procedure whenever doing multiplication (EvalMult function), while in the former,
it is separately computed. Within the scope of our experiments, the decryption is
executed only on a fresh ciphertext without doing multiplication before. Therefore, it
is not necessary to do relinearization step. That is why the timing in SEAL does not
involve relinearization.

In Figure 4.1, we depict experimental results in vertical comparison, where timings
are illustrated based on each operation. It is obvious that the mean execution times
of all cryptographic functions in two libraries are close to each other, but SEAL is still
performing better. While the rest are almost similar, the biggest variance is displayed
in multiplication time, where N = 32768, SEAL is approximately 2 times faster than
PALISADE.

4.2.2 BGV

Unlike BFV, all three libraries SEAL, PALISADE, and HElib have implemented
BGV. Generally, in doing the experiments, the encryption parameters of BGV, namely
p,Q,N , and security level, are kept unchanged, compared to BFV. The number of
slots in one batch is n = N = ϕ(m), except for the last case of Helib where N =
32768 and n = 8192 as indicated in Table 4.4. This number is impacted by several
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Figure 4.1: Vertical comparison of BFV’s execution time.

parameters, including the maximum supported computation depth of the circuit (L)
[HS14]. As L is varied to allow more computation, it also affects the cost of the
computation. Additionally, in practical implementation, some technical definitions
have been introduced in HE libraries, noise budget is one of them. According to A.
Kim [Lai17], noise budget (invariant) is defined as the total amount of noise we have
left until decryption will fail. To be more precise, the BGV implementation for each
library is specified as follows:

PALISADE: In the library, noise budget is managed by ModReduceInPlace func-
tion, a method for reducing modulus of ciphertext and the private key used for encryp-
tion [Pol+22]. As explained above, in our scope of evaluation, this function will not
be included. For BGV multiplication, the BFV operation of EvalMult is reused, so
key-switching or relinearlization is already added. Besides, other properties of BGV
implementation are remained the same as BFV’s, such as the solution to calculate
required N , Q, as well as the condition of inputs as mentioned in Table 4.1.

HElib: Helib allows to calculate its security level based on p, m, and bits (the
number of bits of the modulus chain). When bits increase, its execution time is also
raised up. Thus, in the comparison with other libraries as demonstrated on Table 4.4,
we choose these variables such that the security level is close to or at least 128 bits.

Table 4.4 shows that the performance of HElib can be considered as good as the
other two libraries if the timings of key generation and decryption were not such
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HE parameters KeyGen Enc Dec Add Mult
N log2Q

4096 109 2424.838 1091.586 259.842 42.541 1508.681
8192 218 11426.94 3137.433 992.5 79.952 6673.09
16384 438 70869.416 11179.579 3791.998 292.17 35650.547
32768 881 433638.89 41716.827 18156.642 866.2635 215414.681

(a) SEAL

HE parameters KeyGen Enc Dec Add Mult
N log2Q

4096 96 3023.297 1145.76 368.375 42.116 570.952
8192 144 10981.757 3043.417 1007.424 57.322 2396.688
16384 240 51708.9 8902.513 3546.961 289.751 13642.014
32768 480 376273.9767 34662.558 20727.674 3313.547 116248.311

(b) PALISADE

HE parameters KeyGen Enc Dec Add Mult
N log2Q

4096 100 168300.764 2257.432 138092.51 32.064 2347.865
8192 100 470367.195 4533.877 549616.633 480.44 4492.487
16384 100 1348552.91 9917.878 2265994 289.706 10778.79
32768 100 1967110.87 14080.4445 2340201.2 209.039 17477.661

(c) HElib

Table 4.4: Horizontal comparison of BGV’s execution time.

N addSome1DMatrices KeyGen Enc Dec Add Mult

4096 No 4882.369 2229.431 138098.495 120.27 2093.809
Yes 168300.764 2257.432 138092.51 32.064 2347.865

8192 No 9903.988 4637.854 548176.341 389.5065 5463.149
Yes 470367.195 4533.877 549616.633 480.44 4492.487

16384 No 20361.114 9418.236 2213333.56 577.842 11731.862
Yes 1348552.91 9917.878 2265994 289.706 10778.79

32768 No 39825.16 13217.164 2373608.58 1039.197 21059.138
Yes 1967110.87 14080.4445 2340201.2 209.039 17477.661

Table 4.5: BGV in HElib with different inputs.

slow. To explain this, we need to examine the execution of key-switching matrices
addSome1DMatrices in KeyGen process. Table 4.5 displays the differentiation in run-
ning time of computing or not the addSome1DMatrices function. Without adding this
procedure, key generation has been much less time-consuming. For instance, in case
N = 32768, it took almost 2 seconds to generate its key pair with addSome1DMatrices,
whereas this process costed only 40 milliseconds approximately without it.

In contrast, key-switching matrices have not been mentioned in SEAL and PAL-
ISADE. Instead, PALISADE calculates required N and Q as illustrated in Table 4.6.

The different pairs of L and Q in each line have the same level of security. Hence, in
the horizontal comparison of Table 4.4, we selected PALISADE results with lower (L,
Q) to compare with others. On the other hand, Table 4.7 contains the timing results
when implementing the lowest and highest pairs of (L,Q) in each particular case of
N value. Based on its behaviors, (L, Q) shows an impressing effect on PALISADE’s
execution time, especially on KeyGen procedure. For instance, at the same level N =
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p (log2Q,L) required N

1032193 (96,1) 4096
1032193 (144, 2), (192, 3) 8192
786433 (240,4), (288,5), (336,6), (384,7), (432,8) 16384
786433 (480,9), (528, 10), (576,11),. . . (768,15), (816,16), (17,864) 32768

Table 4.6: BGV inputs for 128-bit security level in PALISADE.

32768, L = 17 took more than 1 second to generate key pair, whereas 0.3 seconds
is its cost when L = 9. Last but not least, Figure 4.2 exposes the visibly vertical
comparison of the two based on timings of each operation.

N L log2Q KeyGen Enc Dec Add Mult

8192 2 144 10981.757 3043.417 1007.424 57.322 2396.688
3 192 18055.952 3662.841667 1499.093333 77.27016667 3906.558667

16384 4 240 51708.9 8902.513 3546.961 289.751 13642.014
8 432 151107.142 13704.344 9176.451 1203.262 44985.406

32768 9 480 376273.9767 34662.558 20727.674 3313.547 116248.311
17 864 1138783.22 58661.984 52499.905 3221.175 362749.472

Table 4.7: BGV in PALISADE with different inputs.

A deep analysis of the Figure 4.2 and Table 4.4 shows that the SEAL and PAL-
ISADE are performing much better than the HElib for KeyGen and Dec operations.
In contrast, Helib running time is the best in multiplication and encryption. On the
other hand, PALISADE and SEAL have equally good performance in all operations.
Although there is dissimilarity between them in multiplication and addition, since the
actual time counted in µs, it is not really a great distance.

4.3 Somewhat homomorphic encryption

The CKKS scheme is called leveled homomorphic encryption, an “extended” form
of SWHE. In contrast to BFV and BGV encryption, where exact values are necessary,
CKKS allows both additions and multiplications on encrypted complex numbers, but
yields only approximate results [Lai17]. According to A. Kim [SEA20], one should
take advantage of CKKS encryption in applications such as summing up encrypted
real numbers, evaluating machine learning models on encrypted data, or computing
distances of encrypted locations. As a result, CKKS scheme has been implemented in
four HE libraries as communicated in Table 3.1. To perform experiments with CKKS,
in addition to the default setting mentioned above, the input parameters are the same
for all libraries, where:

• Scaling factor ∆ = 240;

• For batching technique, n = N/2.

In this encryption, there is no condition of plaintexts. Based on its properties, we
chose inputs as real numbers. The method to draw packed messages keeps unchanged
as discussed in section 4.1.

PALISADE: The ring dimension of the HE scheme is chosen following the security
standards. Hence, to meet a requirement of 128-bit security level, the minimum value
of N is 8192. In Table 4.8, we presents the detail of input parameters.
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Figure 4.2: Vertical comparison of BGV’s execution time.

SEAL: Like other CKKS implementation, SEAL does not use the plaintext-
modulus parameter p. Moreover, instead of providing a ciphertext modulus Q, users
working with CKKS must provide a modulus chain of prime sizes (e.g., q = [60, 40, 40, 60])
[SEA20]. The number of moduli is equal to the number of iterations/multiplications.
Additionally, the log2Q bit as shown in Table 4.2 is kept unchanged, but now it is
corresponding to the maximal sum of these primes, called CoeffModulus.

Before going to the evaluation part of different libraries’ performance, Table 4.9
illustrates how SEAL behaves sensitively with ciphertext modulus and its modulus
composition for each value of N . Although addition and decryption time are not
changed significantly, the calculation time is climbed up more than 2 times in the
three remaining operations.

HElib: One of the most advantages of HElib is its transformation of complex
mathematical calculations in order to be easier and more understandable for non-
expert practitioners. For example, to add two ciphertexts cipher_a and cipher_b,
HElib supports to simply declare a new one as a sum of the two: Ctxt cipher_add
= cipher_a; cipher_add += cipher_b. There is no need to specify technical steps
such as relinearization or rescaling as others. Being different from other libraries,
HElib allows users to calculate encryption security level based on input parameters.
Table 4.10 contains the experimental results with the encryption security sec_level
being the closest to 128-bit level, while still preserving HElib’s usage recommendation.



20 Chapter 4. Implementation and results

(log2Q,L) required N

(101,1) 8192
(140,2), (181,3), (221,4), (261,5), (301,6) 16384
(341,7), (381,8) 32768

Table 4.8: CKKS input parameters in PALISADE.

N log2Q Modulus chain KeyGen Enc Dec Add Mult

8192 160 60, 40, 60 2179.13 3206.887 50.54 128.72 178.348
200 60, 40, 40, 60 2507.607 3910.8775 109.5735 271.207 452.792

16384 200 60, 40, 40, 60 5034.227 8548.111 221.213 317.991 774.644
432 60, [39]*8, 60 11959.254 18847.575 721.076 1777.956 2077.872

32768 200 60,40,40,60 10215.043 18231.808 781.699 529.59975 1414.666
881 [55]*15,56 39749.74 66061.559 2589.904 2221.2535 4741.014

Table 4.9: SEAL’s comparison for different modulus composition.
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Figure 4.3: Vertical comparison of CKKS’s execution time.

HEAAN: The last library was developed by its own authors. HEAAN takes
advantage of fully built-in algorithms, where it is able to deal with complex numbers.
An input message in HEAAN can consist of n complex numbers, where n ≤ N/2.

By analyzing different results displayed in Figure 4.3, one can see that overall
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performance of HEAAN and Helib are quite slower than SEAL and PALISADE.
In overall, SEAL owns the best performance, while HEAAN is much more time-
consuming compared to the others. Considering PALISADE’s presentation in both
Table 4.10 and Figure 4.3, it is obvious that its most time-consuming procedure is de-
cryption and multiplication. One reason needed to bring up is that, the relinearization
step is always included in multiplication function EvalMult. Moreover, for decryp-
tion process (cc->Decrypt(keys.secretKey, cMul, &result)), calculated time of
rescaling algorithm is also taken into account. In contrast, SEAL does not include
relinearization and re-scaling schemes in multiplication and decryption respectively.
Instead, it can be done by coding separately with evaluator.relinearize_inplace
and evaluator.rescale_to_next_inplace functions.

HE parameters KeyGen Enc Dec Add Mult
N log2Q

8192 200 2507.607 3910.8775 109.5735 271.207 452.792
16384 432 11959.254 18847.575 721.076 1777.956 2077.872
32768 881 39749.74 66061.559 2589.904 2221.2535 4741.014

(a) SEAL

HE parameters KeyGen Enc Dec Add Mult
N log2Q

8192 102 2305.699 2652.975 21650.503 81.117 3129.505
16384 141 6542.385 7093.977 51639.085 194.05 9584.286
32768 342 31630.72 29936.449 248985.192 3291.783 66603.916

(b) PALISADE
HE parameters KeyGen Enc Dec Add Mult

N (log2Q,sec_level)
8192 (119,157.866) 11008.069 2659.019 22065.082 272.865 19712.186
16384 (358,129.741) 91768.896 8252.838 107935.827 1502.701 104850.697
32768 (558,128.851) 164575.383 23730.201 364743.317 11576.171 215878.991

(c) HElib

HE parameters KeyGen Enc Dec Add Mult
N log2Q

8192 119 2282102.44 634268.04 41491.42 39877.65 614878.85
16384 358 2294477.86 624440.22 93658.41 17826.4 994892.6
32768 558 2251482.12 657943.99 114587.91 45690.59 1332368.41

(d) HEAAN

Table 4.10: Horizontal comparison of CKKS’s execution time.

4.4 Partially homomorphic encryption

This part presents our own implementations of partially homomorphic cryptosys-
tems, including Paillier (additive), El-Gamal (multiplicative), and RSA (multiplica-
tive). The source code is available at github [Doa22]. Table 4.11 and Figure 4.4
illustrate horizontal and vertical comparison results respectively. According to PHE’s
properties as introduced in chapter 1, one PHE scheme can possess four following op-
erations: Key generation, encryption, decryption, and addition/multiplication. Unlike
FHE and SWHE, here the inputs are identified as p (plaintext modulus) and log2N
(the number of bits of N), where N is one factor in public (encryption) keys. For each
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cryptosystem, we measure the execution time when selecting pairs of (log2N, p) in the
similar manner of selecting (log2Q, p) in FHE. In addition, we execute the second
situation where p is in ZN and the bits of N are so large such that they can reach
128-bit security level as stated in [Hea+13]. As same as the previous implementations,
the time unit is microseconds; each operation was executed in 1000 iterations and the
timings presented are its average. The implementations are set up following their
original papers: Paillier [Pai99], El-Gamal[ElG85], and RSA [RSA78]. Table 4.11 and
Figure 4.4 below demonstrate the experimental results.

HE parameters KeyGen Enc Dec Mult
p log2N

1032193 109 1484.324 1.062 5.399 2.237
1032193 218 1931.446 1.669 7.803 0.396
786433 438 3490.179 2.496 37.265 0.853
786433 881 8366.837 6.865 205.38825 2.178
ZN 3072 180255.34 61.599 6327.537 2.934
ZN 4096 433348.8 88.372 14327.857 9.792

(a) RSA encryption

HE parameters KeyGen Enc Dec Mult
p log2N

1032193 109 31063.45 4.486 4.336 3.151
1032193 218 135618.53 16.748 15.476 9.74
786433 438 773368.775 66.794 32.56 18.388
786433 881 5354554.333 403.448 203.718 8.651
ZN 3072 >15 minutes
ZN 4096 >15 minutes

(b) El-Gamal encryption

HE parameters KeyGen Enc Dec Add
p log2N

1032193 109 1072.014 265.509 6.738 4.255
1032193 218 1537.688 279.664 22.872 4.053
786433 438 3081.14 367.893 141.012 6.08
786433 881 7903.175 1013.957 950.735 10.868
ZN 3072 183774.01 20237.659 26364.306 232.136
ZN 4096 4297885.6 42868.889 55843.731 212.978

(c) Paillier encryption

Table 4.11: Horizontal comparison of PHE’s execution time.

4.4.1 Paillier encryption

In Paillier cryptosystem, although the input is N , the cipher space or ciphertext
modulus is N2 (see chapter 3). In spite of that, generally the algorithm performs all
four operations very well as shown in Table 4.11. In the second situation, when both
p and N increase, there is no much difference in time execution of Add. However, for
three others, they are both climbed up. Particularly, when N is 4096 bits, the average
time for one KeyGen is almost 4.3 seconds.
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4.4.2 El-Gamal encryption

Table 4.11 indicates that all three operations of encryption, decryption, and multi-
plication in El-Gamal method have a better performance compared to Paillier. Apart
from that, KeyGen appears to be a very time-consuming procedure. The cryptosystem
needs more than 5 seconds to generate key pairs if log2N = 881, not mention to say
that it needs more than 15 minutes when log2N = 3072 or more. Regarding to this
problem, its author Taher ElGamal explained that in any of the cryptographic systems
based on discrete logarithms like El-Gamal, N must be chosen such that N −1 has at
least one large prime factor [ElG85]. If N −1 has only small prime factors, computing
discrete logarithms would be easy [PH78]. Hence, our implementation is set up such
that this condition is satisfied. N is considered as a safe prime if (N − 1)/2 is also a
prime.

4.4.3 RSA encryption

It is clearly seen in Figure 4.4 that RSA has represented the best performance
among three PHE schemes, even in case of very large ciphertext space. As its authors
stated in [RSA78], the secret key d in RSA is very easy to choose, which is relatively
prime to ϕ(N), where N = pq. To be more specific, any prime number greater than
max(p, q) will do. This is one of the reasons why RSA does not take much time to
generate keys like El-Gamal encryption and why it is commonly used in practice.
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Figure 4.4: Vertical comparison of PHE’s execution time.

In Figure 4.4, the first graph on the top-left side displays the running time of Addi-
tion (Add) in Paillier and Multiplication (Mult) for the remaining two cryptosystems.
Although the difference among them is demonstrated visibly, it is still considered as
marginally small for the time unit is in µs.

In this chapter, we made an efficient performance comparison of six notable HE
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schemes, covering all three homomorphic encryption categories: Partially HE, Some-
what HE, and Fully HE. The results clearly suggest that partially homomorphic cryp-
tosystems are significantly faster than the others at addition and multiplication op-
erations. RSA possesses the fastest key-generation procedure, whereas El-Gamal is
quite slow when ciphertext modulus increases. On the other hand, the presentation
between evaluated FHE schemes and CKKS is inconsistent, especially for multiplica-
tion timings. For both BFV and BGV, SEAL and PALISADE demonstrate a slower
multiplication compared to CKKS. In contrast, HElib makes that of CKKS be a time-
consuming process in comparison to the other two. Besides, between BFV and BGV,
performance analysis has shown that the former is performing better than the latter
in terms of execution time for key generation in both SEAL and PALISADE, mostly
when the ciphertext dimension is climbed up.

To have a comprehensive survey on HE, in the next chapter, we will discuss the
security of homomorphic cryptosystems in general and the security of these six schemes
in particular under several security notions, such as IND-CPA and IND-CCA.
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Chapter 5

On the Security of Homomorphic
encryption

5.1 HE under security notions

All four general-purpose libraries presented in our work were based on RLWE-
based systems. The most interesting advantage of LWE or RLWE is that it is consid-
ered as one of the hardest problems to solve in practical time for even post-quantum
algorithms [LPR10]. However, this does not mean that RLWE-based HEs are to-
tally secure. In fact, to prove security of encryption algorithms, two security models
commonly referred are IND-CPA and IND-CCA, standing for Indistinguishability un-
der chosen plaintext attack and Indistinguishability under chosen ciphertext attack
respectively. For IND-CCA, there are IND-CCA1 and IND-CCA2. The former is
Indistinguishability under non-adaptive chosen ciphertext attack, while the latter is
the adaptive one.

Figure 5.1: IND - CPA security notion.

Figure 5.2: IND - CCA security notion.

IND-CPA is modeled by a game between an adversary (A) and a verifier (V)
as illustrated in Figure 5.1. In general, after generating pk, sk, and other security
parameters of an encryption system, V sends pk to A. From this point, A is free to
perform any computations using pk. A then chooses two different plaintexts a, b and
send them to V. V computes encryption of a or b uniformly at random and sends
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A the result, called challenge. Finally, A needs to conclude the received value is the
encryption of a or b. The cryptosystem is said to be secure in terms of IND-CPA if no
adversary can output the correct value with probability significantly better than 1

2 .
Likewise, the definition of IND-CCA is similar to IND-CPA, but here in both IND-
CCA1 and IND-CCA2, the attacker can ask for the decryption of any ciphertexts,
except the challenge that the verifier sent. In particular, IND-CCA1 and IND-CCA2
all allow the attacker to make queries to the decryption oracle to decrypt any arbitrary
ciphertexts before the step 3 in Figure 5.1, when the verifier sends the challenge to
the adversary. However, after the step 3, the adversary may not make further calls to
the decryption device in IND-CCA1, while it is allowed in IND-CCA2 as illustrated
on Figure 5.2. The security under IND-CCA2 implies the security under IND-CCA1,
and the security under IND-CCA1 also implies the security under IND-CPA. In other
words, an encryption scheme which is IND-CCA2 secure is both IND-CCA1 and IND-
CPA secure.

5.1.1 RLWE - based FHE and SWHE schemes

In 1999, Bellare et al. [Bel+98] proved that all homomorphic encryption schemes
are not secure against IND-CCA2 attacks. Subsequently, although IND-CCA2 is the
strongest of the three security definitions, it is universally acknowledged that IND-
CCA1 is the strongest security notion for HE. Apart from these three, Chenal and
Tang [CT14] mentioned one variation of these security notions, called key recovery
attacks. Following the authors, the key recovery attack is stronger than a typical
IND-CCA1 and allows an adversary to recover the private keys through a number of
decryption oracle queries.

Scheme IND-CPA IND-CCA1 Key recover attack
BFV

✓ Fauzi et al. [FHR22]
Z. Peng [Pen19]

BGV Chenal and Tang [CT14]
CKKS Li et al. [LM21]

Table 5.1: Security of several FHE and SWHE schemes.

Table 5.1 lists several FHE and SWHE schemes presented in our work and corre-
sponding attacks, together with their related papers. It is obvious that three schemes
are secure against IND-CPA attacks [FHR22]; however, they all suffers from IND-
CCA1 and key recover attacks.

5.1.2 PHE schemes

In contrast to FHE and SWHE, one of PHE schemes, namely RSA, is weak even
under IND-CPA norm. The reason is that Schoolbook RSA is deterministic. There-
fore, comparing to IND-CPA model in Figure 5.1, to guess the correct output at step
4, the adversary can compute ae (mod N) and be (mod N) then check which one is
matched to the verifier’s challenge. Thus, RSA is not IND-CPA secure, which also
implies that it is not IND-CCA secure either. Unlike RSA, Paillier encryption is IND-
CPA secure under Decisional Composite Residuosity (DCR) Assumption [GCD20].
To be more precise, Armknecht et al. [AKP13] proved that Paillier scheme is secure
against IND-CCA1 attacks if and only if DCRSCCR is hard, where SCCR is Subgroup
Computational Composite Residuosity problem [Pai99]. Similar to Paillier system,
El-Gamal encryption scheme is also known as being IND-CPA secure under the de-
cisional Diffie-Hellman assumption [TY98]. However, when discussing the security of
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El-Gamal under IND-CCA1, Wu and Stinson [WS08] supposed that it is conjectured,
but there has been no formal proof.

Integer factorization problem (IFP). Apart from attacks on security notions, IFP
is also worth discussing in our context when we have the security of both RSA and
Paillier cryptosystems depending on factoring problem. Given a composite number
N , The IFP is defined as finding two integers p and q such that pq = N . Once p and
q are discovered, it can be shown that RSA and Paillier encryption are insecure (see
chapter 3). Two of widely used algorithms to factor an integer, as well as to be the
basis of other factorization methods, are Pollard’s rho and Pollard’s p − 1, invented
by John Pollard in 1974 - 1975 [Pol74]. Our implementation and experimental results
of each method are presented in detail at [DNT22].

With complexity of time and space O(
√
N) by the birthday paradox, Pollard’s

rho relies on several important mathematical concepts, one of them is cycle-finding
algorithm.

Algorithm 1: Pollard’s rho algorithm using Floyd’s cycle detection.
Input: a composite number N , a bound B for the number of iterations
Output: a nontrivial factor of N or failure

1 x← 2 ; // Set x = x0 = 2 to be the initial value
2 y ← 2 ; // Set y = x0 = 2
3 d← 1 ;
4 i← 0 ;
5 while d = 1 OR d = N do
6 if i ≥ B then
7 return failure; // Maximum number of iterations reached
8 end
9 x← f(x) ; // x = xi

10 y ← f(f(y)) ; // y = x2i
11 d← gcd(|x− y|, N) ;
12 i← i+ 1 ;
13 end
14 if d = 1 OR d = N then
15 return failure ;
16 end
17 else
18 return d ;
19 end

To reduce the memory cost, Pollard applied the idea of Floyd’s cycle detection
algorithm (see algorithm 1): two pointers x and y are used; pointer x holds the values
of xi’s and pointer y holds the values of x2i’s. Each iteration updates the values of x
and y by computing f(x) and f(f(y)), then checks if gcd(xi−x2i, N) = gcd(x−y,N)
is a nontrivial factor of N . This reduces the memory cost to O(1). Assuming f is a
random function, then the expected number of evaluations to the function f performed
by Pollard’s rho algorithm is O(√p) = O( 4

√
N), where p is the smallest prime factor of

N . We present experimental results of Pollard’s rho algorithm on our classical laptop
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with the following three numbers:

n1 = 1125939825397831601

(a 60-bit RSA modulus)
n2 = 925276410789441750962080530947

(a 100-bit RSA modulus)
n3 = 11579208923731619542357098500868790785326998

4665640564039457584007913129639937

(Fermat number F8 = 22
8
+ 1)

For each run we use the same function f(x) = x2 + 1 mod N and same maximum
number of iterations B = 108. The results are in Table 5.2 [DNT22].

Input number Average running time (s) Standard deviation

n1 0.0054 0.0016
n2 5.9370 3.3053
n3 67.0664 43.6244

Table 5.2: Average running time with different initial values.

Table 5.3 shows the running time and size of factor when we run the algorithm
with B = 1010 to find a medium-size factor (around 20 digits) of some worst-case
numbers:

n4 = 237130450584081431781941097598542348001

= 15351399207396244631× 15446829789289363271

(a 128-bit RSA modulus)
n5 = 304075290252258958535257891241265214597

= 18229633569899862109× 16680274405204585033

(a 128-bit RSA modulus)
n6 = 34!− 1

= 295232799039604140847618609643519999999

= 10398560889846739639× 28391697867333973241

Input number Running time (s) Digits in factor

n4 970 20
n5 819 20
n6 27.1042 20

Table 5.3: Running time to find medium-size factor.

It can be seen that Pollard’s rho takes a lot of time to find a factor of medium
size. The second method to factor N is Pollard’s p− 1 algorithm, which is based on
Fermat’s Little Theorem [Pol74].

Unlike the previous method, the possibility of finding a factor p of given size is not
determined solely by its size, but rather by the smoothness of p− 1 (see algorithm 2).
There are two cases of failure: d = 1 or d = N . In the first case, aM − 1 is co-prime
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Algorithm 2: Pollard’s p− 1 algorithm
Input: a composite number N , a bound B
Output: a nontrivial factor of N or failure

1 Choose a positive integer base a randomly between 1 and N ;
2 Compute d = gcd(a,N);
3 if d ̸= 1 then
4 return d;
5 end
6 for prime numbers pi ≤ B do
7 q ← 1;
8 while q ≤ B do
9 a← api mod N ;

10 q ← q × pi;
11 end
12 c← a− 1;
13 d← gcd(c,N);
14 if d ̸= 1 AND d ̸= N then
15 return d;
16 end
17 if d = N then
18 Go to line 1 and choose a new value for a;
19 end
20 end
21 if d = 1 then
22 return failure;
23 end

with N , which implies that the search bound B is too small, and thus one should
rerun the algorithm with a larger B. In the second case, d = N implies that N has
a B-smooth prime factor p, but the randomized base a has order less than p − 1
modulo p (hence omitted for gcd computation in the loop from line 8 to 11). In this
case we choose another base a and restart the whole process. Here, to improve the
algorithm’s performance, we implement the two-stage variant of Pollard’s p − 1 (the
detail is presented in [DNT22]). The second-stage is performed by choosing a second
bound B2 > B, normally B2 = 100B. While Pollard’s rho takes much time to find
a factor of medium size, our implementation of the two-stage Pollard’s p − 1 is able
to find larger factors of some record numbers listed in [Lor21]. The running time for
each is displayed in Table 5.4, where :

n7 = 2977 − 1

n8 = 575th Fibonacci number

n9 = 960119 − 1
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Digits of factor n B1 B2 Time(s)

32 2977 − 1 107 108 14.9582
34 575th Fibonacci number 107 108 14.3806
66 960119 − 1 108 1010 1076

Table 5.4: Our running time of record factors by Pollard’s p− 1.

We found the factor of each number as below:

p1 = 49858990580788843054012690078841

(32-digit factor of n7)

p2 = 7146831801094929757704917464134401

(34-digit factor of n8)

p3 = 6720387718367512278456965653424503150621415515

(66-digit factor of n9)

It is obvious that Pollard’s p− 1 is capable to find large factors of a composit N ;
however, in practice, when the system applies N from 2048 bits, it is not sufficient to
find its large-size factors using Pollard’s rho and Pollard’s p−1 methods on a classical
machine. Therefore, the invention of Shor’s algorithm by Peter Shor, a quantum
computer algorithm to solve IFP, marks an important milestone in the security of
public-key cryptography systems.

5.2 Shor’s quantum algorithm

Being developed in 1994, Shor’s algorithm [Sho94] is one of the first quantum
algorithms that demonstrated the advantage of quantum computers over classical
ones. In general, the method allows to find prime decomposition of big integers in
polynomial time, namely O((logN)3) time and O(logN) space, given a sufficiently
large quantum computer.

The basic idea of Shor’s algorithm relies on period-finding problem. Given integers
a and N , r is called the period of a modulo N if r is the smallest positive integer
such that ar − 1 is a multiple of N , or ar − 1 is divisible by N . For example, given
a = 7 and N = 15, its period is found as r = 4, we have 74 = 1 (mod 15). The
name “period” comes from the fact that ai+r (mod N) = aiar (mod N) = ai (mod N)
(because ar = 1 (mod N)) for any integer i. Based on the period’s property, we have
N |(ar−1). If r is even, then N |[(ar/2−1)(ar/2+1)]. By computing gcd((ar/2−1), N))
and gcd((ar/2+1), N), we can find the factors of N . In the whole process, a quantum
algorithm is applied to compute the period r of a modulo N by using quantum Fourier
transforms [Sho99], where a is a randomly chosen element.

So far, the largest numbers factored by Shor’s algorithm are 51 and 85 by Geller
and Zhou in 2013 using eight qubits [GZ13]. Before that, Vandersypen et al. [Van+01]
in 2001 and Martín-López et al. [Mar+12] in 2012 also implemented Shor’s algorithm
to factor 15 and 21 respectively. The most recent paper was of Gidney et al. [GE21],
published in 2021, which presented how to factor 2048-bit RSA integers using 20
million noisy qubits in 8 hours.
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Authors Year Gates Total qubits
Shor [Sho94] 1994 O(n3 log n) O(n)

Beckman et al. [Bec+96] 1996 O(n3) 5n+1
Veldral et al. [VBE96] 1996 O(n3) 4n+3
Beauregard [Bea02] 2003 O(n3 log n

ϵ log
1
ϵ ) 2n+3

Takahashi et al. [TK06] 2006 O(n3 log n
ϵ log

1
ϵ ) 2n+2

Haner et al. [HRS16] 2016 O(n3 log n) 2n+2
Gidney [Gid17] 2017 O(n3 log n) 2n+1

Table 5.5: Different implementations of Shor’s algorithms on IFP.

With the efficiency of quantum computers, the security provided by cryptosystems,
which are based on IFP and discrete logarithmic problems (DLP), seems to be short-
lived. Speaking of IFP, RSA and Paillier encryption are vulnerable against Shor’s
algorithm. In [Suo+20], Suo et al. indicate some implementations of Shor’s algorithm
over different quantum prototype computers, together with their number of qubits
and quantum gate complexities, as shown on Table 5.5 (for IFP) and Table 5.6 (for
DLP).

Authors Year Time complexity Space complexity
Shor [Sho94] 1994 O(n3) O(n)

Proos et al. [PZ03] 2003 O(n2) -
Ekera et al. [Eke19] 2019 – O(n2)

Table 5.6: Different implementations of Shor’s algorithms on DLP.

Figure 5.3: A circuit of DLP.

Similarly, El-Gamal with its hardness of computing discrete logarithms is also a
victim of quantum algorithms [Sho94]. In 2010, Wang [Wan10] defined a circuit for
quantum computers to solve DLP as shown on Figure 5.3, where Fp−1 is the Fourier
transform over Zp−1, and Uf being a quantum circuit.

Some argue that although quantum encryption breaking is a potential possibility,
it is not a peril as there are still solutions for it. One is to increase the bit lengths, so
that attackers need a larger and larger quantum computer to be able to successfully
break the system. The second is to develop new public key cryptosystems that cannot
be solved by Shor’s algorithm. This opens a new era of Post-quantum cryptography
(PQC), or quantum-resistant cryptography.
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Chapter 6

Conclusions and Future work

Nowadays, in the vibrant and active world, when data privacy plays a more sig-
nificant role, homomorphic encryption (HE) is a new promising domain that allows
external third parties to perform computations on the encrypted data without decrypt-
ing it in advance. However, one big challenge is to build a HE scheme that provides
simultaneously both the required security and the efficiency in implementation.

In this work, we contributed an in-depth study of the different uses and imple-
mentations of HE schemes in most-used HE libraries, including SEAL, PALISADE,
HElib, and HEAAN. Being different to previously related papers, six presented HE
schemes cover all three homomorphic encryption categories: Partially HE, Somewhat
HE, and Fully HE. First of all, we highlighted the principles and mathematical models
of adopted schemes, followed by a brief description of linked libraries. Secondly, by
comparing execution time of five main homomorphic operations (KeyGen, Enc, Dec,
Add, Mult), we gave a computational overview of performance evaluation of differ-
ent HE cryptosystems in different libraries. In fact, choosing a suitable encryption
scheme and an appropriate HE library for it in a real application are not a simple
problem. At least two foremost factors to consider are the data type and operations
which users needed to perform in the context. For example, if users want to do only
one type of computational operations, such as only addition or multiplication, then
the a PHE is the best solution. In other cases, if they want to perform several types
of computations at the same time on a ciphertext, then a SWHE or FHE is the better
choices, and so on. Therefore, our experimental results, together with our hands-on
implementation analysis, aim at making things easier for developers, especially non-
experienced practitioners, to set input parameters for building their own HE-based
projects. Additionally, we also demonstrated an overview of the security of aforemen-
tioned HE schemes under notable security notions such as IND-CPA, IND-CCA1 and
IND-CCA2. Based on implementation of two classical attacks on Integer factorization
problem, we discussed Shor’s quantum algorithm for the same problem.

It is also clear that the efficiency of the PHEs become crucial in the overall per-
formance. Due to the fact that PHEs are not implemented in mentioned libraries, we
used our own implementations of Paillier, El-Gamal, and RSA as partially homomor-
phic cryptosystems in the emulation. For that reason, we plan to continue our work on
optimizing PHE schemes in their implementation and performance. Besides, working
with different HE libraries, we have seen that a part from doing encryption between
a typical two parties, some libraries also support threshold encryption. A threshold
cryptosystem allows n parties to communicate in which a minimal number of parties
- a “threshold” number - need to cooperate in order to decrypt a ciphertext. This
prevents the situation where an individual keyholder is able to decrypt all sensitive
information on his own. This aspect will certainly be addressed by future work.
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