
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE
TOULOUSE

Délivré par : l’Université Toulouse 1 Capitole (UT1 Capitole)

Présentée et soutenue le 15 Décembre 2022 par :
Yuzhao YANG

Tabular Data Integration for Multidimensional Data
Warehouse

JURY
Agnès FRONT Professeure, Université Grenoble Alpes Rapportrice
Maguelonne TEISSEIRE Professeure, INRAE Rapportrice
Ladjel BELLATRECHE Professeur, ENSMA Examinateur
Olivier TESTE Professeur, Université Toulouse 2 Jean Jaurès Examinateur
Jérôme DARMONT Professeur, Université Lumière Lyon 2 Co-directeur

Franck RAVAT Professeur, Université Toulouse 1 Capitole Directeur

École doctorale et spécialité :
EDMITT - Ecole Doctorale Mathématiques, Informatique et
Télécommunications de Toulouse : Informatique et Télécommunications

Unité de Recherche :
IRIT: Institut de Recherche en Informatique de Toulouse (UMR 5505)

Directeur(s) de Thèse :
Franck RAVAT et Jérôme DARMONT

Rapportrices :
Agnès FRONT et Maguelonne TEISSEIRE

Acknowledgements
I would like to express my sincere gratitude to my supervisor Professor Franck RAVAT
for the quality of his supervision with his profound knowledge, rigorous attitude and strong
work enthusiasm. He sacrificed his time to give me pertinent advice and revise my work
with high standards which helped me to look for perfection. He kept me motivated when
I was slack, encouraged me when I was down. He also generously offered his praises to me
when I got advancement, which render me a deeper passion for my research. Moreover,
he actively introduced me to French culture and cuisine, so that I enjoyed a wonderful
French life.

I would like to gratefully acknowledge my co-supervisor Professor Jérôme DAR-
MONT for the quality of his supervision, his valuable advice, constant support, and
remarkable patience during my PhD study. His elaborate guidance has allowed me to
make continuous progress on my research, his careful revision of my work has lead my
achievements to a higher quality. I would also like to thank him for giving me the oppor-
tunity to be a part of the BI4people project, with this interesting research subject and
for the well-prepared project meetings that he organised where I largely benefited.

I would like to express my deep appreciation to all the members of the defense com-
mittee for making my defense be an enjoyable moment. I would like to give my warm
thanks to my thesis reviewers Professor Agnès FRONT and Professor Maguelonne
TEISSEIRE for evaluating and approving my work. Their attentive reviews, valuable
comments, and enlightening questions have contributed greatly to polishing my work.

I am deeply grateful to my thesis examiners, Professor Ladjel BELLATRECHE
and Professor Olivier TESTE, for their brilliant comments, helpful ideas and inspiring
suggestions, enabling me to optimize my work.

Special thanks to Professor Olivier TESTE, head of SIG research team, for hosting
me in the warm home of Institut de Recherche en Informatique de Toulouse (IRIT). I
would also like to thank him for his insightful guidance and constructive advice on my
research. I am also thankful to Doctor Fatma ABDELHEDI for her valuable remarks
and helpful suggestions to my work.

My sincere thanks also goes to all my fellow colleagues in Univertité Toulouse I
Capitole, IRIT, for the company, exchange and joy they brought.

I would like to thank to my family for their love, support as well as their tremen-
dous understanding and encouragement. My love and gratitude for them can hardly be
expressed in words.

Finally, I would like to acknowledge the French National Research Agency (ANR)
1 for the funding of the BI4PEOPLE project to which my PhD thesis is attached.

1https://anr.fr/Project-ANR-19-CE23-0005

i

https://anr.fr/Project-ANR-19-CE23-0005

Abstract
Business Intelligence (BI) plays an important role in companies to support decision making
processes. Nowadays, small companies, organizations or even individuals can exploit
numerous data. However, the lack of experts prevents them from carrying BI projects
out. It is thus necessary to automate the BI design process to make BI accessible for
everyone. In BI architectures, data are integrated into Data Warehouses (DWs) usually
modeled in a multidimensional way. Yet, tabular data widely exist in small enterprises,
organizations and in the open data world. As a result, we intend to automate the DW
design from tabular data.

Automatic DW design from tabular data requires the detection of different multidimen-
sional components (facts, dimensions, hierarchies...). In case of multiple sources, several
DWs may be generated. If they share common information, it is necessary to merge them
as one integrated DW. During DW merging, missing data imputation should be carried
out to achieve a better data analysis. Therefore, we propose a solution composed of three
parts: (i) automatic DW design, (ii) automatic DW merging and (iii) dimensional data
imputation.

Automatic DW design from tabular data is composed of measure detection and dimen-
sion detection for constructing facts and dimensions, respectively. For measure detection,
we propose a machine learning-based approach that extracts three categories of features
from numerical columns. Dimension detection includes functional dependency-based hier-
archy detection and the distinction of parameters and weak attributes based on syntactic
and semantic rules. We carry out experiments to validate that our approach is able to
detect measures and different dimension elements with high effectiveness and efficiency.

For automatically merging DWs, we propose a process at both the schema and instance
levels, consisting of level merging, hierarchy merging, dimension merging and star schema
merging. Our approach takes the different DW structure elements into account. Moreover,
our approach considers different cases and may generate star or constellation schemas. We
conduct experiments to validate that our DW merging solution can correctly merge DWs
at both schema and instance levels.

Finally, to address dimensional missing data, we propose a hybrid imputation ap-
proach named Hie-OLAPKNN that combines a hierarchical imputation (Hie) and a K-
nearest neighbors-based imputation (OLAPKNN). Hierarchical imputation is based on
functional dependencies between hierarchy levels and is launched first. The remaining
missing data can then be completed by OLAPKNN, which applies a specific dimension
instance distance and considers hierarchy dependency constraints. Our experiments show
that Hie-OLAPKNN outperforms other approaches in terms of effectiveness, efficiency
and respect of hierarchy strictness.

ii

Résumé
La Business Intelligence (BI) joue un rôle important dans les entreprises pour soutenir
les processus de prise de décision. Aujourd’hui, les petites entreprises, les organisa-
tions ou même les particuliers peuvent exploiter de nombreuses données. Cependant,
le manque d’experts les empêche de mener à bien des projets de BI. Il est donc nécessaire
d’automatiser le processus de conception et d’implémentation de systèmes de BI afin de
le rendre accessible à tous. Dans les architectures BI, les données sont intégrées dans des
entrepôts de données (EDs) généralement modélisés de manière multidimensionnelle. De
plus, les données tabulaires sont largement répandues dans les petites entreprises, les or-
ganisations et dans le monde des données ouvertes. Par conséquent, nous avons l’intention
d’automatiser la conception d’EDs multidimensionnels à partir de données tabulaires sans
connaissance à priori des schémas.

La conception automatique d’EDs à partir de données tabulaires nécessite la détection
de différents composants multidimensionnels (faits, dimensions, hiérarchies...). En cas de
sources multiples, plusieurs EDs peuvent être générés. S’ils partagent des informations
communes, il est nécessaire de les fusionner en un seul ED intégré. Pendant la fusion
d’EDs, l’imputation de données manquantes doit être effectuée pour permettre une analyse
de données de meilleure qualité. Par conséquent, nous proposons une solution composée
de trois parties : (i) la conception automatique d’EDs, (ii) la fusion automatique d’EDs
et (iii) l’imputation de données multidimensionnelles.

La conception automatique d’EDs à partir de données tabulaires comprend la détection
de mesure et la détection de dimension pour définir respectivement le fait et les dimensions.
Pour la détection de mesures, nous proposons une approche basée sur l’apprentissage
automatique qui extrait trois catégories de caractéristiques. La détection de dimensions
comprend la détection de hiérarchies (basée sur des dépendances fonctionnelles) et la
distinction des paramètres et des attributs faibles (basée sur des règles syntaxiques et
sémantiques). Nous avons réalisé des expérimentations pour valider que notre approche est
capable de détecter les mesures et les différents éléments de dimension avec une efficacité
et une efficience élevées.

Concernant la fusion automatique d’EDs, nous proposons un processus basé sur les
schémas et les instances, composé de la fusion de niveaux, la fusion de hiérarchies, la
fusion de dimensions et la fusion de schémas en étoile. Les expérimentations ont permis
de valider notre solution de fusion d’EDs.

Enfin, pour traiter les données manquantes multidimensionnelles, nous proposons une
approche d’imputation hybride appelée Hie-OLAPKNN qui combine une imputation hiérarchique
(Hie) et une imputation basée sur les K-voisins les plus proches (OLAPKNN). L’imputation
hiérarchique est basée sur les dépendances fonctionnelles entre les niveaux hiérarchiques.
OLAPKNN applique une distance d’instances de dimension et tient compte des con-
traintes de dépendance hiérarchique. Nos expérimentations montrent que Hie-OLAPKNN

iii

surpasse les autres approches en termes d’efficacité, d’efficience et de respect des con-
traintes hiérarchiques.

Publication List

National Conference

Yang, Y., Darmont, J., Ravat, F., & Teste, O. (2020). Automatic Integration Issues of
Tabular Data for On-Line Analysis Processing. In 16e jounées EDA Business Intelligence
& Big Data (EDA), vol. RNTI-B-16, pp.5-18

International Conference

Yang, Y., Darmont, J., Ravat, F., & Teste, O. (2021). An Automatic Schema-Instance Ap-
proach for Merging Multidimensional Data Warehouses. In 25th International Database
Engineering & Applications Symposium (IDEAS) (pp. 232-241).

Yang, Y., Abdelhedi, F., Darmont, J., Ravat, F., & Teste, O. (2021). Internal Data
Imputation in Data Warehouse Dimensions. In International Conference on Database
and Expert Systems Applications (DEXA) (pp. 237-244). Springer, Cham.

Yang, Y., Abdelhédi, F., Darmont, J., Ravat, F., & Teste, O. (2022). Automatic Machine
Learning-Based OLAP Measure Detection for Tabular Data. In International Conference
on Big Data Analytics and Knowledge Discovery (DaWak) (pp. 173-188). Springer,
Cham.

Yang, Y., Darmont, J., Ravat, F., & Teste, O. (2022). Dimensional Data KNN-Based
Imputation. In European Conference on Advances in Databases and Information Systems
(ADBIS) (pp. 315-329). Springer, Cham.

iv

Contents

I Introduction 1
1 Research Context . 2
2 Problem Definition . 3
3 Manuscript Outline . 3

II Automatic Data Warehousing 6
1 Introduction . 8

1.1 Context . 8
1.2 Challenges of Measure Detection 9
1.3 Challenges of Dimension Detection 10
1.4 Our Process Overview . 10
1.5 Outline . 10

2 Preliminary . 11
3 Related Work . 13

3.1 Approaches . 13
3.2 Comparative Analysis . 20
3.3 Summary . 26
3.4 Automatic DW Design for Simple-structured Tabular Data 26

4 Measure Detection . 26
4.1 Overview . 27
4.2 Preprocessing . 28
4.3 Feature Extraction . 28
4.4 Machine Learning Classification . 32
4.5 User Validation . 33

5 Dimension Detection . 33
5.1 Functional Dependency Detection 33
5.2 Functional Dependency Tree . 35
5.3 Functional Dependency Tree Element Set 35
5.4 Hierarchy Detection . 38
5.5 Distinction between Parameters and Weak Attributes 39
5.6 Construction of DW . 41

6 Experimental Assessment for Measure Detection 43

v

6.1 Experimental Conditions . 44
6.2 Experimental Results . 47

7 Experimental Assessment for Dimension Detection 50
7.1 Dataset . 50
7.2 Metrics . 52
7.3 Experimental results and analysis 53

8 Conclusion . 56

III Data Warehouse Merging 58
1 Introduction . 59

1.1 Context . 59
1.2 Challenges of DW merging . 59
1.3 Our Process Overview . 60
1.4 Outline . 60

2 Related Work . 61
2.1 Multidimensional Schema Matching 62
2.2 Multidimensional Schema and Instance Merging 62
2.3 Analysis of Merging Approaches . 64

3 Level Merging . 65
3.1 Record of Matched Parameters . 65
3.2 Merging of Weak Attributes . 65

4 Hierarchy Merging . 66
4.1 Generation of Sub-hierarchy Pairs 67
4.2 Merging of Sub-hierarchies . 69
4.3 Generation of Final Hierarchy Set 70

5 Dimension Merging . 73
5.1 Schema Merging . 73
5.2 Instance Merging . 74

6 Star Schema Merging . 76
7 Experimental Assessment . 80

7.1 Datasets . 80
7.2 DW Generation Strategy . 80
7.3 Star Schema Generation . 81
7.4 Constellation Schema Generation 84

8 Conclusion . 88

IV Data Warehouse Imputation 90
1 Introduction . 92

1.1 Context . 92
1.2 Challenge . 92
1.3 Our Approach Overview . 92
1.4 Outline . 93

2 Related Work . 94

vi

2.1 General Imputation Approaches . 94
2.2 Analysis of the Approaches . 98
2.3 Imputation Approaches for DW . 101

3 Hierarchical Dimension Imputation . 102
3.1 Intra-dimensional Imputation . 102
3.2 Inter-dimensional Imputation . 103
3.3 Hierarchical Imputation Order . 105

4 Dimension Instance Distance . 106
4.1 Attribute Distance . 108
4.2 Hierarchy Level Instance Distance 109
4.3 Hierarchy Instance Distance . 109
4.4 Dimension Instance Distance . 110
4.5 Using Dependency Degree as Hierarchy Weight 111

5 OLAPKNN . 112
5.1 OLAPKNN Overview . 112
5.2 Imputation for Parameters by OLAPKNN 113
5.3 Imputation of Weak Attributes . 117

6 Experimental Assessments . 118
6.1 Dataset . 118
6.2 Experimental methodology . 119
6.3 Results and analysis for Experiment1 122

7 Conclusion . 134

V Implementation 136
1 Introduction . 137

1.1 Functional Architecture . 137
1.2 Technical Architecture . 138
1.3 Outline . 139

2 Automatic DW Design and Implementation 140
2.1 Front-end . 140
2.2 Back-end . 145

3 Automatic DW Merging . 145
3.1 Front-end . 145
3.2 Back-end . 149

4 Dimensional Data Imputation . 149
4.1 Front-end . 149
4.2 Back-end . 152

5 Conclusion . 153

VI Conclusion 154
1 Contributions . 155

1.1 Contributions on Automatic DW Design from Tabular Data 155
1.2 Contributions on Automatic DW Merging 156

vii

1.3 Contributions on Dimensional Data Imputation 156
1.4 Contributions on Automatic Data Warehousing System 157

2 Future Work . 157
2.1 Short-term Plan . 157
2.2 Mid-term Plan . 158
2.3 Long-term Plan . 158

Annexes 159

Appendix A Ground truth and Detected Schemas in Dimension Detection160
1 Dataset - Example . 160
2 Dataset - Sales1 . 161
3 Dataset - Sales2 . 161
4 Dataset - DevApp . 162
5 Dataset - Countries . 163
6 Dataset - Covid . 163

Appendix B DW Schemas in Imputation Experiments 164

viii

List of Figures

II.1 Two types of DW design processes . 9
II.2 Process overview . 11
II.3 Automatic DW design process for simple-structured tabular data 26
II.4 Measure detection for tabular data . 27
II.5 Example of CSV table . 28
II.6 Example of extracted features . 33
II.7 Examples of FD trees . 36
II.8 Example of hierarchy detection . 39
II.9 Final schema . 43
II.10 Implementation result . 43
II.11 Experiment overview . 44
II.12 Cross validation distribution . 48
II.13 Performance with respect to source and domain with RF 50
II.14 Feature importance . 51

III.1 Overview of the merging process . 61
III.2 Example of generation of sub-hierarchy pairs 69
III.3 Example of hierarchy merging . 69
III.4 Example of hierarchy instance . 70
III.5 Example of hierarchy merging . 71
III.6 Hierarchy merging example . 72
III.7 Hierarchy merging example . 72
III.8 Dimension merging example (schema) . 74
III.9 Dimension merging example (schema) . 75
III.10Dimension merging example (instance) . 75
III.11Dimension merging example (instance) . 76
III.12Star merging example (schema) . 79
III.13Star merging example (instance) . 80
III.14Star merging example (schema) . 81
III.15Star schema generation . 83
III.16Constellation schema generation . 86
III.17Summary of the merging process . 88

ix

IV.1 Overview of the Hie-OLAPKNN imputation approach 93
IV.2 Hierarchical intra-dimensional imputation 103
IV.3 Hierarchical inter-dimensional imputation 105
IV.4 Example of first launching intra-dimensional imputation 106
IV.5 Example of first launching inter-dimensional imputation 107
IV.6 Schema and instances of dimension Product 108
IV.7 Distance between i1 and i2 . 108
IV.8 Effectiveness results of single attribute imputation of experiment1 123
IV.9 Effectiveness results of multiple attribute imputation of experiment1 123
IV.10Effectiveness results of with second missing data generation strategy 125
IV.11Run time results of single attribute imputation of experiment1 126
IV.12Run time results of multiple attribute imputation of experiment1 127
IV.13Run time results second missing data generation strategy 127
IV.14Effectiveness results of single attribute imputation 130
IV.15Effectiveness results of multiple attribute imputation 131
IV.16Run time results of single attribute imputation 132
IV.17Run time results of multiple attribute imputation 133
IV.18Strictness results of single attribute imputation 134
IV.19Strictness results of multiple attribute imputation 135

V.1 Technical architecture . 137
V.2 Technical architecture . 138
V.3 Upload files . 140
V.4 Files uploaded successfully . 141
V.5 Measure detection in non-expert version 141
V.6 Measure detection in expert version . 142
V.7 Dimension detection in non-expert version 142
V.8 Date granularity selection . 143
V.9 Dimension detection in expert version . 143
V.10 Schema editing . 144
V.11 DW implementation . 144
V.12 Back-end illustration of automatic DW design and implementation 145
V.13 DW selection . 146
V.14 DW schema information . 146
V.15 Confirmation window . 147
V.16 Merged DW . 147
V.17 Merged DW . 148
V.18 Analysis form . 148
V.19 Back-end illustration of automatic DW merging 149
V.20 DW selection . 150
V.21 Attribute selection . 150
V.22 Imputation confirmation in non-expert version 151

x

V.23 Imputation confirmation in expert version 151
V.24 Imputation result . 152
V.25 Back-end illustration of data imputation 152

A.1 Ground truth schema of dataset Example 160
A.2 Detected schema of dataset Example . 160
A.3 Ground truth schema of dataset Sales1 . 161
A.4 Detected schema of dataset Sales1 . 161
A.5 Ground truth schema of dataset Sales2 . 161
A.6 Detected schema of dataset Sales2 . 161
A.7 Ground truth schema of dataset DevApp 162
A.8 Detected schema of dataset DevApp . 162
A.9 Ground truth schema of dataset Countries 163
A.10 Detected schema of dataset Countries . 163
A.11 Ground truth schema of dataset Covid . 163
A.12 Detected schema of dataset Covid . 163

B.1 Schema of dataset TPCH . 164
B.2 Schema of dataset Adventure . 164
B.3 Schema of dataset F1 . 164
B.4 Schema of dataset GoSales . 165
B.5 Schema of dataset Organisation . 165

xi

List of Tables

II.1 Comparison of different automatic DW design approaches 25
II.2 Number of files by domains . 45
II.3 Data source characteristics . 46
II.4 Global results . 47
II.5 Performance of feature categories and their combinations 49
II.6 Dataset information . 52
II.7 Dimension ID aspect results . 54
II.8 Dimension attribute aspect results . 55
II.9 Relationship aspect results . 55
II.10 Run time results . 56

III.1 Comparison of different approaches . 65
III.2 Results of star generation . 84
III.3 Results of constellation schema generation 87

IV.1 Comparison of impuation approaches . 100
IV.2 Algorithms’ parameters . 122

xii

Chapter I

Introduction

Contents
1 Research Context . 2
2 Problem Definition . 3
3 Manuscript Outline . 3

1

1. RESEARCH CONTEXT 2

1 Research Context
Business intelligence (BI) systems are widely used in the industry, especially in large
companies (Llave, 2017), combining operational data with analytical tools to present
information in a structured and effective way to support decision making for planners
and decision makers (Negash and Gray, 2008; Nelson, 2010). Chugh and Grandhi (2013)
summarize the advantages of the application of BI systems in companies including (1)
allowing companies to analyse data from multiple sources in multiple dimensions; (2)
creating intelligence for decision making by seeking out patterns and meanings in data; (3)
improving management strategies by rapidly rendering accurate reporting; (4) supporting
in identifying the causes of operational problems to reduce inventory costs; and (5) helping
to make accurate predictions to find future opportunities.

With the current digitization trend, small companies, organizations or even individuals
can exploit a large number of data every day (Grabova et al., 2010; Raj et al., 2016) and
the rise of open data makes various data even more accessible (Braunschweig et al., 2012).
To be competitive and obtain valuable information from such data, these small entities
are also interested in BI systems (Grabova et al., 2010).

Nevertheless, the design and implementation of a BI system need to be realized by
experts who have the professional knowledge and deep skills in BI technologies, such as
data warehousing and data visualization (Romero and Abelló, 2010). However, there is
a general lack of such technical expertise in small entities (Raj et al., 2016). Moreover,
commercial BI tools are expensive and are not affordable for them. Despite the existence
of open source BI platforms (Lapa et al., 2014; Tutunea and Rus, 2012), they are still
technically out of the reach of our target users (Abelló et al., 2013). As a result, the
project BI4people 1 aims at bringing the power of BI systems to the largest possible
audience, by automating the BI design and implementation process from data integration
to On-Line Analytical Processing (OLAP) analysis and data visualization.

In current BI systems, data are integrated into Data Warehouses (DWs) in a multidi-
mensional way (Chaudhuri et al., 2011). Data warehousing is the most challenging aspect
of BI, requiring about 80% of the time and effort and generating more than 50% of the
unexpected project costs (Watson and Wixom, 2007). Thus, automating the DW design
and implementation process is an indispensable task in the BI4people project.

There exist various forms of data, but most of the data in small enterprises and orga-
nizations, as well as most of open data, are in tabular form (Roman et al., 2016; Borisov
et al., 2021). There are different automatic DW design approaches Romero and Abelló
(2009). Most of these methods focus on data sources with schema: relational data with
Entity-Relationship (ER) schema, XML data with Document Type Definitions (DTDs),
etc. Automatic DW design from tabular data without schema arises little attention and
is not well addressed in the literature.

1https://anr.fr/Project-ANR-19-CE23-0005

2

https://anr.fr/Project-ANR-19-CE23-0005

2. PROBLEM DEFINITION 3

Therefore, as a part of the BI4people project, in this manuscript, we intend to automate
the DW design and implementation process from tabular data to allow small enterprises,
organizations and even individuals without deep technical expertise to easily analyse data
with BI systems.

2 Problem Definition
As we discussed in Section 1, we focus on tabular data, which are usually without schema.
The lack of schema makes it hard to discover the relationships between attributes to design
DW multidimensional schemas. Tabular data bear simple or complex structures (Adelfio
and Samet, 2013). It is thus important to analyse the characteristics of different tabular
data structures and customize different automatic DW design solutions. A DW is usually
modelled as a multidimensional schema, which is composed of analysis subjects (facts)
containing indicators (measures). These subjects are analysed according to different axes
of analysis (dimensions) that are composed of attributes modeled through different views
(hierarchies) (Ravat et al., 2008a). Therefore, we have to identify attributes in
tabular data as different elements such as measures or dimension attributes
and detect the relationships between the attributes to create hierarchies.

Users may have data coming from multiple sources and a DW may be constructed for
each one of them. If there are DWs having common information, users may need to merge
the DWs for analysing the data in a consolidated way. However, merging multidimensional
DWs is challenging because it is not only necessary to merge them at the schema level,
but also to merge the values of different attributes. Complex DW structure also requires
to the consider different multidimensional components when merging DWs. Therefore,
we have to automatically merge these DWs into one integrated DW at both
schema and instance levels by considering the multidimensional structure.
Moreover, a DW may be modelled as a star or constellation schema according to the
number of facts and their association to the dimensions. We must take this into account.

During the merging process, there may be missing values in attributes of the merged
DW. Missing data make aggregated data incomplete and thus have an impact on OLAP
analyses. These missing data produce dashboards containing erroneous values and may
thus lead to decision-making that can negatively impact the company. Therefore, it is
indispensable to carry out data imputation to replace missing data for the sake
of a more complete and accurate data analysis. Missing data imputation requires taking
the DW structure and dependency constraints among hierarchy levels into account.

3 Manuscript Outline
Facing the various problems discussed in Section 2, this PhD thesis aims to automate
the DW design and implementation to enable non-expert users take advantage of BI

3

3. MANUSCRIPT OUTLINE 4

by integrating data into DWs for further OLAP analyses and data visualisation. To
do so, we propose a complete solution covering not only the automatic DW design and
implementation from tabular data, but also the follow-up tasks in case of multiple sources
including automatic DW merging and data imputation. Furthermore, we implement our
solution and develop an application that allows users to implement the designed DW and
carry out the merging and imputation processes.

The manuscript is organized as follows.

• In Chapter II, we propose a solution for automatic DW design and implementa-
tion from tabular data. The solution is composed of measure detection for the
construction of facts and dimension detection for the construction of dimensions.
Regarding measure detection, we consider numerical columns as candidate measures
and propose a machine learning-based approach by defining general, statistical and
inter-column features extracted from numerical attributes. Regarding dimension de-
tection, we first propose an algorithm to create hierarchies by detecting functional
dependencies. We then propose some syntactic and semantic rules to identify di-
mension attributes as parameters or weak attributes. We carry out experiments to
validate our solution. Measure detection is validated by comparing the effectiveness
of different machine learning algorithms with baseline approaches and by analysing
the feature category effectiveness, model generality and feature importance. Dimen-
sion detection is validated by the efficiency and the effectiveness for the detected
dimensions at dimension aspect, dimension attribute aspect and relationship as-
pects.

• In Chapter III, we propose a process for merging two DWs modelled as star schemas
at both schema and instance levels. Our process is composed of level merging,
hierarchy merging, dimension merging and star merging. The process considers
different multidimensional components and generates a merged DW modelled as
a star or constellation schema in different cases. We carry out experiments with
the TPC-H benchmark’s data to validate the process in both star and constellation
schema generation cases. We verify the merged schema and instance results to
validate the correct merging.

• In Chapter IV, we propose an approach named Hie-OLAPKNN for DW dimensional
data imputation. The approach is hybrid and combines a hierarchical imputation
(Hie) and a k-nearest neighbors-based imputation (OLAPKNN). Hierarchical im-
putation is carried out first. It is a reliable approach based on actual functional
dependencies among intra- and inter-dimensional hierarchy levels. OLAPKNN is
then carried out to replace the remaining missing data. Since OLAPKNN replaces
missing data by nearest neighbors, we define a specific distance metric for dimension
instances by considering dimensions’ structure. Moreover, the OLAPKNN algorithm
takes hierarchy dependency constraints into account. We conduct experiments to
compare Hie-OLAPKNN with other approaches from the literature by verifying the

4

3. MANUSCRIPT OUTLINE 5

effectiveness, efficiency and respect of hierarchy strictness.

• In Chapter V, we implement a complete solution by integrating the approaches of
automatic DW design and implementation, automatic DW merging and data impu-
tation. We first present the functional and technical architecture of the application.
We then explain the different functionalities with the presentation of the front-end
and back-end.

5

Chapter II

Automatic Data Warehousing

Contents
1 Introduction . 8

1.1 Context . 8
1.2 Challenges of Measure Detection 9
1.3 Challenges of Dimension Detection 10
1.4 Our Process Overview . 10
1.5 Outline . 10

2 Preliminary . 11
3 Related Work . 13

3.1 Approaches . 13
3.2 Comparative Analysis . 20
3.3 Summary . 26
3.4 Automatic DW Design for Simple-structured Tabular Data 26

4 Measure Detection . 26
4.1 Overview . 27
4.2 Preprocessing . 28
4.3 Feature Extraction . 28
4.4 Machine Learning Classification . 32
4.5 User Validation . 33

5 Dimension Detection . 33
5.1 Functional Dependency Detection 33
5.2 Functional Dependency Tree . 35
5.3 Functional Dependency Tree Element Set 35
5.4 Hierarchy Detection . 38
5.5 Distinction between Parameters and Weak Attributes 39
5.6 Construction of DW . 41

6 Experimental Assessment for Measure Detection 43
6.1 Experimental Conditions . 44

6

CONTENTS 7

6.2 Experimental Results . 47
7 Experimental Assessment for Dimension Detection 50

7.1 Dataset . 50
7.2 Metrics . 52
7.3 Experimental results and analysis 53

8 Conclusion . 56

7

1. INTRODUCTION 8

1 Introduction

1.1 Context

Data Warehouse is the core of the BI system which models the data by a multidimen-
sional way allowing decision makers to analyse data by On-Line Analytical Processing
(OLAP) (Golfarelli and Rizzi, 2009). With the development of information systems and
the availability of numerous open datasets, various data become much more accessible to
small enterprises, organizations and even individuals, who have data analysis needs by
BI tools to help them take decisions. However, the DW design is normally carried out
manually and requires experts with BI experience (Romero and Abelló, 2010). So the
DW design process is typically costly and time-consuming. However, these users do not
have enough budget or BI experts. Thus, it is difficult for them to take advantage of BI.
Moreover, they may not necessarily know or anticipate precise requirements. They may
also have some requirements but do not know how to express them in a proper way which
help for the DW design. Therefore, it is necessary to automate the DW design process to
make the non-expert users to carry out analysis with warehoused data.

DW design is an important part of information system design (Céret et al., 2013).
There are different approaches of DW design (Romero and Abelló, 2009), which can be
classified into data-driven approaches and demand-driven approaches as shown in Fig. II.1.
In the data-driven approaches (Fig. II.1a), the DW schema is generated from the data
sources by analysing the data and schema. The user may also get involved in the processes
by validating the results. The data-driven DW design processes are mostly automatic or
semi-automatic solutions. Meanwhile there are demand-driven approaches (Fig. II.1b)
which start from user requirements and map the data sources to generate the schema
satisfying these requirements manually or automatically. Moreover, there are hybrid ap-
proaches taking both user requirements and the data source into account. Since there
are various DW design difficulties for our target user as we analysed, our work focuses on
the data-driven approaches by proposing automatically DW schema and ask the user’s
participation for the validation.

Most of the data-driven approaches focus on data sources with an explicit schema
(Romero and Abelló, 2009), e.g. relational data with Entity-Relationship (ER) schema,
XML data with Document Type Definitions (DTDs), etc. Nevertheless, tabular data
such as spreadsheet data and Comma Separated Value (CSV) files are very common
in enterprises, and even more in the open data world. We thus focus on tabular data
whose schemas are not available. Thus we have to detect the different multidimensional
components based on the data instances which may arise several challenges. A DW is
composed of fact(s) and dimensions which contain particular multidimensional elements.
In the fact(s), there are measures; in the dimensions there are hierarchies and different
types of attributes including parameters and weak attributes. Thus we have to detect
these different multidimensional components.

8

1. INTRODUCTION 9

(a) Data-driven (b) Demand-driven

Figure II.1: Two types of DW design processes

In addition, tabular data may bear quite simple or very complex structures (Adelfio
and Samet, 2013). Simple structures consist of one header row followed by rows containing
data values. Headers label the data rows below, while data rows contain tuples akin to
relational database tuples. Most CSV files bear a simple structure, while spreadsheet
files and HTML tables can be more complex, e.g., cross tables (Lautert et al., 2013).
Such tables contain two or several dimensions, and may also contain several dimension
levels. Moreover, there also exists other complex structures such as concise tables, nested
tables, multivalued tables and split tables (Lautert et al., 2013). For tabular data of
complex structure, the most important task is to identify the table structure to extract
DW elements or transform them into simple structure. These tasks can be solved by some
existing algorithms (Chen and Cafarella, 2013; Du et al., 2021; Koci et al., 2016; Wang
et al., 2021). Thus, in the following, we focus on the automatic DW design for tabular
data of simple structure.

We then discuss the challenges for the detection of the different multidimensional
components from tabular data of simple structure.

1.2 Challenges of Measure Detection

In simple-structured tabular data without schema or metadata, DW elements cannot be
directly extracted as the data do not bear a particular layout. Measures are usually
numerical data, but numerical columns are not necessarily measures, since there also
exists descriptive numerical attributes. Moreover, a column with the same semantic may
be treated differently in different contexts. For example, the population of a country may
be a measure if the analysis subject is the country information. But if the country is a
hierarchical level in a geographical dimension, population is just a descriptive, so-called
weak attribute, and not a measure. Thence, it is also difficult to detect measures based

9

1. INTRODUCTION 10

on the semantics of the column

1.3 Challenges of Dimension Detection

To detect dimensions, we should identify the hierarchical relationships between attributes
to create dimension hierarchies. Moreover, we have also to decide which attributes are
parameters and which ones are weak attributes.

For tabular data of simple structure, there is no layout particularity. There is no
schema where we can get the cardinalities neither. We thus have to derive the hierarchi-
cal relationships by discovering the functional dependencies among the attributes. For
the distinction of parameters and weak attributes, a parameter can be regarded as the
identifier of its level. Thus the weak attributes are functionally determined by their pa-
rameters. However, in the functional dependency relationships, we can not simply tell
whether an attribute determined by another attribute is a parameter of a level or a weak
attribute of its determinant attribute. Furthermore, sometimes several attributes of a
same level may all be candidates of parameter, we have to choose the most appropriate
one.

1.4 Our Process Overview

Facing to these challenges, we propose a process to resolve them. The overview of our
process is shown in Fig. II.3.

For tabular data of complex structure, existing algorithms (Chen and Cafarella, 2013;
Du et al., 2021; Koci et al., 2016; Wang et al., 2021) can be used for the identification of
table structure. For cross tables, measures can be extracted from data region. Headers
can be viewed as DW dimensions, and the different levels of hierarchical headers form
hierarchies. The other types of complex structures can be converted into simple structures.

Since the DW design for complex structure tabular data can be solved by existing
approaches, we focus on that of simple structure. We propose an automatic DW design
process for tabular data of simple structure as shown in the red-framed part. To solve the
challenges of measure detection, we propose a machine learning-based measure detection
approach. Then to solve the challenges of dimension detection, we propose a functional
dependency-based hierarchy detection and a rule-based approach for distinction of pa-
rameters and weak attributes.

1.5 Outline

The remainder of this chapter is organized as follows. In Section 3, we review and compare
the related works about data-driven automatic DW design. In Section 4, we detail and
discuss the measure detection process and the machine learning features we propose. In
Section 5, we explain how to build hierarchies from functional dependency trees and how

10

2. PRELIMINARY 11

Figure II.2: Process overview

to decide whether an attribute is a parameter or a weak attribute. In Section 6 and
Section 7, we present and interpret our experimental results respectively for measure
detection and dimension detection. Finally, in Section 8, we conclude this chapter.

2 Preliminary
We introduce in this section, basic concepts of a DW (Ravat et al., 2008a) that we use
throughout this manuscript.

Definition 2.1 (Data warehouse). A data warehouse, denoted by DW , is defined as
(NDW , F DW , DDW , StarDW), where

• NDW is the data warehouse’s name,

• F DW = {F1, ..., Fm} is a set of facts,

• DDW = {D1, ..., Dn} is a non-empty set of dimensions,

• StarDW : F DW → 2DDW is a mapping associating each fact to its linked dimensions.
The notation 2X denotes the powerset of the set X.

A DW can be modelled by a star or a constellation schema. In a star schema, there
is a single fact connected with different dimensions, i.e. |F DW | > 1. A constellation
schema consists of more than one fact which share one or several common dimensions,
i.e. |F DW | = 1.

A dimension models an analysis axis and is composed of attributes.

Definition 2.2 (Dimension). A dimension, denoted by Dc ∈ DDW , is defined as
(NDc , ADc ,

HDc , IDc), where

• NDc is the dimension’s name,

11

2. PRELIMINARY 12

• ADc = {aDc
1 , ..., aDc

u }∪{idDc} is a non-empty set of attributes, where idDc represents
the dimension’s identifier, which is also the parameter of the lowest level and called
the root parameter.

• HDc = {HDc
1 , ..., HDc

v } is a non-empty set of hierarchies,

• IDc = {iDc
1 , ..., iDc

q } is a set of dimension instances. The value of an attribute aDc
u

of the instance iDc
q is denoted as iDc

q .aDc
u .

A hierarchy represents a particular vision (perspective) of a dimension. Each attribute
represents one data granularity according to which measures could be analysed.

Definition 2.3 (Hierarchy). A hierarchy of a dimension Dc, denoted by He ∈ HDc, is
defined as (NHe , ParamHe , WeakHe), where

• NHe is the hierarchy’s name,

• ParamHe =< idD, pHe
2 , ..., pHe

v > is a non-empty ordered set of dimension attributes,
called parameters, which set granularity levels along the dimensions: ∀k ∈ [1...v], pHe

k ∈
ADc. The roll up relationship between two parameters can be denoted by pHe

1 ⪯He pHe
2

for the case where pHe
1 roll up to pHe

2 in He. For ParamHe, we have idD ⪯He

pHe
1 , pHe

1 ⪯He pHe
2 , ..., pHe

v−1 ⪯He pHe
v .

• WeakHe = ParamHe → 2(ADc −P aramHe) is a mapping possibly associating each pa-
rameter with one or several weak attributes, which are also dimension attributes
providing additional information. WeakHe [pHe

x] = {wpHe
x

1 ..., wpHe
x

y } is the weak at-
tribute set for parameter pHe

x . All parameters and weak attributes of He constitute the
hierarchy attributes of He, denoted by AHe = ParamHe∪(⋃

pHe
v ∈P aramHe

WeakHe [pHe
v]).

There exists different types of hierarchy, but the most basic and common one is the
strict hierarchy (Malinowski and Zimányi, 2004) where a value at a hierarchy’s lower-
granularity level belongs to only one higher-granularity level value (Trujillo et al., 2001).
Thus in this manuscript, we only consider the case of the strict hierarchy.

A fact reflects information that has to be analysed according to dimensions and is
modelled through one or several indicators called measures.

Definition 2.4 (Fact). A fact, denoted by Fg ∈ F DW , is defined as (NFg , MFg , IFg , IStarFg),
where

• NFg is the fact’s name,

• MFg = {mFg

1 , ..., mFg
w } is a set of measures.

• IFg = {iFg

1 , ..., iFg
q } is a set of fact instances. The value of a measure mFg

w of the
instance iFg

q is denoted as iFg
q .mFg

w .

12

3. RELATED WORK 13

• IStarFg : IFg → DFg is a function associating each fact instances to their linked
dimension instances, where DFg is the cartesian product over sets of dimension
instances, which is defined as DFg = ∏

Dk∈StarDW (Fg) IDk .

3 Related Work
In this section, we present the different data-driven automatic DW creation approaches
in chronological order. We also analyse these approaches by comparing them in different
aspects including the input source, the pre-processing, the detection of different DW
elements, the DW implementation and user intervention.

3.1 Approaches

3.1.1 Boehnlein and Ulbrich-vom Ende (1999)

The authors propose an approach to derive a multidimensional DW schema from a Struc-
tured Entity Relationship Model (SERM) that is an extension of ER which allows design-
ing extensive data models, visualizing the dependency order between data objects and
avoiding inconsistencies and unnecessary relationships. This approach consists of three
stages as follows.

1. Identification of Business Measures Measures are determined by business goals.
This stage requires business knowledge about the company’s services. Then by
analysing how services can be evaluated for the business goals, adequate measures
can be defined.

2. Identification of Dimensions and Hierarchies To identify potential dimensions
and hierarchies, the authors propose to enclose the data objects by the dependencies
in the SERM. The starting point is the data objects assigned to the chosen measures.
Data objects are then connected to form different dimensions. Data objects with
one-to-many cardinalities form different hierarchies.

3. Identification of Integrity Constraints Along Dimension Hierarchies In
this stage, the authors transform the identified multidimensional structure into a
star schema. They include primary keys of the dimensions in the fact tables. They
also propose the alternative to create a snowflake schema by the normalization of
dimension tables.

3.1.2 Moody and Kortink (2000)

This paper depicts an approach to create a multidimensional schema from an Entity
Relationship (ER) schema. The approach includes four following steps.

1. Entity Classification In this step, the authors propose to classify entities in the
ER schema into three categories:

13

3. RELATED WORK 14

(a) Transaction Entities contain business events such as orders, payments and
bookings. This category of entities contain measures that are used to construct
fact tables.

(b) Component Entities define the components and details of a business transac-
tion. A component entity is directly connected to a transaction entity via a
one-to-many relationship. They are entities that help for the construction of
dimension tables.

(c) Classification Entities are connected to component entities via one-to-many
relationships. A classification entity is functionally dependent on a component
entity and is useful for constructing dimension tables, especially dimension
hierarchies.

To remove ambiguities in case an entity can be classified into multiple classes, the
authors also define a precedence rule. The transaction entity has the highest prece-
dence and the component entity has the lowest.

2. Hierarchy Identification Hierarchies are identified by the sequence of entities
joining one-to-many relationships. The authors propose to create maximal hierar-
chies that cannot be extended upwards with other entities.

3. Dimension Model Production Knowing the identified entity categories and hi-
erarchies, the authors propose various dimensional models including flat, terraced,
star, snowflake and star cluster schemas. The generation of a star schema starts with
fact table for each transaction entity whose keys are linked to component entities.
A dimension table is created for each component entity. The related classification
entities are also included in the dimension to form hierarchies.

4. Evaluation and Refinement The authors argue that DW modelling is an iterative
process. Thus, other operations may be needed after the generation of the first
schema. These operations include

(a) combining fact tables with the same primary keys;

(b) combining related dimension tables into a single dimension to avoid a large
number of dimension tables;

(c) dealing with many-to-many relationships to avoid breaks in the hierarchical
chain;

(d) converting sub/supertype relationships into dimension hierarchies.

3.1.3 Golfarelli et al. (2001)

The authors propose an approach for building DW conceptual schema starting from an
Extensible Markup Language (XML) source with a Document Type Definition (DTD).

14

3. RELATED WORK 15

They focus on the DTD, modelling relationships by sub-elements. The output is a star
schema. The approach is composed of four following steps.

1. DTD Simplification This step simplifies some details in the DTD, such as trans-
forming a nested definition into a flat representation, grouping sub-elements with
same name and transforming many unary operators into single unary operators, e.g.
transforming all “+” operators into “*” operators.

2. DTD Graph Creation In this step, a DTD graph representing the DTD structure
is created by methods from the literature such as the CPI algorithm (Lee and Chu,
2000).

3. Fact Definition The user chooses one or many vertices in the DTD graph as
measures, so that each one of them becomes the root of a fact schema.

4. Attribute Tree Creation Based on the one-to-many relationships between the
sub-elements, an attribute tree is created. It can then be transformed into a star
schema.

3.1.4 Phipps and Davis. (2002)

In this paper, the authors propose an automatic DW design approach whose input is an
ER schema. The output of the approach is a Multidimensional Entity-Relationship Model
(MERM). The approach is composed of following steps.

1. Fact Node Creation The authors claim that numerical fields are more likely to
be measures. Thus the more numerical fields an entity contains, the more likely it is
to be a fact. Therefore, in this step, they order the entities with numerical fields in
descending order. Then, they create a fact node for each entity and create a MERM
for each fact node. We thus get a list of candidate schemas.

2. Fact Attribute Creation In this step, the fact node of each candidate MER
schema is added to the numerical fields of the original entity as the fact’s attributes.

3. Date Dimensions Creation The date or time fields in each selected entity help
create a date dimension and its levels. The date granularity is decided by the user.

4. Other Dimension Creation If there are remaining fields in a selected entity, they
are normally text fields. A dimension and a corresponding hierarchy level node are
created for each remaining field.

5. Add Hierarchy Levels In this step, the authors recursively include the many
side of one-to-many relationships to create hierarchies. Each candidate schema is
completed after this step.

6. Candidate Schema Selection and Refinement The final validation of the
schema involves the user. Candidate schemas are evaluated by queries to decide

15

3. RELATED WORK 16

which schemas best meet users’ needs. Selected schemas are also refined according
to users’ requirements. Refinements includes

(a) verifying whether the identified measures are actual measures;

(b) determining the granularity of date information;

(c) determining whether there are calculated measures;

(d) determining whether there are schemas that can be merged;

(e) verifying whether there are unnecessary fields that can be eliminated;

(f) verifying whether there are required data not existing in the original OLTP
database.

3.1.5 Vrdoljak et al. (2003)

This paper describes a semi-automatic process for DW design from XML sources modelled
by XML schemas. It follows a similar process as (Golfarelli et al., 2001), but with a
different XML model. It includes the following steps.

1. XML Schema Preprocessing The XML schema may be sometimes complex and
bear redundancy, so this step simplifies the schema as in (Golfarelli et al., 2001).

2. Schema Graph Creation and Transformation In this step, a graph is created
based on the XML schema. Two transformations are carried out. First, functional
dependencies are explicitly expressed by key attributes. Second, vertices not storing
any value are eliminated.

3. Fact Selection Facts are chosen among the vertices and the arcs representing a
many-to-many relationship by the user.

4. Dependency Graph Creation For each fact, a dependency graph whose root is
the fact is built based on the schema graph. Vertices are inserted into the depen-
dency graph by verifying the one-to-many cardinalities. When cardinalities are not
provided, XQueries are performed to look for to-one relationships. Many-to-many
relationships may be chosen with respect to users’ interest. The dependency graph
helps building hierarchies.

5. Logical Schema Creation With measures and facts being already chosen, dimen-
sions and hierarchies are derived by the dependency graph.

3.1.6 Jensen et al. (2004)

In this paper, the authors present an approach aiming to discover multidimensional
snowflake schemas from relational databases. The approach includes three following steps.

16

3. RELATED WORK 17

1. Metadata Collection A metadata model is firstly proposed where there are meta-
data about tables, including attribute information, keys, cardinalities, etc. For each
attribute, there is also a metadata “role” being “key”, “measure” or “descriptive”
determined by a Bayesian network taking the collected metadata as inputs.

2. Database Structure Discovery In this step, the authors discover candidate keys
and foreign keys by detecting functional dependencies and inclusion dependencies,
with the help of metadata. These keys are applied for the construction of dimensions
in the snowflake schema.

3. Multidimensional Schema Construction The fact table is identified in the pre-
vious step before the detection of inclusion dependencies. It is a semi-automatic
process requiring the user’s participation. For the construction of dimensions, in-
clusion dependencies can form different connected graphs. If there is an inclusion
dependency that connects an attribute of the fact table and another attribute in a
connected graph, then this connected graph may be a dimension. This attribute on
the connected graph is the root parameter of the dimension. For the construction of
hierarchies, the authors sort the attributes in the dimension by distinct descending
order. Then, the authors verify roll-up relationships via SQL queries to create the
hierarchies.

3.1.7 I.-Y.Song et al. (2007)

A semi-automatic method named SAMSTAR is proposed in this paper, which generates
star schema from ER schema. SAMSTAR can be summarized by the following steps.

1. ER schema to binary ER schema Conversion In this step, the authors propose
to split the ER schema into a binary ER schema, by splitting ternary relationships
into three binary ones and splitting many-to-many relationships into two one-to-
many relationships with a new intersection entity.

2. Facts CTV Creation The Connection Topology Value (CTV) is proposed by the
authors, which is a composite function of the topology value of direct and indirect
many-to-one relationships. The CTV is calculated for each entity. A threshold is
set and the entities whose CTV are higher than it are identified as candidate fact
tables.

3. Dimension Creation Dimensions are created by identifying the entities having
direct and indirect many-to-one relationships with a fact entity. Synonyms in the
Wordnet and Annotated Dimensional Design Pattern (A DDP) are also used to
extend the dimension list.

4. Generated Schema Post-processing Finally, they post-process the generated
schema by requiring the users’ intervention. The user choose the final dimension
entities based on their requirement. The user also checks redundant time dimen-

17

3. RELATED WORK 18

sions, possibly merge related dimensions and rename tables. The final star schema
is then generated.

3.1.8 Romero and Abelló (2007)

The authors propose a semi-automatic multidimensional design approach from OWL on-
tology representing heterogeneous data sources, and express multidimensional patterns
with Description Logic (DL).

1. Fact Creation The authors consider that a concept is more likely to be a fact if
it is related to many potential dimensions and measures. So, they first discover po-
tential dimensions and measures. Dimensions are discovered by deriving functional
dependencies from the ontology and finding many-to-one relationships. Measures
are pointed out by finding the numerical concepts related to one-to-one relation-
ships. Facts can be found. The user chooses the facts according to subjects of
interest.

2. Potential Bases Discovery The authors define a minimal set of levels functionally
determining a fact as a base. This step aims to point out sets of concepts that are
likely to be bases of each identified fact. So they search for the concepts being able
to identify all instances of a fact to be potential bases. The user finally chooses the
bases making sense to her/him. The concepts in the bases form the identifiers of
the dimensions.

3. Dimension Hierarchy Creation In this step, the authors look for the to-one roll-
up relationships and create a directed graph following the paths of these relationships
to build the hierarchies.

3.1.9 Usman et al. (2010, 2013)

The authors propose an automatic method to generate a star schema from a tabular data.
It is based on data mining techniques and contains two layers.

1. Data Mining Layer This is a pre-processing layer. The authors use the hierar-
chical agglomerative clustering to generate clustered data with their hierarchical
relationships.

2. Automatic Schema Generation Layer In this layer, the authors identify di-
mensions and facts. Numerical data form the fact table and nominal data form
dimensional tables. The hierarchical relationships obtained in the previous layer
are employed to build the hierarchies.

3.1.10 Ouaret et al. (2014)

This paper describes a rule-based approach generating a star schema from an XML
schema. The idea is to transform the XML schema into a UML diagram and then derive

18

3. RELATED WORK 19

a star schema. The approach is composed of the following steps:

1. UML Class Diagram Generation In this first step, the authors transform the
XML schema into a UML class diagram by pre-defined rules.

2. UML Class Diagram Reduction They reduce the generated UML diagram by
removing some redundant, isolated, trivial classes and merge one-to-one relation-
ships.

3. Star Schema Creation Based on the UML schema, they define rules to construct
different multidimensional elements including

• measures: numerical no-key attribute are potential measures,

• facts: classes with a large number of numerical attributes are potential facts,

• dimensions: the classes having many-to-one and one-to-one relationships with
facts are considered as dimensions.

A tool is developed allowing users to generate an XML multidimensional schema from an
XML schema and create an XML DW from the XML data sources.

3.1.11 Sautot et al. (2015)

This paper introduces an automatic hierarchy design method for OLAP schema from
ecological database based on data mining techniques. The paper focuses on the context
of ecological data, where measures and dimensions are normally clearly identified. Their
method for detecting hierarchies can be summarized as follows.

1. Data and Metadata Collection The authors collect the data and metadata that
are to be used for the creation of hierarchies from the database. Then, the data
type of each attribute is identified, which is necessary for the clustering algorithm.

2. Hierarchical Clustering They propose to use the hierarchical agglomerative clus-
tering with Gower index as a distance metric to cluster the data.

3. Dimension Hierarchy Construction They use the obtained hierarchical rela-
tionships to construct dimension hierarchies.

3.1.12 Elamin et al. (2017)

This paper proposes a heuristic-based approach for generating a star schema from an ER
model. The authors define several heuristic rules for different parts of the process.

1. Database Schema Extraction In this phase, they extract table names, column
types, keys, etc.

2. Schema Reverse Engineering Several rules are proposed to identify each table

19

3. RELATED WORK 20

as an entity, a relationship or a weak entity that contains partial keys.

3. Multidimensional Schema Generation Then they define rules for the identifi-
cation of different multidimensional components.

• Facts can be discovered from relationship tables and weak entity tables.

• Measures are identified from numerical non-key attributes in fact tables.

• Dimensions are identified from the tables referred by foreign keys in a fact
table. Date and time attributes are also transformed into dimensions.

• Hierarchies are created by the foreign key references between tables. Parame-
ters are assigned to tables’ primary keys. The rest of the attributes are weak
attributes.

3.1.13 Sanprasit et al. (2021)

In this paper, an automatic approach to generate a star schema from semi-structured
data (CSV files and spreadsheets) is proposed using semantic techniques. The approach
contains steps as follows.

1. Attribute Metadata Extraction and Analysis

(a) The authors propose to use an arithmetic data encoding technique to infer
column names based on the training dataset. Wordnet is used to handle het-
erogeneous terminologies.

(b) Then, they infer the attribute data types by referencing to a data type ontology.

(c) Measures are identified through constraints from the domain ontology.

2. Star Schema Construction

(a) Attributes that can be semantically classified into a same domain ontology
class construct a dimension.

(b) Hierarchical relationships in the domain ontology help to build up dimension
hierarchies.

(c) The fact table is created based on measures.

(d) Surrogate keys are created to associate the dimension and fact tables.

3.2 Comparative Analysis

Table II.1 shows a comparison of the related works accounted for in the previous sections.
We provide an analysis concerning the input source and schema, pre-processing, fact

20

3. RELATED WORK 21

generation, dimension generation, DW implementation and user intervention.

3.2.1 Inputs

Approaches’ input can be mainly classified into structured data with schema, semi-
structured data with schema and semi-structured data without schema.

• Structured data with schema We can observe that many approaches (7 out of
12) treat structured data (database data) with schema (Boehnlein and Ulbrich-vom
Ende, 1999; Moody and Kortink, 2000; Phipps and Davis., 2002; Jensen et al., 2004;
I.-Y.Song et al., 2007; Sautot et al., 2015; Elamin et al., 2017).

• Semi-structured data with schema There are 4 approaches taking semi-structured
data as inputs. Some of them take semi-structured data with schema such as XML
files with DTD (Golfarelli et al., 2001) or XML schema (Vrdoljak et al., 2003; Ouaret
et al., 2014) or ontology with OWL (Romero and Abelló, 2007).

• Semi-structured data without schema It is a challenge to deal with semi-
structured flat data since they do not have explicit schema. This is also the data
type on which we focus. However there are only 2 approaches dealing with flat data
without schema (Usman et al., 2010, 2013; Sanprasit et al., 2021).

3.2.2 Preprocessing

All approaches addressing structured and semi-structured data sources with schema in-
clude preprocessing at the schema level. The approaches whose inputs are semi-structured
data without schema conduct preprocessing at the instance level.

• Schema-level preprocessing Some approaches (5 out of 12) transform the orig-
inal schema or create new schemas (Boehnlein and Ulbrich-vom Ende, 1999; I.-
Y.Song et al., 2007; Golfarelli et al., 2001; Vrdoljak et al., 2003; Ouaret et al.,
2014). Other approaches perform the classification of schema elements (Moody and
Kortink, 2000; Elamin et al., 2017) or the collection of schema information (Jensen
et al., 2004; Sautot et al., 2015). The other preprocessings include creating candi-
date star schema from the identified facts (Phipps and Davis., 2002) and describing
the multidimensional patterns by DL (Romero and Abelló, 2007).

• Instance-level Preprocessing The instance level pre-processing for semi-structured
data without schema includes carrying out hierarchical clustering on the data (Us-
man et al., 2010, 2013) and inferring column name from column data (Sanprasit
et al., 2021). Such preprocessing can be regarded as extracting schema elements
from data instances.

21

3. RELATED WORK 22

3.2.3 Fact Generation

Since the measures are key element of a fact, the main task in fact generation is to
identify measures. A fact is predefined in Sautot et al. (2015). Some approaches consider
the identification of measures and facts as the same process (Boehnlein and Ulbrich-
vom Ende, 1999; Moody and Kortink, 2000; Phipps and Davis., 2002; I.-Y.Song et al.,
2007; Jensen et al., 2004; Usman et al., 2010, 2013; Sanprasit et al., 2021), while the
others distinguish measure and fact detection (Elamin et al., 2017; Golfarelli et al., 2001;
Vrdoljak et al., 2003; Ouaret et al., 2014).

Facts are the analysis subjects and are strongly related to user requirements. Moreover,
fact measures are normally numerical data. Thus, measure or fact detection is mainly
based on user participation and numerical attributes.

• User Participation-based generation There are 6 approaches where measures
and facts are selected manually by the user (Boehnlein and Ulbrich-vom Ende,
1999; Moody and Kortink, 2000; Golfarelli et al., 2001; Vrdoljak et al., 2003; Jensen
et al., 2004; Romero and Abelló, 2007) and 3 approaches need the user’s validation
(I.-Y.Song et al., 2007; Ouaret et al., 2014; Elamin et al., 2017).

• Numerical attribute-based generation There are 5 approaches approaches that
identify measures and facts based on numerical data (Phipps and Davis., 2002;
Romero and Abelló, 2007; Usman et al., 2010, 2013; Ouaret et al., 2014).

• Others The other techniques for detecting together measures and facts include
calculating CTV based on many-to-one relationships (I.-Y.Song et al., 2007) and
exploiting a domain ontology (Sanprasit et al., 2021). The other technique for
detecting facts is considering the number of foreign keys within the primary key
(Elamin et al., 2017).

User participation decreases the degree of automation. However it can better sat-
isfy user requirements. Numerical-based methods cannot guarantee that all numerical
attributes are appropriate measures. The ontology-based approach is limited because it
requires the appropriate domain ontology to get a good result.

Most of the approaches consider the generation of multi-facts, which means that they
are able to generate star or constellation schemas. There are 3 approaches (Boehnlein and
Ulbrich-vom Ende, 1999; Usman et al., 2010, 2013; Sanprasit et al., 2021) considering only
the generation of one fact. Thus they are only able to generate star schemas. In these
approaches, several schemas are generated in case of multiple analysis subjects, which
increase the workload.

3.2.4 Dimension Generation

Dimension generation is realized by the following techniques:

22

3. RELATED WORK 23

• One-to-many relationship-based generation Dimensions are identified from
one-to-many relationships associated with facts in 5 approaches out of 12 (Moody
and Kortink, 2000; Golfarelli et al., 2001; I.-Y.Song et al., 2007; Romero and Abelló,
2007; Ouaret et al., 2014).

• Dependency-based generation 4 approaches are based on functional or inclusion
dependencies to detect dimensions (Boehnlein and Ulbrich-vom Ende, 1999; Jensen
et al., 2004; Elamin et al., 2017; Romero and Abelló, 2007).

• Data Type-based generation There are 2 approaches that consider textual and
date attributes to create dimensions (Phipps and Davis., 2002; Usman et al., 2010,
2013).

• Others An ontology (Sanprasit et al., 2021) can also be applied for the creation of
dimensions. Queries (Vrdoljak et al., 2003) can be employed for the validation of
the created dimensions.

One-to-many relationship-based, dependency-based and query-based dimension detec-
tion rely on database constraints and are thus more reliable. Data type and ontology-
based approaches do not verify these constraints and may thus detect wrong dimensions.
Moreover, the ontology-based approach suffers from the problem of getting an appropriate
domain ontology, as we mentioned for the measure and fact detection.

Hierarchy detection is a complex task where we must decide the hierarchical order
of attributes. However, it is not considered or not explained in I.-Y.Song et al. (2007),
Golfarelli et al. (2001) and Ouaret et al. (2014). In the approaches considering hierarchy
detection, many approaches are based on one-to-many relationships. The others use
hierarchical clustering or ontology for hierarchy detection.

• One-to-many relationship-based generation There are 7 approaches based
on one-to-many relationships to construct hierarchies (Boehnlein and Ulbrich-vom
Ende, 1999; Moody and Kortink, 2000; Phipps and Davis., 2002; Romero and Abelló,
2007). Some other techniques based on SQL queries (Jensen et al., 2004), foreign
keys (Elamin et al., 2017) and dependency graph (Vrdoljak et al., 2003) can essen-
tially be also regarded as variants of applying one-to-many relationships.

• Hierarchical clustering-based Dimension attributes can be clustered by hier-
archical clustering to form different hierarchies. It is applied in 2 approaches for
detecting hierarchies in a dimension (Sautot et al., 2015; Usman et al., 2010, 2013).

• Ontology-based Domain ontology can also be helpful (Sanprasit et al., 2021) for
hierarchy detection. Dimension attributes can be related to concepts in a domain
ontology. Hierarchies can be generated according to hierarchical relationships of the
domain ontology.

One-to-many relationships exist between different hierarchy levels. This is why it is

23

3. RELATED WORK 24

the most applied criterion for hierarchy detection. However, the hierarchy clustering
based approaches provide hierarchical relationships based on instance similarity. They
can be semantically correct but may not match with the cardinality relationships between
hierarchy levels. The ontology-based approach still has the same limit as mentioned above.

The distinction of parameters and weak attributes is only taken into account in Elamin
et al. (2017) and Romero and Abelló (2007). In Elamin et al. (2017), the attributes which
are originally primary keys in the ER schema are identified as parameters. In (Romero
and Abelló, 2007), the distinction is decided manually by the user.

3.2.5 Data Warehouse Implementation

Most of the approaches do not consider DW implementation and focus only on multi-
dimensional schema design. Only Ouaret et al. (2014), Usman et al. (2010, 2013) and
Sanprasit et al. (2021) mention an implementation part where Ouaret et al. (2014) create
a XML database. However, implementation details are not mentioned in the other two
approaches.

3.2.6 User intervention

Only Ouaret et al. (2014)’s approach does not need the user’s intervention and is claimed
to be fully automatic. However, the authors plan to integrate user requirements in future
works. All the other approaches are semi-automatic, which demand user intervention.

• Measure/Fact Selection and Validation Most approaches (7 out of 12) ask the
user for measure/fact selection and validation (Boehnlein and Ulbrich-vom Ende,
1999; Moody and Kortink, 2000; Golfarelli et al., 2001; Vrdoljak et al., 2003; Jensen
et al., 2004; Romero and Abelló, 2007; Elamin et al., 2017).

• Schema or Schema Element Validation In 4 approaches, the user is asked
for validating or selecting the generated schema or schema elements (attributes,
dimensions, etc.).

• Others Other user intervention operations include threshold definition (I.-Y.Song
et al., 2007) and algorithm parameter tuning (Usman et al., 2010, 2013).

User intervention makes the approaches not fully automatic, yet it is important because
it makes the identified schema conform to user requirement (Ravat et al., 2009).

24

3. RELATED WORK 25

Ta
bl

e
II

.1
:

C
om

pa
ris

on
of

di
ffe

re
nt

au
to

m
at

ic
D

W
de

sig
n

ap
pr

oa
ch

es
In

pu
t

P
re

-p
ro

ce
ss

in
g

Fa
ct

D
im

en
si

on
D

W
Im

pl
e-

m
at

at
io

n

U
se

r
In

te
rv

en
ti

on
So

ur
ce

T
yp

e
D

at
a

So
ur

ce
Sc

he
m

a
M

ea
su

re
D

et
ec

ti
on

Fa
ct

D
et

ec
ti

on
M

ul
ti

-
fa

ct
D

im
en

si
on

D
et

ec
ti

on
H

ie
ra

rc
hy

D
et

ec
ti

on

P
ar

am
et

er
/

W
ea

k
A

tt
ri

bu
te

D
is

ti
nc

ti
on

Bo
eh

nl
ei

n
an

d
U

lbr
ic

h-
vo

m
En

de
(1

99
9)

R
el

at
io

na
l

da
ta

ba
se

ER
/S

ER
(S

tr
uc

tu
re

d
En

tit
y

R
el

at
io

ns
hi

p)

Tr
an

sfo
rm

at
io

n
to

SE
R

M
an

ua
l

-
A

ss
oc

ia
tio

n
w

ith
m

ea
su

re
s

C
ar

di
na

lit
y

-
-

M
ea

su
re

/F
ac

t
se

le
ct

io
n

M
oo

dy
an

d
Ko

rt
in

k
(2

00
0)

ER
(E

nt
ity

R
el

at
io

ns
hi

p)

En
tit

y
cl

as
sifi

ca
tio

n
M

an
ua

l
✓

C
om

po
ne

nt
en

tit
ie

s

C
la

ss
ifi

ca
tio

n
en

tit
ie

s
+

C
ar

di
na

lit
y

-
-

M
ea

su
re

/F
ac

t
se

le
ct

io
n

+
Va

lid
at

io
n

Ph
ip

ps
an

d
D

av
is.

(2
00

2)
C

an
di

da
te

st
ar

sc
he

m
a

id
en

tifi
ca

tio
n

N
um

er
ic

al
at

tr
ib

ut
es

✓

D
at

e
+

Te
xt

ua
l

A
tt

rib
ut

es

C
ar

di
na

lti
y

-
-

Va
lid

at
io

n

I.-
Y

.S
on

g
et

al
.(

20
07

)
Tr

an
sfo

rm
at

io
n

to
bi

na
ry

ER

M
an

ua
l/

C
on

ne
ct

io
n

To
po

lo
gy

Va
lu

e
(C

T
V

)
✓

C
ar

di
na

lit
y

-
-

-

C
T

V
th

re
sh

ol
d

+
Va

lid
at

io
n

Je
ns

en
et

al
.(

20
04

)
N

ot
m

en
tio

nn
ed

M
et

ad
at

a
co

lle
ct

io
n

M
an

ua
l

✓

Fu
nc

tio
na

l
+

In
cl

us
io

n
de

pe
nd

en
ci

es

SQ
L

Q
ue

rie
s

-
-

M
ea

su
re

/F
ac

t
se

le
ct

io
n

El
am

in
et

al
.(

20
17

)
Lo

gi
ca

l
sc

he
m

a

Id
en

tifi
ca

tio
n

of
en

tit
y,

re
la

tio
ns

hi
p

an
d

we
ak

en
tit

y
ta

bl
es

N
um

er
ic

al
no

n-
ke

y
at

tr
ib

ut
es

R
el

at
io

ns
hi

p
ta

bl
es

+
ce

rt
ai

n
we

ak
en

tit
y

ta
bl

es

✓
Fa

ct
fo

re
ig

n
ke

ys

D
im

en
sio

n
fo

re
ig

n
ke

ys

Pr
im

ar
y

ke
ys

as
pa

ra
m

et
er

s
-

M
ea

su
re

/F
ac

t
se

le
ct

io
n

+
Va

lid
at

io
n

Sa
ut

ot
et

al
.(

20
15

)
D

at
a

wa
re

ho
us

e

St
ar

/
C

on
st

el
la

tio
n

w
ith

ou
t

hi
er

ar
ch

y

D
at

a
ty

pe
id

en
tifi

ca
tio

n
Pr

ed
efi

ne
d

H
ie

ra
rc

hi
ca

l
ag

gl
om

er
at

iv
e

cl
us

te
rin

g
+

G
ow

er
in

de
x

-
-

H
ie

ra
rc

hy
at

tr
ib

ut
e

se
le

ct
io

n

G
ol

fa
re

lli
et

al
.(

20
01

)
X

M
L

fil
e

D
T

D
(D

oc
um

en
t

Ty
pe

D
efi

ni
tio

n)

X
M

L
sim

pl
ifi

ca
tio

n
+

D
T

D
gr

ap
h

co
ns

tr
uc

tio
n

M
an

ua
l

M
an

ua
l

✓
D

T
D

gr
ap

h
ca

rd
in

al
ity

-
-

-
M

ea
su

re
/F

ac
t

se
le

ct
io

n

Vr
do

lja
k

et
al

.(
20

03
)

X
M

L
sc

he
m

a

X
M

L
sim

pl
ic

at
io

n
+

Sc
he

m
a

gr
ap

h
co

ns
tr

uc
tio

n

M
an

ua
l

M
an

ua
l

✓

Sc
he

m
a

gr
ap

h
ca

rd
in

ila
ty

+
Q

ue
rie

s

D
ep

en
de

nc
y

gr
ap

h
-

-

M
ea

su
re

/F
ac

t
se

le
ct

io
n

+
D

im
en

sio
n

se
le

ct
io

n

O
ua

re
te

ta
l.

(2
01

4)
U

M
L

di
ag

ra
m

ge
ne

ra
tio

n

N
um

er
ic

al
no

n-
ke

y
at

tr
ib

ut
es

C
la

ss
es

w
ith

a
la

rg
e

nu
m

be
r

of
nu

m
er

ic
al

at
tr

ib
ut

es

✓
C

ar
di

na
lit

y
-

-
X

M
L

da
ta

ba
se

-

Ro
m

er
o

an
d

Ab
el

ló
(2

00
7)

O
nt

ol
og

y

O
W

L
(W

eb
O

nt
ol

og
y

La
ng

ua
ge

)

M
ul

tid
im

en
sio

na
l

pa
tt

er
n

by
D

L
(D

es
cr

ip
tio

n
Lo

gi
c)

N
um

er
ic

al
co

nc
ep

ts
M

an
ua

l
✓

Fu
nc

tio
na

ld
ep

en
de

nc
y

+
C

ar
di

na
lit

y

D
ire

ct
ed

gr
ap

h
of

to
-o

ne
re

la
tio

ns
hi

ps

M
an

ua
l

-
M

ea
su

re
/F

ac
t

se
le

ct
io

n

Us
m

an
et

al
.(

20
10

),U
sm

an
et

al
.(

20
13

)
Fl

at
da

ta
se

t
-

H
ie

ra
rc

hi
ca

l
ag

gl
om

er
at

iv
e

cl
us

te
rin

g
N

um
er

ic
al

at
tr

ib
ut

es
-

N
om

in
al

at
tr

ib
ut

es
H

ie
ra

rc
hi

ca
l

ag
gl

om
er

at
iv

e
cl

us
te

rin
g

-
✓

C
lu

st
er

in
g

pa
ra

m
et

er

Sa
np

ra
sit

et
al

.(
20

21
)

C
SV

,
sp

re
ad

sh
ee

ts
)

-
C

ol
um

n
na

m
e

in
fe

re
nc

e
D

om
ai

n
on

to
lo

gy
-

Sa
m

e
on

to
lo

gy
cl

as
s

D
om

ai
n

on
to

lo
gy

-
✓

Va
lid

at
io

n

25

4. MEASURE DETECTION 26

3.3 Summary

There are few approaches addressing the semi-structured data without schema, since the
detection of multidimensional elements can be challenging without a schema. The only
two existing approaches have several limits. Usman et al. (2010, 2013) only consider data
types for the generation of facts and dimensions. Hierarchies are generated by hierarchical
clustering. The authors do not consider any database constraint, which may render the
result unreliable. (Sanprasit et al., 2021) rely on a domain ontology, the DW element
detection result depends on whether appropriate ontologies can be obtained. Parameter
and weak attribute distinction as well as DW implementation are not widely discussed
neither, which needs to attract more attention.

3.4 Automatic DW Design for Simple-structured Tabular Data

The proposed automatic DW design process from tabular data of simple structure is
composed of measure detection and dimension detection where there are hierarchy de-
tection and distinction of parameters and weak attributes. For the measures detection,
we intend to find the numerical columns that conform to the characteristics of measures.
We hypothesize that there are differences in terms of features between numerical data
that are potential measures and those that are not. Therefore, in this chapter, we define
specific features for numerical columns and propose a machine learning-based method to
automatically detect measures. We then detect dimensions. For the detection of hier-
archies, since there are functional dependencies among different levels of a hierarchy, we
propose to detect functional dependencies and model them as trees to derive hierarchies.
Then we define several syntactic and semantic rules based on characteristics of parame-
ters and weak attributes to identify each attribute as one of them. Finally, the detected
multidimensional components are linked to construct a multidimensional schema.

Figure II.3: Automatic DW design process for simple-structured tabular data

4 Measure Detection
In this manuscript, as mentioned that we focus on tabular data of simple structure. As
analysed in Section 1, there are various challenges to detect measures from tabular data
without schema. Machine learning algorithms can be employed to solve these challenges

26

4. MEASURE DETECTION 27

since models can be trained according to some features of the numerical columns and
capture the characteristics of measures. Therefore, we propose a machine learning-based
process for measure detection.

4.1 Overview

Figure II.4 shows an overview of our measure detection process for simple structure tabular
data. We first give a precise definition of measures as Definition 4.1 and tabular data of
simple structure as Definition 4.2.

Since measures are numerical, we regard all numerical columns as candidates. So first,
preprocessing the dataset is necessary for the selection of numerical columns. Second,
to distinguish between measure and non-measure numerical columns, we extract features
from numerical columns. Third, we use machine learning classifiers to estimate whether
they are measures. Finally, users are asked to get involved for the validation of the
proposed detected measures.

Figure II.4: Measure detection for tabular data

Definition 4.1 (Measure). We define a measure as a numerical and quantitative at-
tribute of the analysis subject evaluating the activities of an organisation that can be aggre-
gated with respect to dimensions. It can be additive, semi-additive or non-additive (Horner
et al., 2004).

Definition 4.2 (Simple structure). A tabular dataset of simple structure T is defined as
{C, R, A, V}, where:

• C = {C1, C2, ...Cnc} is a set of columns, where nc is the number of columns in TS.
For a given column Ci ∈ C, index i corresponds to the column’s position in T.
The number of non-null values in column Ci is denoted as nt(Ci). The number of
non-null distinct values is denoted as nu(Ci);

• R = {R1, R2, ..., Rnr} is a set of rows (excluding the first, header row), where nr is
the number of non-header rows in TS. For a given row Rj ∈ R, j represents the
index of the row corresponding to its position in TS;

• A = {AC1 , AC2 , ..., ACnc
} is a set of attribute headers which is usually the first line.

For a given attribute header ACi
∈ A, Ci represents the column labeled by ACi

;

• V is a matrix of cell values whose dimension is nr × nc. For a given cell value
VRj ,Ci

∈ V, Rj and Ci are the row and the column where the cell is located, respec-
tively.

27

4. MEASURE DETECTION 28

Example 4.1. In Fig. II.5, there is a CSV tabular dataset of simple structure. It contains
several rows where R1 is the first row. It contains several columns where C5 is the fifth
column whose header is AC5 (City). The value of the first row and fifth column is VR1,C5

(Barcelone).

Figure II.5: Example of CSV table

4.2 Preprocessing

As candidate measures are numerical columns, we must firstly identify numerical columns.
If all values of a column are numerical, we easily identify numerical columns. However,
there are sometimes columns containing numerical values with their unit or columns
containing both numerical and textual values used for replacing empty cells. Such mixed
values must lead to numerical columns and require preprocessing.

Columns containing values with a unit are identified by verifying whether each cell bear
the same structure, e.g., “text + number” or “number + text”. We also verify whether
the text of each column is the same or if it is categorical by using the algorithm proposed
by Alobaid et al. (2019). Then, we extract numerical values via regular expressions and
tag the column as numerical. Eventually, numerical columns containing empty values
replaced by some text, e.g., “n/a”, “null” or “unknown”, are treated as numerical, with
textual values being removed.

Example 4.2. For the CSV tabular dataset in Fig. II.5, we preprocess the data. We can
find that for the column of Price, the values are composed of “number + text” which are
indeed the price with the unity. So it is considered as a numerical column and we remove
the textual values of “$” for the feature extraction. Then by verifying the data, we can
find in the column of Qty, there is textual value “n/a” representing missing value. It is
thus also removed.

4.3 Feature Extraction

After the preprocessing phase, we extract the numerical columns’ features. When defin-
ing features, we analyse both general information and some statistical characteristics of
numerical columns. Since tabular data of simple structure may exhibit specific column po-
sitional habits, we also consider column inter-relationships. Features are thus subdivided
into three categories: general features, statistical features and inter-column features. For
a given numerical column Ci, we define the following features.

28

4. MEASURE DETECTION 29

4.3.1 General Features

These features reflect basic information on numerical columns. Such general features may
help check whether a numerical column is likely to be quantitative and help evaluate
business activities. General features follow.

• Data type: type =
 1 if type(Ci) = integer

0 if type(Ci) = float
, where type(Ci) is Ci’s data type.

Intuitively, float data are more likely to be quantitative and to allow evaluating activi-
ties. For example, temperature, salary and sales amount are float data can be considered
as measures in most cases.

• Positive/Negative/Zero value ratio: rpos =
npos(Ci)
nt(Ci)

, rneg =
nneg(Ci)
nt(Ci)

, rzero =

nzero(Ci)
nt(Ci)

, where npos(Ci), nneg(Ci) and nzero(Ci) are the number of positive, nega-

tive and zero values in Ci, respectively, and nt(Ci) is the number of non-null values
in Ci.

We get respectively the ratio of the positive, negative and zero values of the column.
These features may help identifying both qualitative and quantitative columns. Qualita-
tive data values, e.g., ID or zip code, are rarely negative or equal to zero. Thus, when
there are many zero and negative values in a column, it is more likely to be a measure.

• Unique value ratio: runique =
nu(Ci)
nt(Ci)

.

The unique value ratio can reveal some typological information about a column. For
example, in a descriptive dataset, IDs are always unique, so the unique value ratio is
always equal to 1. In a dataset containing fact table data, keys and descriptive data may
be repetitive, but equal measures should be quite scarce.

Example 4.3. Given the numerical column IdCus of the CSV table from Fig. II.5, we

can get runique =
nu(IdCus)
nt(IdCus) =

6
8 = 0.75. There are 8 values in the columns and 6

distinct values {1001, 1002, 1003, 1004, 1005, 1006}. Given the numerical column Price,

we get runique =
nu(Price)
nt(Price) =

8
8 = 1 i.e. every value in the column is distinct.

• Same digital number:

sdn =


1 if ∀i ∈ [1, nt(Ci)− 1], ndRj ,Ci

= ndRj+1,Ci
∧ type(Ci) = integer

0 if (∃i ∈ [1, nt(Ci)− 1], ndRj ,Ci
̸= ndRj+1,Ci

∧ type(Ci) = integer)
∨(type(Ci) = float)

, where

ndRj ,Ci
is the number of digits in cell value VRj ,Ci

, which is calculated as ndRj ,Ci
=

floor(log
VRj ,Ci

10) + 1.

This feature tells whether all the values of an integer column have the same number

29

4. MEASURE DETECTION 30

of digits. If it is the case, the column is likely to be a nominal number (Alobaid et al.,
2019) representing the name or identifier of an element that cannot be a measure. For
example, the French social security number always contains 15 digits.

Example 4.4. Given the numerical column Price, sdn = 0 since it is a float column.
Given the numerical column IdCus, sdn = 1 since it is a column of integers and each
value has the same size of 4 digits.

4.3.2 Statistical Features

Since candidate columns are numerical, statistical features must be considered, because
they reflect the distribution of column values, which may be different for quantitative and
qualitative attribute values. Statistical features follow.

• Average/Minimum/Maximum/Median/Upper quartile/Lower quartile val-
ues: avg = avg(Ci), min = min(Ci), max = max(Ci), median = median(Ci),
upquar = upquar(Ci) and lowquar = lowquar(Ci) represent the average, minimum,
maximum, median, upper quartile and lower quartile of Ci, respectively.

We consider these basic statistical metrics as features. In some specific columns, their
values always vary in a certain range. Using these features can thus be helpful for cap-
turing such statistical behaviours.

• Coefficient of variation:

coevar =


standdev(Ci) if avg(Ci) = 0
standdev(Ci)

avg(Ci)
if avg(Ci) ̸= 0

, where standdev(Ci) is Ci’s standard

deviation.

The standard deviation can depict the amount of dispersion of a column values. Mea-
sures and descriptive attributes may have different degrees of dispersion, but by using the
coefficient of variation, which is the ratio of the standard deviation by the average, we
achieve a standardized degree of dispersion. For example, given two attributes “price of
phone” and “temperature of city”, the average price is much higher than that of tempera-
ture. A price variation of 10 is relatively much lower than that of temperature. Since the
coefficient of variation is a ratio, when the average is equal to 0, it does not exist. Here,
we define that when the average is 0, the feature is equal to the standard deviation of the
column.

Example 4.5. Given the numerical column Price, we can get avg(Price) = 821.06, and

the standard deviation standdev(Price) = 365.44, we can thus get coevar =
365.44
821.06 =

0.445.

• Range ratio: rrange =


max−min

nu(Ci)− 1 if nu(Ci) > 1

0 if nu(Ci) = 1

30

4. MEASURE DETECTION 31

The range ratio calculates the range of values with respect to the number of distinct
values. It is useful to identify some ordinal data, even if they occur repetitively. For
example, if we have student numbers ranging from 1000 to 2000 in a tabular dataset, but
also courses and grades, a student number may occur many times while the range ratio
is always 1 no matter the number of occurrences.

Example 4.6. Given the numerical column IdCus, the number of non-null distinct val-
ues is nu(IdCus) = 6. We can also get max(IdCus) = 1006 and min(IdCus) = 1001,

so we obtain rrange =
1006− 1001

6− 1 = 1. Given the numerical column Price, the number
of non-null distinct values is nu(Price) = 8. We can also get max(Price) = 1599.99 and

min(Price) = 125, so we obtain rrange =
1599.99− 125

8− 1 = 210.71.

4.3.3 Inter-Column Features

Measures are aggregatable and are normally accompanied with attributes by which they
are aggregated, as per the “group by” SQL clause. Typically, attributes linked to aggrega-
tions are located before measures in the source file. Therefore, we consider inter-column
features that take inter-column relationships into account in the whole dataset.

• Location ratio: rloc =
i− 1

nc − 1.

In many tables, the identifier and some other basic information usually lie at beginning
positions, while measures are usually in the latter positions. Thus, we also take column
location into account. However, different datasets have different number of columns, so
we must normalize the location feature as a ratio ranging between 0 and 1 by adding
minus 1 in the calculation.

Example 4.7. The numerical column IdCus is the first column of the table, so i = 1.

There are 19 columns in the table, so we have nc = 19. We thus obtain rloc =
1− 1
19− 1 = 0.

In the same way, for the numerical column MemLevel, we have rloc =
8− 1
19− 1 = 0.39

and for Qty, rloc =
19− 1
19− 1 = 1. Thus, we can see that the location ratio for the first

column is 0 and for the last is 1, and that the location ratio for a column in middle is
between 0 and 1.

• Numerical column ratio: rnum =
nnum

nc

, where nnum is the number of numerical
columns in the whole dataset.

The numerical column ratio is the ratio of numerical column number by total column
number. This is a feature at the global level of the table, so the value of the feature is
the same for the numerical columns in the same tabular data. We consider this feature

31

4. MEASURE DETECTION 32

because when there are measures in tabular data, the ratio of the numerical columns may
be increased.

• Multiple functional dependencies:

severalfds =
 1 if ∃fd ∈ fdset, (fd.rhs = ACi

) ∧ (size(fd.lhs) > 1)
0 otherwise

where fdset is the set of functional dependencies containing one attribute on the
right-hand side, fd.rhs is the right hand side attribute of functional dependency fd

and size(fd.lhs) is the number of attributes in the left hand side of fd.

In existing methods that exploit data sources with schemas, many-to-many relation-
ships are usually employed for measure detection. In a DW, we usually analyse a fact
with respect to different dimensions and measure values depend on dimensions’ identi-
fier. Thus, we consider whether there is a functional dependency with ACi

depending on
several attributes as a feature.

Example 4.8. Given the numerical column Price, we have the functional dependency
{IdCus, IdProd, Date} → Price where the right-hand side is Price and there are 3
attributes in the left-hand side. Therefore, severalfds = 1.

• Numerical neighbor:

numn =



1 if (i = 1 ∧ type(Ci+1) ∈ num) ∨ (i = nc ∧ type(Ci−1) ∈ num)
∨(i ̸= 1 ∧ i ̸= nc ∧ type(Ci+1) ∈ num ∧ type(Ci−1) ∈ num)

0.5 if (i ̸= 1 ∧ i ̸= nc ∧ type(Ci+1) ∈ num ∧ type(Ci−1) ̸∈ num)
∨(i ̸= 1 ∧ i ̸= nc ∧ type(Ci+1) ̸∈ num ∧ type(Ci−1) ∈ num)

0 otherwise
where num = {integer, f loat}.

In a tabular dataset, the columns describing similar information are often clustered
together. Measures are also likely to be located close together, meaning that there are
numerical columns in neighboring positions. Thus, we define this feature to see whether
neighbors of a column are also numerical. If so, the column is likely to be a measure.

Example 4.9. The numerical column MemLevel has 2 neighbors and none of them is
numerical, so numn = 0. Price has 2 neighbors and one of them is numerical (Qty), so
numn = 0.5. Qty has one neighbor that is a numerical column, so we have numn = 1.

4.4 Machine Learning Classification

To predict if a numerical column can be measure with the proposed features, we need
to have a reliable model. Thus we should collect datasets, then we extract the proposed
features and label the classes (“measure” or “not measure”) for the numerical columns.
The user can collect datasets from open data sites and also use her/his own datasets.
Next, the feature values can be fed into machine learning classifiers to train a model.
However, if the non-expert user is not able to collect datasets and label the numerical

32

5. DIMENSION DETECTION 33

columns, they can use the model that we obtain in the experiments for measure detection.
Having the trained model, for given tabular data, feature values of the numerical columns
can be extracted to detect measures.

Example 4.10. We train a model by numerous datasets by random forest classifier. For
the csv table in Fig. II.5, we extract the proposed features for the numerical columns
including IdCus, Age, MemLevel, Price and Qty like shown in Fig. II.6. We can
then use the trained model to classify each numerical columns and we finally detect the
measures Price and Qty.

Figure II.6: Example of extracted features

4.5 User Validation

The result of automatic measure detection cannot be 100% accurate. Thus, we have to
ask the user to validate the detected measures. The validation includes two checks. First,
we ask the user to check whether there are attributes that are detected as measures, but
which are actually dimension attributes. Then, we ask the user to check whether there
are attributes that are measures for users but that are not detected. After the validation,
we can finally obtain all the measures.

5 Dimension Detection
The objective of this section is to detect DW dimensions. First, we discover the func-
tional dependencies to detect the hierarchies. Then, we decide whether an attribute is
a parameter or a weak attribute. Finally, we create dimensions based on the detected
hierarchies.

5.1 Functional Dependency Detection

In a hierarchy, the values of a higher-granularity level is dependent of the values of its
lower-granularity levels. In other words, there is functional dependency relationships
(Ullman, 1983) between different levels of a hierarchy. We detect hierarchies with the
help of the functional dependencies between non-measures columns of a table. Functional
dependency is formally defined in Definition 5.1.

Definition 5.1 (Functional dependency). Let A be the attribute set of a dataset, X ⊆ A

be a set of attributes and Y ∈ A be an attribute. X is said to functionally determine Y

if and only if ∀t1, t2 ∈ T, t1[X] = t2[X] ⇒ t1[Y] = t2[Y]. This relationship between X

33

5. DIMENSION DETECTION 34

and Y is called a functional dependency (FD), denoted by X → Y . X is called the
left-hand side and Y is called the right-hand side of the functional dependency.

However, the FDs of a simple structure table is not obvious. We should use the FD
detection algorithm to discover the FDs. We choose to apply HyFD (Papenbrock and
Naumann, 2016) because it achieves the best performance at both run time and memory
consumption aspects and has the best row and column scalability against the seven most
cited and important algorithms that are tested in (Papenbrock et al., 2015b).

For the creation of hierarchies, we do not need all detected FDs. Useful FDs should
satisfy the following criteria for the hierarchy detection.

• In a dimension, FDs hold between two parameters or between a parameter and
a corresponding weak attribute. Thus, we are only interested in the FDs whose
left-hand side has one attribute.

• Let X, Y, Z ∈ A, according to Armstrong’s axioms (Armstrong, 1974), if X → Y

and Y → Z, then X → Z (transitivity). We must remove the transitivity, i.e., we
retain only X → Y and Y → Z since X → Z can be inferred.

• We call X, Y ∈ A equivalent attributes if X → Y and Y → X, denoted by X ↔ Y .
Given a FD containing one of the equivalent attributes, it also holds for the other
one, i.e., ∃Z ∈ A, if X → Z, thenY → Z. In this case, we consider X and Y as a
same attribute and treat them as one attribute X/Y i.e. we remove Y → Z and
retain only X/Y → Z.

Example 5.1. In the CSV table from Fig. II.5, we remove the detected measures Price
and Qty. Then, we detect the FDs of the remaining attributes. By launching the HyFD
algorithm and filtering the FDs by the above criteria, we first obtain 4 equivalent attribute
groups: IdCus ↔ Age ↔ Email, IdProd ↔ NameProd, IdSubcat ↔ Subcat and
IdCat↔ Cat. We can then consider attributes of each equivalent attribute groups as one
attribute: IdCus/Age/Email, IdProd/NameProd, IdSubcat/Subcat and IdCat/Cat.
Then we obtain the following FDs: IdCus/Age/Email → NameCus, IdCus/Age/Email

→ MemLevel, IdCus/Age/Email → City, City → Region, Region → Country,
IdProd/NameProd → Brand, Brand → ComSize, IdProd/NameProd → IdSubcat

/Subcat, IdSubcat/Subcat→ IdCat/Cat.

To make sure that the FDs we discover conform to the actual dependency relationship
of attributes in the real world, we hypothesize that there is enough data in terms of
quantity and variety so as to represent real dependency relationships. Moreover, there
should be no error in data, but if this is the case, we can detect approximate FDs (Liu
et al., 2012).

34

5. DIMENSION DETECTION 35

5.2 Functional Dependency Tree

Dimension hierarchies can be represented by tree structures (Markl et al., 1999). There-
fore, we can build functional dependency trees to construct different hierarchies and di-
mensions. The advantage of using functional dependency trees is that they have similar
tree structure as hierarchies, so that we can easily detect hierarchies by finding the root-to-
leaf paths. Functional dependency trees (Definition 5.2) are built by connecting functional
dependencies.

Definition 5.2 (Functional dependency tree). A functional dependency tree (FD
tree) is a directed tree denoted by T = {Vr, Vl, Vb, E}, where:

• Vr is a singleton set of the root node, with |Vr| = 1 and vr ∈ Vr is the root node of
the tree,

• Vl is a set of all leaf nodes,

• Vb is a set of all branch nodes,

• V = Vr ∪ Vl ∪ Vn is a set of all tree nodes containing all the attributes of FDs,

• E is a set of directed edges. e12 = (v1, v2) ∈ E denotes an edge connecting two nodes
v1 and v2 with from v1 to v2. It also means that the FD v1 → v2 holds.

Example 5.2 (Functional dependency tree). The detected FDs in Example 5.1 can form
two functional dependency trees (Fig. II.7). For instance, T1 = {Vr1, Vl1, Vb1, E1}, where:

• Vr1 = {IdCus/Email/Age},

• Vl1 = {NameCus, MemLevel, Country},

• Vb1 = {City, Region},

• E1 = {(IdCus/Email/Age, NameCus), (IdCus/Email/Age, MemLevel),
(IdCus/Email/Age, City), (City, Region), (Region, Country)}.

Then, we should extract hierarchies from the FD trees. The problem of finding a
hierarchy is equivalent to the problem of finding a root-to-leaf path of a tree. Root-to-leaf
path retrieval is similar to the depth-first search algorithm for graph traversal (Skiena,
2008). So we apply the depth-first search algorithm for root-to-leaf path retrieve. The
depth-first search algorithm visits each node from the root to each leaf. We can thus
record the nodes in the order of appearance in the path and retrieve the hierarchy.

5.3 Functional Dependency Tree Element Set

FDs of a tabular dataset may form different FD trees and then form different hierarchies
and dimensions. To construct each tree, we have to find all the FDs that have links
among them and group them together, which is costly. So, instead, we directly obtain a

35

5. DIMENSION DETECTION 36

Figure II.7: Examples of FD trees

functional dependency tree element set containing all the elements of the FD trees derived
from the detected FDs.

Definition 5.3 (Functional dependency tree element set). A functional dependency
tree element set is a set of elements of a functional dependency tree set (TS =
{FDT1, FDT2, ...,

FDTn}), denoted by TET S = {V T S
r , V T S

l , V T S
b , PCT S}, where:

• V T S
r is a root node set containing all root nodes of the FD trees, V T S

r =
n⋃

i=1
Vri,

• V T S
l is a leaf node set containing all leaf nodes of the FD trees, V T S

l =
n⋃

i=1
Vli,

• V T S
b is a branch node set containing all branch nodes of the FD trees, V T S

b =
n⋃

i=1
Vbi,

• PCT S = V T S
p → V T S

c is a parent-children map associating each parent node to its
child nodes, V T S

p = V T S
r ∪ V T S

l and V T S
c = V T S

l ∪ V T S
l .

Example 5.3 (Functional dependency tree element set). The FD trees from Fig. II.7 bears
a FD tree set TS = {T1, T2}. It is obtained by the FDs of Example 5.1. To create the two
FD trees, we have to separate the FDs and group the FDs having the same attributes on
any side together. However, given these FDs, we can directly get the functional dependency
tree element set TET S = {V T S

r , V T S
l , V T S

b , PCT S}, where:

• V T S
r = {IdCus/Email/Age, IdProd/NameProd},

• V T S
l = {NameCus, MemLevel, Country, CompSize, idCat/Cat},

36

5. DIMENSION DETECTION 37

• V T S
b = {City, Region, Brand, IdSubcat/Subcat},

• PCT S = {IdCus/Email/Age : {NameCus, MemLevel, City}, City : {Region},
Region : {Country}, IdProd/NameProd : {Brand, IdSubcat/Subcat},
Brand : {CompSize}, IdSubcat/Subcat : {IdCat/Cat}}.

Algo. 1 describes the creation of the FD tree element set. We first construct an empty
FD tree element set TET S (line1). We also create a list for all left-hand sides of FDs
(line2) and a list for all right-hand side of FDs (line3). For each FD in the FD set (line4),
its left-hand side is put into the left-hand side list (line5) and its right-hand side is put
into the right-hand side list (line6). The right-hand side is added into a map as the
left-hand side key value (line7−9). When the loop of the FDs ends, we get the complete
left-hand and right-hand side lists, as well as the parent-children map. Root node has
no any other attribute determining it, which means that it does not act as a right-hand
side in any FD. Thus, the left-hand side list is lhsList = V T S

r ∪ V T S
b . A leaf node has

no any other attribute determined by it, which means that it does not act as a left-hand
side in any FD. Thus the right-hand side list is rhsList = V T S

l ∪ V T S
b . Finally, we thus

get the branch node set, the root node set and the leaf node set of the FD tree element
set (line11−13).

Algorithm 1: getFDTreeElems(FDS)
Input : Set of detected functional dependencies FDS

Output: Functional dependency tree element set TET S

1 TET S ← {∅, ∅, ∅, ∅} ;
2 lhsList← ∅ ;
3 rhsList← ∅ ;
4 for FD ∈ FDS do
5 lhsList← lhsList + FD.lhs ;
6 rhsList← rhsList + FD.rhs ;
7 if FD.lhs ̸∈ PCT S.keys() then
8 PCT S[FD.lhs]← FD.rhs

9 else
10 PCT S[FD.lhs]← PCT S[FD.lhs] + FD.rhs

11 V T S
b ← lhsList ∩ rhsList ;

12 V T S
r ← lhsList− V T S

b ;
13 V T S

l ← rhsList− V T S
b ;

14 return TET S

Example 5.4 (Creation of an FD tree element set). FDs from Example 5.1 are each
scanned to get lhsList = {IdCus/Email/Age, IdProd/NamePro, City, Region, Brand,

IdSubcat/Subcat}, rhsList = {City, Region, Brand, IdSubcat/Subcat, NameCus,

MemLevel, Country, CompSize, idCat/Cat} and PCT S, as in Example 5.3. We thus

37

5. DIMENSION DETECTION 38

obtain V T S
b = lhsList ∩ rhsList = {City, Region, Brand, IdSubcat/Subcat}, and then

V T S
r = lhsList− V T S

b and V T S
l = rhsList− V T S

b as in Example 5.3.

5.4 Hierarchy Detection

Algo. 2 describes the detection of hierarchies from a FD tree element set by using depth-
first search. It is a recursive algorithm. The inputs also include the node, the hierarchy
to be detected and the hierarchy set containing all detected hierarchies. Here, since we
are not yet in the step of parameter and weak attribute distinction, we simplify the
representation of the hierarchies by using only their ordered parameter sets. In the first
recursion of the algorithm, the node is the root node, the hierarchy and the hierarchy set
are empty sets (Algo. 2, line4). We add the attribute into the hierarchy when we pass a
node (line1). If the node is not a leaf node (line2), we continue to recursively pass the
next level (line3−4). If the node is a leaf node (line5), a root-to-leaf path is found and a
hierarchy is completely retrieved. Then, we can add the hierarchy into the hierarchy set
(line6).

Example 5.5 (Hierarchy detection). We take the example of the root node IdCus/Email/

Age of the functional dependency tree element set TET S from Example 5.3. We call
Algo. 2 by getHierarchy(TET S, IdCus/Email/Age, ∅, ∅). Fig. II.8 illustrates the re-
trieval of the hierarchies where v represents the current executed node. H represents
the current retrieved hierarchy. leaf node denotes whether the current node is a leaf
node. HS represents the current hierarchy set. Each recursion loop ends when the leaf
node and the retrieved hierarchy are added into the hierarchy set. The result is returned
up to the result of the first recursion as shown with the dashed lines and we finally obtain
3 hierarchies: < IdCus/Email/Age, NameCus >, < IdCus/Email/Age, MemLevel >

and
< IdCus/Email/Age, City, Region, Country >.

Algorithm 2: getHierarchies(TET S, v, H, HS)
Input : Functional dependency tree element set TET S, node v and hierarchy H,

hierarchy set HS

Output: Hierarchy set HS

1 H ← H + v;
2 if v ̸∈ V T S

l then
3 for v2 ∈ PCT S[v] do
4 HS ← HS ∪ getHierarchie(TET S, v, H, HS)

5 else
6 HS ← HS + H

7 return HS

38

5. DIMENSION DETECTION 39

Figure II.8: Example of hierarchy detection

5.5 Distinction between Parameters and Weak Attributes

Our hierarchy detection method considers all attributes as the same, i.e., without distin-
guishing whether an attribute is a parameter or a weak attribute. Thus, in this section,
we define rules for making this distinction.

The value of a weak attribute is determined by its parameter and usually does not
determine the value of any other attributes.

• the group of equivalent attributes, or

• the highest-granularity level of hierarchies.

So we must address both cases.

5.5.1 Equivalent Attributes

Equivalent attributes that are not on the highest-granularity level are attributes of the
same level. Thus, there must be one parameter and the other attributes are weak at-
tributes. The parameter should be the attribute that can be an identifier. We define the
following rules to choose the parameter.

• At the schema level, we look for the attribute whose name contains some strings
that indicate that the attribute could be a parameter, such as “code”, “id”, etc.

• If there is no such attribute, we look at the instance level. We look for the attribute
whose values can be abbreviations of other attributes by seeing if its strings consist
of other attribute values of the same instance.

39

5. DIMENSION DETECTION 40

• If there is no such attribute, we look for the remaining string attributes. We look
for the attribute that is of nominal or ordinal numerical types (Alobaid et al., 2019).

• If there is no such attribute, we look for the attribute whose values are composed
of both strings and numerical data.

• If there is no such attribute, we look for the attribute that has the shortest string
length.

• Date type data are treated as weak attributes.

We search the parameter with respect to the above rules in order. All the remaining
attributes are weak attributes.

5.5.2 Highest-granularity Level

We must decide whether each highest-granularity level attribute is a parameter or a
weak attribute. To do so, we have to verify whether the attribute really has a semantic
hierarchical relationship with the other attributes of the hierarchy, so we define these
following rules.

• At the schema level, we verify the hierarchical relationships between the highest-
granularity level attribute and the other attributes by checking whether their names
or subset of names match the semantic hierarchy relationship in Wordnet (Miller,
1995). If so, the attribute is a parameter.

• If there is no such attribute, we look at the instance level. We also verify their
hierarchical relationships with Wordnet, but with the instance values, to decide
whether it is a parameter.

• If not, we verify whether the attribute is categorical by setting a threshold on the
distinct value ratio (distinct value number divided by total value). If the distinct
value ratio is lower than the threshold, then it is treated as a parameter.

• Date type data are treated as weak attributes.

If none of the rules is satisfied, then the attribute is a weak attribute.

Example 5.6. The detected hierarchies from Example 5.5 have an equivalent attribute
group (IdCus, Email, Age) that is not on the highest-granularity level. We find the string
“Id” in attribute name “IdCus”, so attribute IdCus is a parameter. Conversely, Email
and Age are weak attributes. Then, we look at the highest-granularity level attributes of
the 3 detected hierarchies. Hierarchy < IdCus, City, Region, Country > matches the hi-
erarchical relationship City, Region and Country, so Country is a parameter. Hierarchies
< IdCus, NameCus > and < IdCus, MemLevel > do not bear hierarchical relationships
in Wordnet between the highest-granularity level attributes and the other attributes at both
schema (attribute name) and instance level. MemLevel is of ordinal numerical type, so it

40

5. DIMENSION DETECTION 41

is a parameter. NameCus is not of numerical type, so we verify whether it is categorical
by setting a threshold of 0.6. The distinct ratio of NameCus is 5/6 = 0.83 > 0.6, so it
cannot be a parameter. It is thus a weak attribute.

5.6 Construction of DW

Algo. 3 describes the full process of automatic DW design and implementation by com-
bining the previous steps to construct a DW. It is to be noted that the names of the
components are not assigned in the algorithm since they can be assigned automatically
or by the user.

Given a tabular data of simple structure T , the measure detection is first carried out
(line1). Then FDs are obtained by HyFD algorithm from the non-measure attributes
(line2).

A FD tree element set is created based on the detected FDs (line4). Each FD tree
can be considered as a dimension where the root node is the dimension identifier. Thus
for each root node, we create a dimension (line6−26) by detecting hierarchies (line6−10)
and applying the proposed rules to identify dimension attributes as parameters or weak
attributes (line10−20).

A fact is created with the detected measures (line29). A star schema is then generated
by linking the fact to the dimensions (line31). The constellation schema contains more
than one fact, however, normally a tabular data contains only one fact, which is the case
we assume. Thus we only consider the generation of a star schema.

In terms of the implementation, we apply the R-OLAP architecture (Kimball and
Ross, 2011), which is the most used OLAP implementation (Pujolle et al., 2011). we first
implement the tabular data in the database as a table T (line3). For the dimensions, we
create a table for each dimension and extract the dimension instances by projecting the
distinct attribute instances from the table T (line24). For the fact, we create a fact table
and project the measure instances from T (line27) and link them with the corresponding
dimension instances (line28) by adding foreign keys.

Example 5.7. The measure detection, the detection of certain hierarchies and the identi-
fication of certain attributes as parameters/weak attributes of the CSV table from Fig. II.5
are illustrated in the previous examples. A fact can be created based on the detected mea-
sures. By carrying out the hierarchy detection and parameter and weak attribute distinc-
tion for all nodes of the FD tree element set obtained in Example 5.3, we obtain three
dimensions. There is a dimension of date, thus we ask the user to choose the date gran-
ularities. We then ask the user to rename the fact, dimension and hierarchy names. We
can finally obtain a star schema like shown in Fig. II.9.

The implementation result is shown in Fig. II.10. Three tables are created respectively
for three dimensions. Each table contains the attributes of its corresponding dimension.

41

5. DIMENSION DETECTION 42

Algorithm 3: autoDW (T)
Input : Tabular data of simple structure T
Output: A data warehouse DW

1 Launch measure detection to obtain MF ;
2 Launch HyFD for non-measure attributes to obtain functional dependency set

FDS;
3 Implement tabular data T in database as table T ;
4 TET S ← getFDTreeElems(FDS);
5 DDW ← ∅;
6 for Vri ∈ V T S

r do
7 idDi ← Vri;
8 ADi ← ∅;
9 ParamSet← getHierarchies(TET S, Vri, ∅, ParamSet);

10 for ParamHj ∈ ParamSet do
11 ADi ← ADi ∪ ParamHj ;
12 WeakHHj ← ∅;
13 for k = 0 to |ParamHj | − 1 do
14 if ParamHj [k] is an equivalent attribute combination then
15 Apply the rules in Section 5.5.1 to identify a parameter p and a

weak attribute set WeakHj [p]
16 if ParamHj [k] is a highest-granularity level parameter then
17 Apply the rules in Section 5.5.2;
18 if ParamHj [k] is a weak attribute then
19 WeakHj [ParamHj [k − 1]].add(ParamHj [k]);
20 ParamHj .delete(ParamHj [k]);

21 Hj ← (NHj , ParamHj , WeakHj);
22 HDi .add(Hj);
23 IDi ← ΠADi T ;
24 Di ← (NDi , ADi , HDi , IDi);
25 DDW .add(Di);
26 IF ← ΠMF T ;
27 IStarF ← {iF

p → iq : iF
p ∈ IF ∧ iq ∈

∏
Dr∈DDW IDr ∧ iF

p , iq are in the same tuple of
T};

28 F ← (NF , MF , IF , IStarF);
29 F DW ← {F};
30 StarDW [F]← DDW ;
31 DW ← (NDW , F DW , DDW , StarDW);
32 return DW

42

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 43

The dimension identifiers are assigned as primary keys. A fact table is created containing
the measures as well as the foreign keys which associate the fact table to the dimensions.

Figure II.9: Final schema

Figure II.10: Implementation result

6 Experimental Assessment for Measure Detection
The process of our experiments for measure detection is shown in Fig. II.11. We carry
out experiments with various datasets and algorithms to validate the proposed measure
detection approach. The objectives of the experiments include: (1) validating the effec-
tiveness of the proposed ML-based approach for measure detection, (2) validating the

43

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 44

effectiveness of the different proposed feature categories, (3) validating the generality of
the trained mode with the proposed features and (4) analysing the importance of the
proposed features in each algorithms.

6.1 Experimental Conditions

Figure II.11: Experiment overview

6.1.1 Technical Environment

Our experiments are conducted on an Intel(R) Core(TM) i5-10210U 1.60 GHz CPU with
16 GB RAM. The programming language that we apply is Python 3.7. This is also the
technical environment for the other experiments in this manuscript.

6.1.2 Datasets

We use 9 datasets in our experiments, The objective of employing data coming from
different sources is to guarantee that our datasets cover different domains, topics and
languages so that the result is more convincing. The datasets come from sources including
the governmental open data sites of France (FR)1, Canada (CA)2, UK (UK)3 and US
(US)4, the French Development Agency (AFD)5, the New Zealand’s official data agency
(NZ)6, the American Center for Disease Control and Prevention (CDC)7, the World

1https://www.data.gouv.fr
2https://open.canada.ca
3https://data.gov.uk
4https://www.data.gov
5https://opendata.afd.fr
6https://www.stats.govt.nz
7https://data.cdc.gov

44

https://www.data.gouv.fr
https://open.canada.ca
https://data.gov.uk
https://www.data.gov
https://opendata.afd.fr
https://www.stats.govt.nz
https://data.cdc.gov

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 45

Bank (WB)8 and Kaggle (KG)9.

The datasets that we choose contain at least one numerical column. In our corpus,
there are files that are used for other specific purpose, e.g., machine learning, which are
not suitable to DW creation. We discard them. There are also files with very poor data
quality or completely lacking the information to understand the semantic meaning of
columns, which makes it difficult to tell whether a column can be a measure. We also
discard such files.

Each dataset contains numerous tables with numerical columns on which features are
extracted to feed the algorithms. Data are classified into five domains including Economy
(ECO), Health (HLT), Government (GOV), Environment (ENV) and Society (SOC).
Each domain includes a different number of files (Table II.2). Eventually, the languages
used in data sources differ, i.e., files from AFD and FR are in French while the others
are in English. The number of the CSV files in the datasets is 346 and there are 3524
columns including 1382 numerical columns. There are 900 numerical columns that can
be considered as ground truth measures.

Table II.2: Number of files by domains

Domain ECO HLT GOV ENV SOC
File Number 143 57 80 28 38

Table II.3 shows information about each data source and all data sources (Total),
including the number of files (Nf), the number of numerical columns (Nc), the number of
measures (Nm) and the ratio of number of measures by the number of numerical columns
(Rm). Figures in brackets are the minima and maxima. The original datasets can be
found in our github10.

For each dataset, we compute all our features for each numerical column, and label
them to build the training and test sets. Empty values in columns are ignored.

6.1.3 Baseline Methods

Numerical Typology-Based Method (TP) In a previous work, we propose to select
measures with respect to the type of numerical attributes (YANG, Y. et al., 2020).
Numerical data may be classified into nominal data, ordinal data, intervals and ratios
(Alobaid et al., 2019).

Nominal data are labels composed of digits which are used instead of names to identify
things. Ordinal data implies an order among a set of elements but with no regard to the
difference between the elements. Interval is used to denote the increase or expansion in
some way on a scale such as the temperature. Ratio is the scale that we use to measure

8https://data.worldbank.org
9https://www.kaggle.com

10https://github.com/Implementation111/measure-detection

45

https://data.worldbank.org
https://www.kaggle.com
https://github.com/Implementation111/measure-detection

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 46

Table II.3: Data source characteristics

Data Source Nf Nc Rgc Nnc Rgnc Rtnc Nm Rgm Rtm L
AFD 7 82 (6, 18) 15 (1, 14) 18.29 8 (0, 3) 53.33 Fr
CDC 28 247 (3, 30) 100 (1, 12) 40.49 70 (1, 6) 70.00 En
CA 23 285 (5, 29) 156 (2, 28) 54.74 113 (0, 28) 72.44 En
FR 30 410 (2, 54) 123 (1, 38) 30.00 39 (0, 7) 31.71 Fr
KG 106 1041 (2, 29) 394 (1, 17) 37.85 271 (0, 10) 68.78 En
NZ 22 162 (3, 15) 62 (1, 13) 38.27 43 (0, 12) 69.35 En
UK 42 390 (2, 39) 137 (1, 9) 35.13 99 (0, 8) 72.26 En
US 71 714 (2, 28) 311 (1, 20) 43.56 194 (0, 18) 62.38 En
WB 17 193 (5, 26) 84 (1, 18) 43.52 63 (0, 13) 75.00 En

Total 346 3524 (2, 54) 1382 (1, 38) 39.22 900 (0, 28) 65.12 En

things and which contain a real zero like the number of students. Among all these kinds
of numerical data, the interval and ratio type is most likely to be measures.

Algorithms are proposed to detect the different numerical type (Alobaid et al., 2019).
So we implement these algorithms and apply them on each numerical column to get its
numerical type. Then we choose the columns of interval and ratio types to be measures.

Functional Dependency-Based Method (FDB) As we already mentioned, in ex-
isting methods aimed at data with schemas, measures are selected in tables exhibiting
many-to-many relationships; in other words, columns that are functionally dependent on
dimension primary keys. With this idea in mind, we detect functional dependencies (FDs)
in tabular data and select as measures the numerical columns that are functionally de-
termined by several, other attributes. The FD detection algorithm that we use is HyFD
(Papenbrock and Naumann, 2016) as we explained in Section 5.1.

We take advantage of the Metanome toolbox (Papenbrock et al., 2015a), which is de-
veloped by the team of the HyFD designers and which integrate different FD detection
algorithms including HyFD. The tool is developed by Java and we extract the code con-
cerning HyFD. Then we integrate the Java code in our implementation Python code and
use an API to execute them to obtain the FDs. The extracted FDs are also used for
generating the values of feature severalfds.

6.1.4 Application of ML Algorithms

To validate the proposed machine learning-based solution and the proposed features, we
apply the following widely used Machine Learning (ML) classification algorithms (Sen
et al., 2020):

• a random forest classifier (RF),

• a support vector machine classifier with an Radial Basis Function (RBF) kernel
(SVM),

46

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 47

• a decision tree classifier based on the CART (Classification and Regression Trees)
algorithm (DT),

• a k-nearest neighbors classifier (KNN)

Deep learning models are not employed because they are more suitable for interpreting
images, sounds and texts (LeCun et al., 2015), while we analyse numerical columns.

We define the ground truth by analysing each dataset context according to its web-
site’s description, header semantics and metadata. We also uphold the criteria from
Definition 4.1. Since we are in the context of data-driven DW design without specific re-
quirement, we consider numerical columns that can be potential measures in all possible
cases.

6.2 Experimental Results

6.2.1 Algorithm Effectiveness

We run the two baseline methods from (Section 6.1.3) and train models with our features
with four ML algorithms (Section 6.1) on all datasets (Section 6.1). The ML algorithms
are run by pycaret 11 Python library where the hyperparameters are tuned automatically.
For the model generality and feauture importance experiments, we run ML algorithms
from the sklearn12 Python library.

We use three performance metrics to verify the effectiveness of different algorithms:
Recall (R), Precision (P) and F-score (F). Let Nmm and Nmn be the number of measures
predicted as measures and non-measures, respectively; and Nnm and Nnn the number of
non-measure predicted as non-measures and measures, respectively.

Then, R =
Nmm

Nmm + Nmn

, P =
Nmm

Nmm + Nnm

and F =
2× Precision×Recall

Precision + Recall
.

Table II.4 shows the resulting values of R, P and F where the results of ML algorithms
are obtained through a 10-fold cross validation by merging all datasets and randomly
split them into 10 folds. The distribution of the cross validation results is depicted in
Figure II.12.

Table II.4: Global results

Metric TP FDB RF SVM DT KNN
R(%) 80.05 75.43 96.64 94.77 94.08 90.16
P(%) 73.57 77.50 90.89 78.44 88.44 87.61
F(%) 76.67 76.45 93.65 85.76 91.12 88.78

We observe that RF exhibits the best F-score (94.82%) and the result is not more
11https://pycaret.org/
12https://scikit-learn.org

47

https://pycaret.org/
https://scikit-learn.org

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 48

Recall Precision F-measure
0.7

0.75

0.8

0.85

0.9

0.95

1

RF SVM DT KNN

Figure II.12: Cross validation distribution

dispersed than that of the other algorithms. Thus, RF shows the best performance on
the measure detection problem. We also observe that TP and FDB do not have a good
effectiveness when predicting measures, but FDB performs better than TP. TP’s bad
performance is due to

• interval and ratio numerical columns are not all measures, e.g., longitude and lati-
tude;

• numerical typology detection algorithms are not flexible enough to cope with real-
world data, because they are based on fixed rules.

Regarding FDB, a numerical column that is functionally determined by several other
columns may not always be a measure. For example, let us consider a table describing
sale facts with respect to customers and products, where sale amount is indeed a measure.
The customer ID is the customer dimension’s primary key, but the customer’s name and
email may uniquely identify a customer, and thus may functionally determine the age of
the customer, a numerical column that is not a measure.

Our ML-based measure detection method takes different types of features into account
and can thus better handle the above exceptions and achieve better results.

6.2.2 Feature Category Effectiveness

To verify the effectiveness of each feature category we propose, we test different com-
binations of feature categories with our RF-based method. We first test single feature
categories, combinations of two categories and then we compare the effectiveness of all
categories. The result is shown in Table II.5, where GE represents general features, ST
represents statistical features and IC represents inter-column features (Section 4.3). ST

48

6. EXPERIMENTAL ASSESSMENT FOR MEASURE DETECTION 49

Table II.5: Performance of feature categories and their combinations

ML Algorithms Metrics GE ST IC GE+ST GE+IC ST+IC ALL

RF
R(%) 88.10 94.27 92.68 95.30 93.67 91.93 96.64
P(%) 83.59 86.28 80.91 88.21 86.13 91.14 90.89
F(%) 85.69 90.01 86.37 91.57 89.67 91.50 93.65

SVM
R(%) 92.20 93.96 88.89 94.07 92.86 93.70 94.77
P(%) 74.45 76.80 75.47 76.85 76.90 76.71 78.44
F(%) 82.32 84.35 81.63 84.45 84.47 84.23 85.76

DT
R(%) 89.05 89.16 89.90 89.97 88.47 89.12 91.20
P(%) 78.53 86.24 83.62 89.22 88.26 87.15 89.17
F(%) 83.29 87.59 86.54 89.55 88.28 88.07 90.12

KNN
R(%) 84.13 91.95 92.07 85.56 92.57 92.08 90.16
P(%) 83.73 82.45 81.48 86.06 84.14 83.65 87.61
F(%) 83.82 86.90 86.42 85.68 88.11 87.59 88.78

exhibits the best individual contribution. Yet, we can clearly see that combining feature
categories achieves better performance in terms of recall, precision and F-score, than us-
ing single feature categories. Ultimately, combining all feature categories yields the best
performance. The results of applying other ML algorithms can be found in our github.

6.2.3 Model Generality

To verify that the trained model achieved with our RF-based method is generic, we train
data by excluding the datasets of one source and test on them. We also carry out the same
test by domain, i.e., economy (ECO), health (HLT), government (GOV), environment
(ENV) and society (SOC). The results are shown in Figure II.13, where the charts depict
the results by source and domain, respectively. By comparing with former results, the
difference of F-score ranges from -5.02% to 4.23% for the test with respect to the source
and from -3.17% to 3.36% for the test with respect to the domain. The trained model is
thus generic regardless of the source and data domains.

6.2.4 Feature Importance

To analyse our different features, we compute the permutation importance, i.e., the de-
crease in prediction accuracy when a feature is permuted (Fisher et al., 2019) of each
feature for all ML algorithms. Figure II.14 shows that the importance of a feature varies
with respect to the algorithm. For example, with SVM and KNN, the statistical fea-
tures are more important than others, while with RF and DT, the features bearing the
highest importance values are more equally distributed in each feature category. There
are also features that bear negative importance values with some algorithms, e.g., nu-
merical neighbor in algorithm DT, but not every time, while they always have positive
importance values with other algorithms. There is no feature that always bears zero or
negative importance values with one single algorithm, which means that all our features
have a contribution to the ML classifiers. With RF, which bears the best performance,

49

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 50

A
F

D
C

D
C

C
A

F
R

K
G

N
Z

U
K U
S

W
B

60
70
80
90

100

[%
]

A
F

D
C

D
C

C
A

F
R

K
G

N
Z

U
K U
S

W
B

A
F

D
C

D
C

C
A

F
R

K
G

N
Z

U
K U
S

W
B

E
C

O

H
LT

G
O

V

E
N

V

SO
C

60
70
80
90

100

Recall

[%
]

E
C

O

H
LT

G
O

V

E
N

V

SO
C

Precision

E
C

O

H
LT

G
O

V

E
N

V

SO
C

F-measure
Figure II.13: Performance with respect to source and domain with RF

the most important feature is the location ratio. By checking the CSV files, we observe
that most of the measures are situated at the last part of the file, while most of the
columns in the front part are descriptive, which probably explains the importance of the
location ratio.

7 Experimental Assessment for Dimension Detection
In order to validate the effectiveness and efficiency of our dimension detection algorithms,
we conduct experiments with different tests by applying various datasets.

7.1 Dataset

In our experiments, we use 8 datasets including 1 synthetic data Example containing the
same data as the example in this chapter and 5 real-world datasets. Among these real-
world datasets, 3 datasets come from Kaggle13 including Sales1, Sales2 which contain
sales data but with different information of different supermarkets and DevApp which
contains data about some application development projects; 2 datasets come from the
site of the World Bank14 including Countries containing various indicator data about
different countries and Covid containing data about the covid pandemic in different
countries.

Table II.6 shows the information of these datasets. The information includes the
number of columns after excluding the measures of each dataset (Nc), the number of rows
(Nr), the number of the dimensions (Nd) and hierarchies (Nh).

13https://www.kaggle.com/
14https://data.worldbank.org/

50

https://www.kaggle.com/
https://data.worldbank.org/

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 51

-0.02 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2

type

rpos

rneg

rzero

runique

sdn

avg

min

max

median

upquar

lowquar

coevar

rrange

loc

numcol

severalfds

neighnum

G
en

er
al

St
at

ist
ic

al
In

te
r-

co
lu

m
n

RF SVM DT KNN

Figure II.14: Feature importance

51

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 52

Table II.6: Dataset information

Dataset Nc Nr Nd Nh

Example 17 9 3 4
Sales1 16 9918 3 4
Sales2 8 794 2 3

DevApp 11 2752 2 3
Countries 4 84 1 1

Covid 12 128041 2 6

7.2 Metrics

To carry out the experiments, we first remove the measures for each file. We then execute
the dimension detection algorithms.

We analyse the data in the files and the descriptions in the sources to manually design
multidimensional schemas as the ground truth. To evaluate the effectiveness, we use the
metrics recall (R), precision (P) and F-score (F) defined as follow:

R =
{Detected} ∩ {True}

{True}
, P =

{Detected} ∩ {True}
{Detected}

and F =
2× Precision×Recall

Precision + Recall
,

Where {Detected} is the set of the detected elements and {True} is the set of the
true elements of ground truth. Here, the elements may be different, we evaluate the
effectiveness at three aspects containing six levels of elements:

• Dimension aspect: We verify the effectiveness for the detection of dimensions
by checking if we detect the correct dimensions and if they contain the correct
attributes.

– Dimension ID: We verify if we detect the correct dimensions by verifying the
dimension identifiers. So here, the elements are the dimension identifiers.

– Attribute: We verify for each detected dimension, if it contains the same at-
tributes as the ground truth dimension. So here, the elements are the attributes
of a dimension.

• Dimension attribute aspect: Then we verify if the attributes in the dimensions
are correctly distinguished as parameters and weak attributes.

– Parameter: We verify if we detect the correct parameters. So here, the
elements are the parameters.

– Weak attributes: We verify if we detect the correct weak attributes. So here,
the elements are the weak attributes.

• Relationship aspect: We also verify the relationships in dimensions including
the hierarchical relationships between parameters and the same level relationships

52

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 53

between a parameter and the corresponding weak attributes.

– Hierarchical relationship: We verify if we detect the correct hierarchical
relationships between the levels. So here, the elements are the binary relation-
ships between the levels. More precisely, we look at the binary relationships
between the parameters. However, there may be the case where the true pa-
rameter of a level is identified as a weak attribute, and its equivalent attribute
is identified as the parameter. In this case, we can regard the relationship
between this detected parameter and another parameter as the relationship
between the true parameter and another parameter since the distinction be-
tween parameters and weak attributes is evaluated by dimension attribute
aspect metrics.

– Same level relationship: We verify if we detect the correct potential same
level relationships. So here, the elements are the same level relationships.
For the detected binary relationships, we consider the equivalent attributes
as having the same level relationships. We also consider an attribute and its
neighboring determinant attributes which do not determine any other attribute
as having the same level relationships. We consider these potential same level
relationships instead of the truly detected same level attributes because the
same level attributes are detected based on (1) the same level relationships
and (2) the distinction of the parameters and weak attributes. However, the
distinction of the parameters and weak attributes is evaluated by dimension
attribute aspect metrics.

To evaluate the efficiency, we test the run time of the dimension detection process for
each dataset.

7.3 Experimental results and analysis

The ground truth schema and detected schema of each DW are shown in Appendix A.

7.3.1 Dimension aspect effectiveness

Table II.7 shows the results of the dimension aspect effectiveness. We can observe that
the precision, the recall and the F-score are all 100% with respect to the effectiveness
of the detection of dimension IDs and dimension attributes. Thus, our algorithm is able
to correctly detect all dimensions and is able to detect the correct attributes for each
dimension.

7.3.2 Dimension attribute aspect effectiveness

Table II.8 shows the results of the dimension attribute aspect effectiveness. For the
datasets Example, DevApp and Countries, the effectiveness metrics are all 100%,
which means that the parameters and weak attributes are correctly distinguished. For the

53

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 54

Table II.7: Dimension ID aspect results

Dataset Element Precision (%) Recall (%) F-score (%)

Example

Dimension ID 100.00 100.00 100.00
Attribute (D1) 100.00 100.00 100.00
Attribute (D2) 100.00 100.00 100.00
Attribute (D3) 100.00 100.00 100.00

Sales1 Dimension ID 100.00 100.00 100.00
Attribute (D1) 100.00 100.00 100.00

Sales2
Dimension ID 100.00 100.00 100.00
Attribute (D1) 100.00 100.00 100.00
Attribute (D2) 100.00 100.00 100.00
Attribute (D3) 100.00 100.00 100.00
Attribute (D4) 100.00 100.00 100.00
Attribute (D5) 100.00 100.00 100.00

DevApp
Dimension ID 100.00 100.00 100.00
Attribute (D1) 100.00 100.00 100.00

Countries Dimension ID 100.00 100.00 100.00
Attribute (D1) 100.00 100.00 100.00

Covid
Dimension ID 100.00 100.00 100.00
Attribute (D1) 100.00 100.00 100.00
Attribute (D2) 100.00 100.00 100.00

other two datasets whose parameters and weak attributes are not correctly distinguished,
we study the original data to find the reasons.

In the dataset Sales1, according to the domain knowledge, there may be several postal
codes for a city. Therefore, the attribute Postal Code should be a weak attribute of the
identifier Customer ID and City should be the neighboring higher parameter of Customer
ID in the geographical hierarchy. However, in this dataset, there is one postal code
value for a city, so the algorithm consider Postal Code and City as equivalent attributes.
Since Postal Code contains ”Code“, it is identified as the neighboring higher parameter
of Customer ID and City is identified as its weak attribute.

In the dataset Sales2, there is the same problem of Postal Code and City. Moreover,
the attribute Product name is supposed to be the weak attribute of the identifier Product
ID. However, there exists the functional dependency of Product Name→ SubCategory,
which makes it become a parameter in the hierarchy of category where it should not be.

In the dataset DevApp, the attribute Suffix is the type of road for Address, which
should be a weak attribute of the dimension identifier APNO. However, it is detected
as the highest level attribute and is a categorical data. It is thus wrongly detected as a
parameter.

In the dataset Covid, the attribute indicatordescription should be a weak attribute
of the identifier indicator. However, besides the functional dependency of indicator →

54

7. EXPERIMENTAL ASSESSMENT FOR DIMENSION DETECTION 55

indicatordescription, there is also a functional dependency of indicatordescription→
indicatortopic, which make it become a parameter in a hierarchy. In addition, the at-
tribute unitmeasure should be a weak attribute of the identifier indicator according to
the domain knowledge. But it is a categorical data and is thus identified as a parameter.

Table II.8: Dimension attribute aspect results

Dataset Element Precision (%) Recall (%) F-score (%)

Example Parameter 100.00 100.00 100.00
Weak attribute 100.00 100.00 100.00

Sales1 Parameter 83.33 100.00 90.91
Weak attribute 100.00 50.00 66.67

Sales2 Parameter 92.86 100.00 96.30
Weak attribute 100.00 66.67 80.00

DevApp Parameter 85.71 100.00 92.31
Weak attribute 100.00 80.00 88.89

Countries Parameter 100.00 100.00 100.00
Weak attribute 100.00 100.00 100.00

Covid Parameter 77.78 100.00 87.50
Weak attribute 100.00 60.00 75.00

7.3.3 Relationship aspect effectiveness

Table II.9 shows the results of the relationship aspect effectiveness. For the datasets
Example and Countries, the effectiveness metrics are all 100%, which means that the
hierarchical relationships and the same level relationships are correctly detected. For the
other datasets, the wrongly detected relationships are generated due to the same reason
as explained for the dimension attribute aspect effectiveness.

Table II.9: Relationship aspect results

Dataset Element Precision (%) Recall (%) F-score (%)

Example Hierarchical 100.00 100.00 100.00
Same level 100.00 100.00 100.00

Sales1 Hierarchical 100.00 100.00 100.00
Same level 50.00 66.67 57.14

Sales2 Hierarchical 87.50 100.00 93.33
Same level 66.67 80.00 72.73

DevApp Hierarchical 83.33 100.00 90.91
Same level 100.00 83.33 90.91

Countries Hierarchical 100.00 100.00 100.00
Same level 100.00 100.00 100.00

Covid Hierarchical 57.14 80.00 66.67
Same level 100.00 75.00 85.71

55

8. CONCLUSION 56

Table II.10: Run time results

Dataset Example Sales1 Sales2 DevApp Countries Covid
Run Time (s) 1.26 0.93 40.67 102.19 0.05 105.07

7.3.4 Efficiency

Table II.10 shows the run time of the dimension detection for each dataset. We can see
that the run time for the applied datasets ranges from 0.05s to 105.07s, which is enough
efficient for the users.

8 Conclusion
Tabular data do not have specific schema and particular layout, making it hard to perform
data-driven automatic DW design. However, by analysing the literature, we observed that
few approaches consider tabular data without schema and their solutions have several
limits. Thus in this chapter, we proposed an automatic DW design process from tabular
data. For tabular data of complex structure, their structure can be identified or can
be transformed to simple structure tabular data by existing algorithms. Therefore, in
our process, we mainly focus on tabular data of simple structure. Our process includes
the machine learning-based measure detection, functional dependency-based dimension
detection and rule-based parameter and weak attribute distinction.

Our solution is able to treat the various challenges that we analysed. To solve the
challenges of measure detection, we proposed a machine learning-based method by defining
three categories of features for numerical columns. Compared to the other approaches
in the literature, which mostly simply select the numerical attributes as measures, the
advantage of our solution is that the training of machine learning models using these
features allows to capture some characteristics of measures. We carried out experiments
with numerous real-world csv tables coming from different sources and divers domains.
We applied four classical machine learning classifiers and two baseline approaches. From
the results, we observe that the machine learning classifiers applying the proposed features
outperforms the baseline approaches. The random forest algorithm performs best among
all ML algorithms which reaches a F-score of 93.65% and has an augmentation of F-score of
up to 17.2% with respect to the baseline methods, which means that it is able to correctly
detect more measure. The model generality with respect to different sources and domains
was also verified in our experiments. The results show that the model trained with our
proposed features also works well for the data having different source and domain from
the training data. Moreover, in our experiments, the feature importance of each feature
in each ML algorithm was also analysed. The results help us to understand the features
and explain the trained model. The measure detection approach is validated through a
paper in the international conference Dawak2022 (YANG, Y. et al., 2022a).

To solve the challenges of dimension detection, we proposed a functional dependency-

56

8. CONCLUSION 57

based approach for building hierarchies. The approach filters the detected FDs and forms
FD trees to discover hierarchies. Most approaches from the literature build hierarchies
based on one-to-many cardinality relationships for data with schema and based on hier-
archical clustering for those without schema. We rely on functional dependencies since
the discovery of functional dependencies can help us find one-to-many relationships to
derive hierarchies for tabular data without schema. Compared to the hierarchical cluster-
ing, the advantage of relying on functional dependencies is that they disclose the indeed
hierarchical relationships detected and validated by the instances, while hierarchical clus-
tering can only find semantically correct hierarchical relationships, but which may not
be correct at the cardinality level. The distinction of parameters and weak attributes
received little attention in the literature and is also considered in our process. The only
solution mentioned in the literature is to assign primary keys as parameters, which is only
suitable for relational databases. In our context of tabular data, we proposed a rule-based
solution dealing with different cases (equivalent attributes and highest-granularity level
parameters) and based on the syntax, semantic and data type of data. We conducted
experiments by applying one synthetic dataset and five real-world datasets. We validated
our approach in terms of effectiveness and efficiency. The effectiveness is evaluated at
three aspects containing six levels. The dimension aspect gets 100% for all metrics, while
the dimension attribute and relationship aspects have some wrongly detected elements.
By analysing the results and datasets, we summarized two main reasons. The first reason
is there may be particular cases at the instance level so that the functional dependencies
discovered from data may not always conform to the actual hierarchical relationships in
the real-world. The second reason is that there are also some particular cases for the dis-
tinction of parameter and weak attribute that our rules cannot all cover. The efficiency
is validated by the run time and our approach is proved to be efficient. This dimen-
sion detection approach is validated through a paper in the national conference EDA2020
(YANG, Y. et al., 2020)

It is to be noted that in this chapter, we only discussed the automatic DW design from
one single source. However, in real-world cases, a user may have several sources which
have some common information. We should thus create a DW for each one of them and
then merge them together to carry out consolidated analyses.

57

Chapter III

Data Warehouse Merging

Contents
1 Introduction . 59

1.1 Context . 59
1.2 Challenges of DW merging . 59
1.3 Our Process Overview . 60
1.4 Outline . 60

2 Related Work . 61
2.1 Multidimensional Schema Matching 62
2.2 Multidimensional Schema and Instance Merging 62
2.3 Analysis of Merging Approaches . 64

3 Level Merging . 65
3.1 Record of Matched Parameters . 65
3.2 Merging of Weak Attributes . 65

4 Hierarchy Merging . 66
4.1 Generation of Sub-hierarchy Pairs 67
4.2 Merging of Sub-hierarchies . 69
4.3 Generation of Final Hierarchy Set 70

5 Dimension Merging . 73
5.1 Schema Merging . 73
5.2 Instance Merging . 74

6 Star Schema Merging . 76
7 Experimental Assessment . 80

7.1 Datasets . 80
7.2 DW Generation Strategy . 80
7.3 Star Schema Generation . 81
7.4 Constellation Schema Generation 84

8 Conclusion . 88

58

1. INTRODUCTION 59

1 Introduction

1.1 Context

Data warehouse merging is the process of merging DWs having common information into
a unified DW to enable the user to analyse the consolidated data. When we have multiple
sources, we can apply the proposed automatic DW design process to generate a DW
schema for each source. The implementation of the DWs can be carried out according
to the schemas. We can then merged the DWs having common information to analyse
data at more complete viewpoints. We do not first merge these different sources and
then generate a DW because of two reasons. First, the merged table may contain too
many attributes, which may give rise to functional dependencies that do not semantically
correct. Second, too many missing values may be generated when merging the sources,
which may impact the results of the detected functional dependencies (Papenbrock and
Naumann, 2016).

Moreover, the DW merging is also helpful in general case. For example, in a company,
various independent DWs containing some common elements and data may be built for
different geographical regions or functional departments. There may also exist common el-
ements and data between the DWs of different companies. The ability to accurately merge
diverse DWs into one integrated DW is therefore considered as a major issue (Kwakye
et al., 2013). Multidimensional DWs merging constitutes a promising solution to have
more opportunities of analysing the consistent data coming from these different sources.
Automating the DW merging process can facilitate the tasks of the DW designers. It
can make the DWs merged more efficiently for decision-makers. Companies can thus gain
benefits at both time and cost aspects. As a result, it is necessary to propose an automatic
DW merging process.

1.2 Challenges of DW merging

Merging two multidimensional DWs is a complex task which should answer some problems.
The first consists in identifying the common basic components (dimension attributes,
measures) and defining semantic relationships between these components. The second is to
merge schemas which have common components. But merging two multidimensional DWs
is difficult because two dimensions can (1) be completely identical in terms of schema but
not necessarily of instances, (2) have common hierarchies or have sub-parts of hierarchies
in common without necessarily sharing common instances. Likewise, two schemas can
deal with the same fact or different facts and even if they deal with the same, they may
or may not have measures in common without necessarily having common data.

Moreover, the final merged DW should respect the constraints of the original multi-
dimensional elements especially the hierarchical relationships between attributes. When
we merge two dimensions having matched attributes of two DWs, the final DW should
preserve all the partial orders of the original hierarchies (i.e. the binary relationships of

59

1. INTRODUCTION 60

aggregation between parameters) of these two dimensions. It’s also necessary to integrate
all the original instances of the DWs, which may cause the generation of empty values in
the final DW. Thus, the merging approach should be able to allow the proper analysis
with empty values.

Furthermore, the original DWs may have common or different dimensions. Therefore,
merged DW may have a star or constellation schema.

1.3 Our Process Overview

As a result, we define in this chapter an automatic approach to merge two multidimen-
sional DWs especially modelled by star schema (i.e. schema containing one fact) at both
schema and instance levels, which (1) generates an integrated DW conforming to the
multidimensional structures of the original DWs, (2) integrates the original instances into
the integrated DW and is compatible with empty values generated during the merging
process, (3) generates a star or constellation schema in different cases.

Merging two DWs implies matching steps and steps dedicated to the merging of di-
mensions and facts. The matching of parameters and measures are based on syntactic
and semantic similarities (Meng et al., 2013)(Elavarasi et al., 2014) for the attribute or
measure names. Since the matching is intensively studied in the literature, we focus in
this paper only on the merging steps like illustrated in Fig III.1. A DW is composed of
dimensions and facts, a dimension contains different hierarchies where there are different
levels. So in regard to the merging, first, we define an algorithm for merging a matched
level of two hierarchies at the schema level. Second, we propose an algorithm of hierarchy
merging by applying the level merging at the schema level. Third, we define an algorithm
of dimension merging concerning both instance and schema levels and by applying the
hierarchy merging. Finally, we define an algorithm of star schema merging which may is
based on dimension merging and which generate a star schema or a constellation schema
and which merge the fact instances.

1.4 Outline

The remainder of this chapter is organized as follows. In Section 2, we review the related
works about the matching and merging of DW. In Section 3, 4, 5 and 6, we explain our
proposed automatic approach to merge different DWs including respectively the merging
of hierarchy levels, hierarchies, dimensions and facts by giving algorithms concerning
both the schema and instance levels. In Section 7, we present our experiments in order
to validate our approach. Finally, in Section 8, we conclude this chapter.

60

2. RELATED WORK 61

Figure III.1: Overview of the merging process

2 Related Work
The DW merging process concerns matching tasks and merging tasks. The matching task
consists in generating correspondences between similar elements (dimension attributes
and fact measures) of schemas (Bernstein et al., 2011a) to retrieve links of two DWs.
The merging task is more complex. The merging should be carried out at two levels:
the schema level and the instance level. Schema merging is the process of integrating
several schemas into a common, unified schema (Quix et al., 2007). Thus DW schema
merging aims at generating a merged unified multidimensional schema. The instance
level merging treats the integration and the handling of the instances. In the following of
the chapter, “matching” will be used to designate schema matching without considering
instances, while “merging” will be used to refer to the complete merging of schema and
the corresponding instances. The general data matching (Rahm and Bernstein, 2001;
Bernstein et al., 2011b; Dorneles et al., 2011) and merging (Lin and Mendelzon, 1998;
Pottinger and Bernstein, 2003; Bleiholder and Naumann, 2009) techniques are already
widely researched in the literature. However, these matching or merging processes are
mainly dedicated to the relational database, XML and flat data which are different from
DW. They do not have multidimensional structure and constraints, such as the hierarchies
in the DW. So we focus on the specific DW matching and merging. The approaches with
respect to the DW matching and merging are as follows.

61

2. RELATED WORK 62

2.1 Multidimensional Schema Matching

(Bergamaschi et al., 2011) propose an approach for matching aggregation levels of DW
dimensions. Their technique is based on the fact that the cardinality ratio of two aggre-
gation levels which are in a same hierarchy is nearly always the same no matter in which
dimension they are. So they create and manipulate the cardinality matrix for different
dimensions to discover the matched attributes. However, this approach only consider the
dimension level matching.

A process to automatically match multidimensional schemas is proposed in (Banek
et al., 2007). They match two multidimensional schemas by evaluating the semantic
similarity of the multidimensional component names. For attributes and measures, they
also compare the data type. They use the selection metric of bipartite graph to determine
the mapping choice and define rules aiming at preserving the partial orders of hierarchies
for the mapping of hierarchies. (Riazati and Thom, 2011) aim to match star schemas by
proposing a new representation model of star schema. The model is described by UML
and it adds supplementary metadata inferred from the relational schema. Then existing
matching systems can be used to match the schemas. In (Elamin et al., 2018), the authors
propose an approach for multidimensional schema matching in the context of matching a
set of star schemas generated from business requirement and another one generated from
the data sources. They use semantic similarity based on Wordnet to find the matched
fact and dimension names. The DW designer will intervene to check the set of common
facts and manually match the unmatched elements in the other sets.

To summarize, these approaches match multidimensional schemas based on the car-
dinality ratio, similarity of multidimensional elements or metadata. However, the car-
dinality based approach is not reliable because (1) to have the similar cardinality ratio
between same real-world entities, we should make sure that there are enough categories
of the entities and (2) not all pairs of real-world entities have fix cardinality ratio. So the
typical similarity-based matching should be used. It is applied in most of the matching
systems and is well studied. We thus focus on the merging of multidimensional schemas
and instances.

2.2 Multidimensional Schema and Instance Merging

The merging part directs at merging multidimensional DW schemas into one consolidated
schema and merging the instances together. The following approaches concern multidi-
mensional schema and instance merging.

2.2.1 Feki et al. (2005)

In this paper, an approach for automatic multidimensional schema merging is proposed.
The approach is composed of two phases: (1) transforming multidimensional schemes
into UML class diagrams, and (2) merging the UML class diagrams. They define several

62

2. RELATED WORK 63

rules to explain how to translate each element of a multidimensional schema into an UML
class diagram element. Then for the merging of the classes in the UML class diagrams,
they propose two linguistic criteria. The first one is based on the class name comparison,
they propose four types of relations including equivalence, generalization, composition
and variation. The classes’ name should be the first three types to be able to be merged.
The second criterion is based on the ratio of the common attributes between classes, the
classes should have the attribute relationship of equivalent, inclusion or strong intersection
to be merged. Finally the classes which satisfy these two types of criteria can be merged
into one class.

2.2.2 Torlone (2008)

In (Torlone, 2008), two approaches for merging heterogeneous DWs are proposed. The first
one is called “loosely coupled approach” which aims to select shared data between sources.
Dimensions having common attributes are merged together and only the intersection
of these dimensions are reserved. The other is called “tightly couple approach” which
combines the data of different sources by taking the union of the matched dimensions to
merge two DWs. The common attributes are merged together, the hierarchies remain the
same as the original ones. They do not merge the hierarchies by creating new ones. The
instance merging of the two approaches is realized by a d-chase procedure.

2.2.3 Kwakye et al. (2013)

An approach of DW merging at the schema and instance levels is proposed in this paper.
They match attributes based on the lexical similarity of schema names and instances
and by considering the schema data types and constraints. Having the mapping corre-
spondences, dimensions or facts having the matched attributes are merged together with
matched attributes merged together. The instance data are then populated by consider-
ing some conflicts. Solutions are also given, such as creating new surrogate keys for the
identifier conflicts.

2.2.4 Olaru and Vincini (2014)

In this paper, an approach for merging multidimensional dimensions is proposed. The
merging of hierarchies is based on the cardinality ratio between different dimension levels.
They suppose that the cardinality ratio between same real-world concepts is approach.
Thus they model hierarchies as directed labeled graphs and create a connectivity matrix
whose values are cardinality ratios to find equivalent levels as well as drill-down and roll-
up relationships of the levels to merge dimensions. The merging at the instance level is
realized by clustering the data based on their semantic and syntactic similarities.

63

2. RELATED WORK 64

2.3 Analysis of Merging Approaches

Table III.1 shows the comparison of the different DW merging approaches. We compare
these approaches in three aspects: merging level, schema type and considered multidi-
mensional element.

2.3.1 Merging Level

Regarding the merging level aspect, we analyse whether the approaches consider the
merging at both schema and instance levels or at only one level. We can see that (Feki
et al., 2005) merge DWs at only schema level while the other approaches counter both
schema and instance levels.

2.3.2 Schema Type

Regarding the schema type aspect, we compare the input and output schema type of
each approach. We can observe that the input schema of the four approaches are all
star schema except that (Olaru and Vincini, 2014) only focus on the dimensions. So
the output of (Olaru and Vincini, 2014) is also star schemas with merged dimensions.
(Feki et al., 2005) obtain a UML class diagram as output since they transform the star
schemas into UML class diagrams for the merging. However, the UML representation is
not an universal model of star schema and it should be retransformed into a star schema.
The outputs of (Torlone, 2008) and (Kwakye et al., 2013) are respectively a constellation
schema and a star schema. However, the merged output schema may not always be one
form, it may be a constellation or a star schema according to the link between the original
facts and dimensions.

2.3.3 Multidimensional Element

Regarding the multidimensional element aspect, we evaluate if each approach takes into
account the merging of all possible multidimensional elements including fact, dimension,
hierarchy and weak attribute. Only (Feki et al., 2005) consider all these elements, since
they all can be represented in the UML class diagrams. None of the other three approaches
consider the merging of weak attributes. (Torlone, 2008) and (Olaru and Vincini, 2014) do
not consider the merging of fact tables and only concern about dimensions. The hierarchy
merging is a tough task as we mentioned in Section 1.1. The approach of (Kwakye et al.,
2013) does not include the hierarchy merging. In (Feki et al., 2005) and (Torlone, 2008),
only equivalent levels are merged together, but they do not consider the merging of the
other levels by detecting their possible hierarchical relationships. (Olaru and Vincini,
2014) use cardinality ratio for the hierarchy merging which we do not believe reliable as
we argued in Section 2.1.

64

3. LEVEL MERGING 65

Table III.1: Comparison of different approaches
Merging Level Schema Type Mutidimensional Element

Schema Instance Input Output Fact Dimension Hierarchy Weak
Attribute

Feki et al. (2005) ✓ - Star
schemas

UML class
diagram ✓ ✓ ✓ ✓

Torlone (2008) ✓ ✓
Star

schemas
Constellation

schema - ✓ ✓ -

Kwakye et al. (2013) ✓ ✓
Star

schemas
Star

schema ✓ ✓ - -

Olaru and Vincini (2014) ✓ ✓ Star schema dimensions Star schema dimensions - ✓ ✓ -

2.3.4 Analysis Conclusion

After analysing these approaches, we observe that all the of approaches have the prob-
lem of being incomplete in term of the merging level or in terms of the multidimensional
elements. None of the approaches proposes an appropriate hierarchy merging technique.
Moreover, none of the approaches generates an output schema may be a star or constel-
lation schema.

3 Level Merging
We first discuss about the level merging of two hierarchies at the schema level. When two
parameters of two hierarchies are matched, they can be merged into one parameter. They
also represent the same granularity level. So we should then merge their weak attributes.
Algo. 4 describes the level merging process. We first define an ordered set of map which
will save the matched parameters and the merged weak attributes of the merged level
(line1). Then we loop through each parameters of the two hierarchies (line2−3) and
process two steps composed of the record of matched parameters and the merging of
weak attributes.

3.1 Record of Matched Parameters

The first step consists in finding the matched parameters of the two hierarchies (line4)
and record the matched parameters of H1 and H2 into the map (line6−7). The matched
parameters will later be used for the hierarchy merging.

3.2 Merging of Weak Attributes

For the merged parameters, they may contain different weak attributes. So we have to
merge their weak attributes. The merging of the weak attributes is to take their union:
each two matched weak attributes are merged together into one weak attribute; the merged
weak attributes and the other non-matched weak attributes constitute the merged weak
attribute set of the merged parameter (line7). It is then added into the map (line8). We
can thus update the ordered set of map M (line9).

Example 3.1. In Fig. III.10, when merging H1 and H3, for the matched parameters
H1.IdCus and H3.IdCus, they can be merged together. For the weak attributes {NameCus,

65

4. HIERARCHY MERGING 66

Algorithm 4: mergeLevel(H1, H2)
Input : Two hierarchies to be merged H1, H2
Output: An ordered set of map containing of matched parameters and merged

weak attributes M
1 M ← ∅;
2 for pH1

i ∈ ParamH1 do
3 for pH2

j ∈ ParamH1 do
4 if pH1

i ≃ pH2
j then

5 mapM [′p′
1] = pH1

i ;
6 mapM [′p′

2] = pH2
j ;

7 Weak12 ← WeakH1 [pH1
i] ∪WeakH2 [pH2

j];
8 mapM [′weak′] = Weak12;
9 M ←M + mapM ;

10 return M ;

Age, Email} of H1 and {NameCus, Phone} of H3, we have H1.NameCus ≃ H3.NameCus,
they are merged into one weak attribute. So we can get the merged weak attribute set:
{NameCus, Age, Email, Phone}.

The merging example with weak attributes at the schema and instance level are only
shown in Fig. III.8 and in Fig. III.10. As we already know how to merge weak attributes
of matched parameters, in the following algorithms and examples, for a hierarchy level,
we only keep the parameter for the simplicity.

4 Hierarchy Merging
In this section, we define the schema merging process of two hierarchies coming from
two different dimensions. There are two challenges in this process. The first challenge is
that we should preserve the partial orders of the parameters. The second one is how to
decide the partial orders of the parameters coming from different original hierarchies in
the merged hierarchies. These challenges are solved in algorithm 5 which is achieved by
3 steps: generation of sub-hierarchy pairs, merging of sub-hierarchy pairs and generation
of final hierarchy set.

A sub-hierarchy is a continuous sub-part of a hierarchy which we call the parent hierar-
chy of the sub-hierarchy. This concept will be used in our algorithm. A sub-hierarchy has
the same elements as a hierarchy, but its root parameter is not considered as an identifier.
All parameters of a sub-hierarchy are contained in its parent hierarchy and have the same
partial orders than those in the parent hierarchy. By “continuous”, we mean that in the
parameter set of the parent hierarchy of a sub-hierarchy, between the lowest- and highest-
granularity level parameters of the sub-hierarchy, there is no parameter which is in the
parent hierarchy but not in the sub-hierarchy. We give the following formal definition for

66

4. HIERARCHY MERGING 67

sub-hierarchy.

Definition 4.1 (Sub-hierarchy). A sub-hierarchy SH of a hierarchy H ∈ HD in a di-
mension D is defined as SH = Sub(H, pSH

1 , pSH
v) =< pSH

1 , ..., pSH
v > which is an ordered

set of parameters, ∀k ∈ [1...v], pSH
k ∈ ParamH . According to the relationship between a

sub-hierarchy and its parent hierarchy, we have:

1. ∀pSH
1 , pSH

2 ∈ SH, pSH
1 ⪯SH pSH

2 ⇒ pSH
1 , pSH

2 ∈ ParamH ∧ pSH
1 ⪯H pSH

2 ,

2. ∀pH
1 , pH

2 , pH
3 ∈ ParamH , pH

1 ⪯H pH
2 ∧ pH

2 ⪯H pH
3 ∧ pH

1 , pH
3 ∈ SH ⇒ pH

2 ∈ SH.

In Algo. 5, we first call the algorithm of level merging to find the matched parameters
(line1). If there is no matched parameter (line2), the merged results will be two hierarchy
sets containing respectively the two original hierarchies (line3−5). In the case where there
are matched parameters, we can carry out the merging of the two hierarchies. We then
explain each step of the hierarchy merging.

4.1 Generation of Sub-hierarchy Pairs

The algorithm generates pairs containing 2 sub-hierarchies (SH1 and SH2) of the original
hierarchies whose lowest and highest level parameters are adjacent in the ordered set
M that we obtain (line12−14). The last parameters of the two hierarchies are the last
parameters of the last sub-hierarchy pair. However, if they are not matched, they are not
added into M so that we are not able to create the last sub-hierarchy pair. So in this
case where the last parameters of the two hierarchies do not match, they are add into M

(line8−11).

Example 4.1. In Figure III.2a, we have two hierarchies H1 and H2, and H1.IdCus ≃
H2.IdCus, H1.City ≃ H2.City, H1.Country ≃ H2.Country. So for the first sub-hierarchy
pair, the first parameter of SH1

1 and SH1
2 is IdCus and their last parameter is City, thus

we have: SH1
1 =< IdCus, City >, SH1

2 =< IdCus, City >. In the second sub-hierarchy
pair, we get the sub-hierarchy of H1 from City to Country : SH2

1 =< City, Region, Country >,
and the sub-hierarchy of H2 from City to Country : SH2

2 =< City, Country >. In Fig-
ure III.2b, we also have the hierarchy H1, and we have another hierarchy H3. The matched
parameters are H1.IdCus ≃ H3.IdCus, H1.Region ≃ H3.Region and H1.Country ≃
H3.Country. So we get the first parameter pair Sh1

1 =< IdCus, City, Region >, SH1
3 =<

IdCus, Deparment, Region > and the second parameter pair SH2
1 =< Region, Country >,

SH2
3 =< Region, Country >. The last parameters of H1 and H3 do not match, <

Country, Continent > is thus added into the matched parameter pair M of the algorithm
so that the last sub-hierarchies of H1 and H3 are SH3

1 =< Country > and SH3
3 =<

Country, Continent >.

67

4. HIERARCHY MERGING 68

Algorithm 5: mergeHierarchies(H1, H2)
Input : Two hierarchies to be merged H1, H2
Output: A set of merged hierarchies Hm or two sets of merged hierarchies Hm1

and Hm2
1 M ← mergeLevels(H1, H2);
2 if M = ∅ then
3 Hm1 ← {H1};
4 Hm2 ← {H2};
5 return H12, H21

6 else
7 Hm ← ∅;
8 mapMlast[′p′

1] = ParamH1 [|ParamH1 | − 1];
9 mapMlast[′p′

2] = ParamH2 [|ParamH2 | − 1];
10 if mapMlast[′p′

1] ̸= mapMlast[′p′
2] then

11 M ←M + mapMlast;
12 for i = 1 to |M | − 1 do
13 SH i

1 ← Sub(H1, [M [i− 1][′p′
1], M [i][′p′

1]]);
14 SH i

2 ← Sub(H2, [M [i− 1][′p′
2], M [i][′p′

2]]);
15 if SH i

1 ⊆ SH i
2 then

16 SH i
12 ← {SH i

2};
17 else if SH i

2 ⊆ SH i
1 then

18 SH i
12 ← {SH i

1};
/* FD(SHi

1, SHi
2) returns FDs of the parameters of SHi

1, SHi
2 */

19 else if FD(SH i
1, SH i

2) ̸= FD(SH i
1) ∪ FD(SH i

2) then
20 SH i

12 ← ∅;
21 for SHa ∈ getAllHierarchies(FD(SH i

1, SH i
2)) do

22 SH i
12 ← SH i

12 + SHa;

23 else
24 SH i

12 ← {SH1, SH2};
25 Hm ← {Ha.extend(SHb) : Ha ∈ Hm, SHb ∈ SH i

12};
26 if idD1 ≃ idD2 then
27 Hm ← Hm ∪ {H1, H2};
28 return Hm

29 else
30 SH0

1 ← Sub(H1, pH1
1 , M [0][′p′

1]);
31 SH0

2 ← Sub(H2, pH2
1 , M [0][′p′

2]);
32 Hm1 ← {SH0

1 .extend(Hb) : Hb ∈ Hm} ∪ {H1};
33 Hm2 ← {SH0

2 .extend(Hb) : Hb ∈ Hm} ∪ {H2};
34 return Hm1, Hm2

68

4. HIERARCHY MERGING 69

(a) (b)

Figure III.2: Example of generation of sub-hierarchy pairs

4.2 Merging of Sub-hierarchies

We then merge each sub-hierarchy pair to get a set of merged sub-hierarchies and combine
each of these sub-hierarchy sets to get a set of merged hierarchies (line15−25). The matched
parameters will be merged into one parameter, so it’s the unmatched parameters that we
should deal with. We have 2 cases in terms of the unmatched parameters.

First Case In the sub-hierarchy pair, if one of the sub-hierarchies has no unmatched
parameter, we obtain a sub-hierarchy set containing one sub-hierarchy whose parameter
set is the same as the other sub-hierarchy (line15−18).

Example 4.2. For the first parameter pair SH2
1 and SH2

2 of H1 and H2 in Fig. III.2a.
we see that SH2

2 does not have any unmatched parameter, so the obtained sub-hierarchy
set contains one sub-hierarchy whose parameter set is the same as SH2

1 which is SH2
12 =<

City, Region, Country >.

Figure III.3: Example of hierarchy merging

Second Case The second case is that both two sub-hierarchies have unmatched pa-
rameters (line19−25). We then see if these unmatched parameters can be merged into

69

4. HIERARCHY MERGING 70

one or several hierarchies and discover their partial orders. Our solution is also based on
the functional dependencies (FDs) of these parameters. To be able to detect FDs of the
parameters of the two sub-hierarchies, we should make sure that there are intersections
between the instances of these two sub-hierarchies which means that they should have
same values on the root parameter of the sub-hierarchies. If it is able to detect FDs, and
we can discover new FDs apart from the original FDs (line19), we can apply the Algo. 2
in the Chapter II to get a set of sub-hierarchies (line20−22). If it is not possible to discover
FDs, the two sub-hierarchies are impossible to be merged and we obtain a sub-hierarchy
set containing the two original sub-hierarchies (line23−24).

Example 4.3. For the first sub-hierarchy pair SH1
1 and SH1

2 of H1 and H2 in Fig. III.2b,
we suppose that their instances are like presented in Figure III.4. There is an unmatched
parameter City in SH1

1 and an unmatched parameter Department in SH1
3 . We have

to decide their partial order. So we take the intersection of their instance which is the
dashed framed part in Fig. III.4. By detecting FDs, we can find the relationship City →
Departement. So we obtain SH1

12 =< IdCus, City, Department, Region >.

Figure III.4: Example of hierarchy instance

After the merging of each sub-hierarchy pair, we extend the final merged hierarchy set
by the new merged result (line25).

4.3 Generation of Final Hierarchy Set

The generation of the final hierarchy set is depicted in line26−34. The two original hier-
archies may have different instances, so there may be empty values in the instances of
the merged hierarchies. Some empty values can be replaced, which will be presented in

70

4. HIERARCHY MERGING 71

Figure III.5: Example of hierarchy merging

the next chapter. But not all empty values can be replaced. The empty values generate
incomplete hierarchies and make the analysis difficult. Inspired by the concept of struc-
tural repair (Ariyan and Bertossi, 2011), we also add the two original hierarchies into
the final hierarchy set. Then for a parameter which appears in different hierarchies, it
can be divided into different parameters in different hierarchies of the hierarchy set so
that each hierarchy is complete. Thus, for the multidimensional schema that we obtain,
we provide 2 forms: database form and analysis form like shown in Figure III.6. In the
database, the data of a parameter is actually stored in one column, so in the database
form, one parameter appears only once in the schema. However it can be regarded as
different parameters in the schema, so in the analysis form, one parameter can be marked
with different numbers if it is in different hierarchies. We use the analysis form to present
the merged schema in this paper to clearly present the completeness of the hierarchies.

For the generation of the final hierarchy set, we discuss 2 cases where the 2 hierarchies
have the matched root parameters which means their dimensions are the same analysis
axis and the opposite case which leads to 2 kinds of output results (one or two sets of
merged hierarchies).

First Case If the root parameters of the two original hierarchies match, we simply add
the two original hierarchies into the merged hierarchy set obtained in the previous step
to get one final merged hierarchy set to guarantee the completeness of the hierarchies.
(line26−28).

Example 4.4. For H1 and H2 in Fig. III.6, we also suppose that the instances are like
shown in Fig. III.4. In Example 4.3, we get SH1

12 =< IdCus, City, Department, Region >.
By the above defined sub-hierarchy merging rules, we can also get SH2

12 =< Region, Country >

and SH3
12 =< Country, Continent >. We combine these merged sub-hierarchies to obtain

the merged hierarchy H12 =< Code, City, Department, Region, Country, Continent >.
We add H12 into the hierarchy set Hm and then also add the original hierarchies H1 and
H2. Thus Hm is the final merged hierarchy set.

71

4. HIERARCHY MERGING 72

Figure III.6: Hierarchy merging example

Second Case If the root parameters of the two original hierarchies do not match, we
get two merged hierarchy sets instead of one. For each original hierarchy, the final merged
hierarchy set is the extension of the sub-hierarchy containing all the parameters which are
not included in any one of the sub-hierarchies created before with the merged hierarchy
set that we obtain, plus this original hierarchy itself (line30−34).

Example 4.5. In Fig. III.7, H1 is the same as the H1 in Example 4.4, and H2 is a
hierarchy which has a different root parameter from H1 and which has a parameter Region

matched with H1.Region. So in this example, the root parameters do not match. We thus
have SH1

1 =< Region, Country > and SH1
2 =< Region, Continent >. Then, we can

merge each sub-hierarchy pair and combine the results to get the merged sub-hierarchy
SH1

12 =< Region, Country, Continent >. For H1, the remaining part < IdCus, City >

is associated to it to get the merged hierarchy H12. We then also add the original hierarchy
H1 to get the merged hierarchy set Hm1 of containing H1 and H12. We do the same thing
for H2 and get the merged hierarchy set containing H2 and H21.

Figure III.7: Hierarchy merging example

72

5. DIMENSION MERGING 73

5 Dimension Merging
This section concerns the merging of two dimensions having matched parameters which is
realized by Algo. 6. We consider both the schema and instance levels for the merging of
dimensions. The schema merging is based on the merging of hierarchies. Concerning the
instances, we have 2 tasks: merging the instances and replacing the empty values which
we will discuss in Chapter IV.

Algorithm 6: mergeDimensions(D1, D2)
Input : Two dimensions D1, D2 to be merged
Output: One merged dimension D12 or two merged dimensions D12 and D21

1 if idD1 ≃ idD2 then
2 HD12 ← ∅;
3 for Hi ∈ HD1 do
4 for Hj ∈ HD2 do
5 HD12 ← HD12 ∪MergeHierarchies(Hi, Hj);

6 AD12 ← AD1 ∪ AD2 ;
7 ID12 ← ID1 ∪ ID2 ;
8 return D12

9 else
10 HD12 , HD21 , AD12 , AD21 ← ∅;
11 for Hi ∈ HD1 do
12 for Hj ∈ HD2 do
13 Hm1, Hm2 ← MergeHierarchies(Hi, Hj);
14 HD12 ← HD12 ∪Hm1;
15 HD21 ← HD21 ∪Hm2 ;

16 for Hu ∈ HD12 do
17 AD12 ← AD12 ∪ ParamHu ;
18 for Hv ∈ HD21 do
19 AD21 ← AD21 ∪ ParamHv ;
20 return D12, D21

5.1 Schema Merging

The root parameters of two original dimensions may be matched or unmatched. Thus we
discuss the schema merging for these two cases.

First Case If the root parameters of the two dimensions match, the algorithm generates
a merged dimension (line1−6). The hierarchy set of the merged dimension is the union
of the hierarchy sets generated by merging every 2 hierarchies of the original dimensions
(line1−8). The attribute set of the merged dimension is the union of the attribute sets of
the original dimensions (line6).

73

5. DIMENSION MERGING 74

Example 5.1. Given 2 original dimensions D1 and D2 in Figure III.8 and their instances
in Figure III.10, we can get the merged dimension schema D12 in Figure III.8. In D12,
H1 and H2 are the original hierarchies of D1, H3 and H4 are those of D2, H13 is a merged
hierarchy of H1 and H3, and H24 is a merged hierarchy of H2 and H4. We can thus get
HD12 = {H1, H2, H3, H4, H13, H24}.

Figure III.8: Dimension merging example (schema)

Second Case When the root parameters of the two dimensions do not match, we get
a merged dimension for each original dimension, which is realized by line10−22. For each
original dimension, the hierarchy set of its corresponding merged dimension is the union
of all hierarchy sets generated by merging every 2 hierarchies of the original dimensions
(line11−15), the attribute set is the union of the attributes of each hierarchy in the merged
dimension (line18, line20).

Example 5.2. Given 2 original dimensions D1 and D2 in Figure III.9 and their instances
in Figure III.11, after the execution of Algo. 6, we can get the merged dimension schema
D12 and D21 in Figure III.9. In D12, H1 and H2 are the original hierarchies of D1, H1

13
is the merged hierarchy of H1 and H3. In D21, H3 is the original hierarchy of D2, H2

13 is
the merged hierarchy of H1 and H3. So for D1, we have HD12 = {H1, H2, H13}. For D2,
we get HD21 = {H3, H31}.

5.2 Instance Merging

For instance merging, we also discuss the cases where the root parameters of the original
dimensions match or not.

First Case When the root parameters of the two dimensions match, the instances of
the merged dimension are obtained by the union of the two original dimension instances
which means that we insert the data of the two original dimension tables into the merged
dimension table and merge the tuples which have the same root parameter instance (line7).

74

5. DIMENSION MERGING 75

Figure III.9: Dimension merging example (schema)

Example 5.3. For the dimension schema merging example in Example 5.1, the instance
merging result is presented in Figure III.10. All the data in the original dimension tables
D1, D2 are integrated into the merged dimension table D12. The original tables of the
instances are marked on the left of the merged table D12 with different colors. There
are instances coming from both D1 and D2, which means that they have the same root
parameter in D1 and D2, and are therefore merged together.

Figure III.10: Dimension merging example (instance)

The attribute set of the merged dimension contains all the attributes of two original
dimensions, while the original dimensions may contain their unique attributes. So there
may be empty values in the merged dimension table on the instances coming from only
one of the original dimension tables and we should replace the empty values on the basis
of the existing data that we will introduce in the next chapter.

75

6. STAR SCHEMA MERGING 76

Second Case When the root parameters of the two dimensions do not match, the
instance merging is done by line18 and line21. We keep the original instances of the original
dimensions. For the newly added attributes, they are empty and will be completed by
the data imputation of the next chapter.

Example 5.4. The instance merging of Example 5.2 is demonstrated in Figure III.11.
For each original dimension D1 and D2, we get a merged dimension table D12 and D21.
In D12, the attribute Continent comes from the dimension table D2, and the attribute
Country comes from D1.

Figure III.11: Dimension merging example (instance)

6 Star Schema Merging
In this section, we discuss the merging of two star schemas. Here, for simplicity, we use
the notion “star schmea” for denoting a DW modelled by star schema, so the merging
is carried not only at the schema level, but also at the instance level. Having two star
schemas, we can get a star schema or a constellation schema because the fact table of
each schema may be merged into one schema or not. The star schema merging is related
to the dimension merging and fact merging. Two star schemas are possible to be merged
only if there are dimensions having matched root parameters between them.

For the dimensions of the two star schemas, we have two cases: 1. The two star schemas

76

6. STAR SCHEMA MERGING 77

Algorithm 7: mergeAllDimensions(S1, S2)
Input : Two stars to be merged S1 and S2
Output: A set of merged dimensions DS12

1 for Di ∈ DS1 do
2 for Dj ∈ DS2 do
3 if idDi ̸≃ idDj then
4 DS1

i , DS2
j ←MergeDimensions(Di, Dj);

5 DS12 ← ∅;
6 for Du ∈ DS1 do
7 for Dv ∈ DS2 do
8 if idDu ≃ idDv then
9 DS12 ← DS12 ∪MergeDimensions(Du, Dv);

10 for Dk ∈ DS12 do
11 for HDk

m ∈ HDk do
12 if ∄iDk

r ∈ IDk(iDk
r is on HDk

m ∨ (iDk
r is only on

HDk
m ∧ (HDk

m ∈ HDS1 ∨HDk
m ∈ HDS2))) then

13 HDk ← HDk −HDk
m ;

14 return DS12

have the same number of dimensions and for each dimension of one schema, there is a
dimension having the matched root parameter in the other schema. 2. There exists at
least one dimension among the two star schemas which does not have a dimension having
the matched root parameter in the other star schema.

The dimension merging of two star schemas is common for the two cases which is done
by Algo. 7. We first merge every two dimensions of the two star schemas which have
unmatched root parameters because the merging of such dimensions is able to replenish
the original dimensions with complementary attributes (line1−4). Then the dimensions
having matched root parameters are merged to generate the merged dimensions of the
merged multidimensional schema (line5−9). After the merging of the instances of the
dimension tables, there may be some merged hierarchies to which none of the instances
belong. In this case, if there will be no more update of the data, such hierarchies should
be deleted. There may also be original hierarchies in the merged dimensions such that
there is no instance which belongs to them but does not belong to any merged hierarchy
containing all the parameters of this original hierarchy. The instances belonging to this
kind of hierarchies belong also to other hierarchies which contains more parameters, so
they become useless and should also be deleted (line10−13).

Example 6.1. For the merging of the dimensions of two star schemas S1 and S2 in
Fig. III.12. The dimension Product of S1 and the dimension Customer of S2 are first
merged since their root parameters do not match but they have other matched parameters.

77

6. STAR SCHEMA MERGING 78

There are then attributes of dimension Customer of S2 added into dimension Product

of S1. The two dimensions Customer and the two dimensions Product have matched
root parameters, so they are merged into the final star schema. After the merging and the
imputation of the instance, we verify each hierarchy in the merged dimension tables. If the
merged instances of dimension Customer are like shown in Fig. III.10 except that the null
values of Continent are all replaced, we can delete the hierarchy IdCus→ Department→
Region→ Continent since all the instances belonging to this hierarchy also belong to the
merged hierarchy City → Department→ Region→ Country → Continent.

We then discuss the merging of the other elements in the two cases which is processed
by Algo 8:

Algorithm 8: mergeStar(S1, S2)
Input : Two stars to be merged S1 and S2

Output: A merged multidimensional schema which may be a star schema S12 or
a merged constellation schema C12

1 if |DS1| = |DS2| and ∀Di ∈ DS1∃Dj ∈ DS2(idDi ≃ idDj) then
2 DS12 ←MergeAllDimensions(S1, S2);
3 MF S12 ←MF S1 ∪MF S2 ;
4 IF S12 ← IF S1 ∪ IF S2 ;
5 IStarF S12 ← IStarF S1 ∪ IStarF S2 ;
6 return S12

7 else
8 DS12 ←MergeAllDimensions(S1, S2);
9 F C12 ← {F S1 , F S2};

10 return C12

First Case For the first case (line1), we merge the two fact tables into one fact table
and get a star scheme. The dimension merging is achieved by Algo. 7 (line2). The
measure set of the merged star schema is the union of the two original measures (line3).
The fact instances are the union of the measure instances of the two input stars (line4).
The function associating fact instances to their linked dimension instances of the merged
schema is also the union of the functions of the original schemas (line5).

Example 6.2. For the two original star schemas in Fig. III.13, the dimension merging is
discussed above so we mainly focus on the merging of fact table instances in this section.
The dimensions Customer, Product of S1 have respectively matched root parameters in
the dimensions Customer, Product of S2. They also have the same number of dimensions.
The original fact tables are merged into one fact table by merging the measures of S1 and
S2 to get the fact table of S12. At the instance level, in Fig. III.13, we have the instances
of the fact tables, for the instances of F S1 and F S2, the framed parts are the instances
having common linked dimension instances, so they are merged into the merged fact table

78

6. STAR SCHEMA MERGING 79

Figure III.12: Star merging example (schema)

F S12, the other instances are also integrated in F S12 but with empty values in the merged
instances which can be treated in the newt chapter.

Second Case For the second case, since there are unmatched dimensions, the two facts
have different links with different dimensions and can thus not be merged, the merged
schema should be a constellation schema. We merge the dimensions by Algo. 7 (line8).
The facts of the original schemas have no change at both schema and instance levels and
compose the final constellation schema (line9). They are linked to the merged dimensions
instead of the original ones.

Example 6.3. This example is shown in Fig. III.14. For the original star schemas S1 and
S2, they have dimensions Customer which have matched root parameters. The original
star schemas also have their unique dimensions: Product of S1 and Date of S2. So the
merged schema is a constellation schema generated by merging the dimensions Customer

and by keeping the other dimensions and fact tables. At the instance level, we have a
new merged dimension table of Customer, the other dimension tables and the fact tables
remain unchanged.

79

7. EXPERIMENTAL ASSESSMENT 80

Figure III.13: Star merging example (instance)

7 Experimental Assessment
We carry out experiments to validate that our approach can correctly merge DWs at both
schema and instance levels and can generate star or constellation schemas in different
cases.

7.1 Datasets

We apply TPC-H benchmark data in our experiments. Originally, the TPC-H bench-
mark serves for benchmarking decision support systems by examining the execution of
queries on large volumes of data. The TPC-H benchmark provides a pre-defined rela-
tional schema1 with 8 tables and a generator of data. The generated data can be used to
create DWs containing various dimensions, facts and hierarchies, which can cover different
cases mentioned in our algorithms. We generated 100M of data files. We employe the
files Lineitem, Customer, Nation, Orders, Part, Region and Supplier where there are
respectively 600572, 15000, 25, 150000, 20000, 5, 1000 tuples.

7.2 DW Generation Strategy

In our algorithm, we discussed two cases where a star or a constellation schema is gener-
ated. So we carry out experiments for these two cases by creating two DWs for each case.

1http://tpc.org/tpc documents current versions/pdf/tpc-h v2.18.0.pdf

80

http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf

7. EXPERIMENTAL ASSESSMENT 81

Figure III.14: Star merging example (schema)

First, we use files Customer, Supplier, Part, and attribute orderdate of file Orders to
generate dimensions Customer, Supplier, Part, and Orderdate. We use Lineitem to
generate facts Lineorder. Second, to have deeper hierarchies, we include the data of
Nation and Region into Customer and Supplier. Third, to make sure that there are
both common and different instances in different DWs, for each dimension, instead of
selecting all the corresponding data, we select randomly 3/4 of them. For the fact table,
we select the measures related to these dimension data. The DWs are implemented in
R-OLAP format through the Oracle 11g DBMS.

7.3 Star Schema Generation

The objective of this experiment is to verify the correct generation of a star schema at
the schema and instance levels by merging two star schemas having same dimensions
(Customer, Supplier, Part) with the matched root parameter for each dimension.

7.3.1 Schema Level Merging Result

The run time of this experiment is 5.49s. The original DW schemas and the generated
star schema are shown in Fig. III.15 which is consistent with the expectation. The three
dimensions Supplier, Part, Date of the original DWs are merged. Between the different
dimensions S1.Supplier and S2.Customer, there is a matched attribute Nation, so they

81

7. EXPERIMENTAL ASSESSMENT 82

are also merged such that S1.Supplier provides S2.Customer with the attribute Region.
Then the Customer in the merged DW also has the attribute Region.

In our algorithm, different dimensions (root parameters do not match) having common
parameters are firstly merged. S1.Supplier and S2.Customer are different dimensions, but
they have common parameter Nationkey. So they are firstly merged so that a merged
hierarchy Custkey → Nationkey → Regionkey is created and is added to S2.Customer.

Then, dimensions having matched root parameters are merged together. By merging
S1.Customer and S2.Customer, S12.Customer is generated which contains the original
hierarchies of S1.Customer and S2.Customer as well as the hierarchy obtained by merg-
ing S1.Supplier and S2.Customer. The weak attributes of the root parameter Custkey

are also merged together. By merging S1.Supplier and S2.Supplier, S12.Supplier is gen-
erated containing the merged hierarchies and original hierarchies with the merged weak
attributes. By merging S1.Part and S2.Part, S12.Part is generated. It containes the orig-
inal hierarchies and a hierarchy Partkey → Brand→Manufacture created by merging
hierarchies Partkey → Brand of S1.Part and Partkey →Manufacture of S2.Part.

The facts S1.Lineorder and S2.Lineorder are both associated to the dimensions having
matched root parameters. Therefore, a star schema is finally generated. The measures
are obtained by merging the measures in the original fact tables. The merged fact is
associated to the merged dimensions to finally form S12.

By analysing the merging process and the obtained merged schema, we confirm that our
algorithm correctly generate a merged star schema by correctly merging facts, dimensions,
hierarchies and weak attributes at the schema level.

7.3.2 Instance Level Merging Results

The results of the instance level merging for the star schema generation experiment is
shown in Table III.2. We verify the correctness of the merging by the number of attributes.
For an attribute, N1 denotes the number of values in S1, N2 denotes the number of values
in S2, N∩ denotes the number of common values between S1 and S1 and is only applied
for dimension or fact keys, Nm is the number of values in the merged DW.

For a dimension key or a combination of fact keys, it values are unique. So for them,
the number of values is the number of tuples in the dimension/fact, we then have the
relationship of these numbers for them Nm = N1 + N2 −N∩. By verifying the results in
the table, we validate the existence of such relationships for the merged dimensions and
fact.

For the other dimension or fact attributes, since there is no missing data in the original
DWs, if both DWs have an attribute of a dimension/fact, the Nm of the attribute should
be equal to the Nm of the dimension/fact key. If only one of the DWs has an attribute of
a dimension/fact, the Nm of the attribute should be equal to the number of the attribute

82

7. EXPERIMENTAL ASSESSMENT 83

Figure III.15: Star schema generation

83

7. EXPERIMENTAL ASSESSMENT 84

Table III.2: Results of star generation

Dimension
/Fact Attribute N1 N2 N∩ Nm

Customer

Custkey 11250 11250 8426 14074
Custname 11250 11250 14074

Custaddress 11250 0 11250
Custphone 0 11250 11250
Nationkey 0 11250 11250

Nation 0 11250 11250
Nationcomment 0 11250 11250

Segment 11250 11250 14074

Supplier

Suppkey 750 750 570 930
Suppname 750 750 930

Suppaddress 750 750 930
Nationkey 750 750 930

Nation 750 750 930
Nationcomment 0 750 750

Regionkey 750 0 750
Region 750 0 750

Part

Partykey 15000 15000 11215 18785
Partname 15000 15000 18785

Brand 15000 0 15000
Manufacture 0 15000 15000

Type 15000 15000 18785

Lineorder

Custkey
253423 253782 107736 399469Partkey

Suppkey
Quantity 253423 253782 399469

Extendedprice 253423 0 253423
Tax 253423 0 253423

Discount 0 253782 253782

values in the DW having this attribute. By verifying the results in the table, we also
validate the existence of such relationships.

Finally, we also validate that attribute values are the same in the merged dimensions
or fact as in the original ones by SQL queries.

By analysing the merged DW instances and by comparing them to the original ones, we
confirm that our algorithm correctly generate a merged star schema DW at the instance
level.

7.4 Constellation Schema Generation

The objective of this experiment is to verify the correct generation of a constellation
schema at the schema and instance levels by merging two star schemas having same

84

7. EXPERIMENTAL ASSESSMENT 85

dimensions (Customer, Supplier) with the matched root parameter for each dimension,
as well as different dimensions (S1.Part and S2.Date).

7.4.1 Schema Level Merging Result

The run time of this experiment is 3.17s. The original DW schemas and the generated
constellation schema are shown in Fig. III.16 which is consistent with the expectation.

The dimensions Customer and Supplier of S1 and S2 are the same as those in the star
schema generation experiment. Thus we obtain the same merged dimensions Customer

and Supplier in C12. Since there is no dimension in S2 having the matched root parameter
as S1.Part and there is no dimension S1 having the matched root parameter as S2.date,
these two dimensions remain the same in the merged schema as in the original schemas.

The facts S1.Lineorder and S2.Lineorder are associated to S1.Customer and S2.Customer

whose root parameters are matched and are associated to S1.Supplier and S2.Supplier

whose root parameters are also matched. Meanwhile, S1.Lineorder and S2.Lineorder

are respectively associated to S1.Part and S2.Lineorder, whose root parameter are not
matched in the other DWs. Therefore, a constellation schema is generated. The two facts
in the constellation schema have the same measures as the original ones.

By analysing the merging process and the obtained merged schema, we confirm that
our algorithm correctly generate a merged constellation schema by correctly merging facts,
dimensions, hierarchies and weak attributes at the schema level.

7.4.2 Instance Level Merging Results

The results of the instance level merging for the constellation schema generation experi-
ment is shown in Table III.3. For the dimension keys and the combinations of fact keys,
the relationships of Nm = N1 + N2−N∩ from the observation of the results are validated.

For the other dimension or fact attributes, we also validate the relationship as discussed
in Section 7.3.2 by verifying the results in the table

Finally, we also validate that attribute values are the same in the merged dimensions
or facts as in the original ones by SQL queries.

By analysing the merged DW instance and by comparing them to the original ones,
we confirm that our algorithm correctly generate a merged constellation schema DW at
the instance level.

We get the results conforming to the expectations in these two experiments, we can
thus conclude that our algorithm works well for the different cases of the generation of a
star or a constellation schema at both schema and instance levels.

85

7. EXPERIMENTAL ASSESSMENT 86

Figure III.16: Constellation schema generation

86

7. EXPERIMENTAL ASSESSMENT 87

Table III.3: Results of constellation schema generation

Dimension/Fact Attribute N1 N2 N∩ Nm

Customer

Custkey 11250 11250 8449 14051
Custname 11250 11250 14051

Custaddress 11250 0 11250
Custphone 0 11250 11250
Nationkey 0 11250 11250

Nation 0 11250 11250
Nationcomment 0 11250 11250

Segment 11250 11250 14051

Supplier

Suppkey 750 750 561 939
Suppname 750 750 939

Suppaddress 750 750 939
Nationkey 750 750 939

Nation 750 750 939
Nationcomment 0 750 750

Regionkey 750 0 750
Region 750 0 750

Part

Partykey 15000 0 0 15000
Partname 15000 0 15000

Brand 15000 0 15000
Manufacture 15000 0 15000

Type 15000 0 15000

Orderdata
Orderdate 0 1805 0 1805

Month 0 1805 1805
Year 0 1805 1805

Lineorder1

Custkey
253420 0 0 253420Partkey

Suppkey
Quantity 253420 0 253420

Extendedprice 253420 0 253420
Tax 253420 0 253420

Lineorder2

Custkey
0 336584 0 336584Suppkey

Orderdate
Quantity 0 336584 336584
Discount 0 336584 336584

87

8. CONCLUSION 88

8 Conclusion
When we have several DWs generated from multiple sources and which share some same
information, they can be merged to allow a consolidated analysis of the data.

The DW merging consists of the matching and merging of multidimensional elements.
Since the matching is well studied in the literature, we only focused on the merging
process. However, the complex structure of multidimensional DW makes this task difficult.
A DW has a specific schema and its instances are stored in different tables. A star or
constellation schema may be generated in different above-mentioned cases. To answer
these problems by resolving the difficulties, in this chapter, we proposed an automatic
approach to merge two different DWs at both schema and instance levels, which generate
a star or constellation schema.

Figure III.17: Summary of the merging process

Fig. III.17 summarizes our proposed merging process. The DW merging is composed
of dimension merging and fact merging. The dimension merging is based on the hier-
archy merging which is based on level merging. At the level merging stage, we defined
algorithms to match and record the matched parameters. Then they are merged by con-
sidering the merging of their corresponding weak attributes which is little considered in
the literature. At the hierarchy merging stage, according to the level merging results, we
defined algorithms to merging hierarchies having matched parameters. We decompose the
hierarchies into sub-hierarchy pairs. By proposing merging processes of the sub-hierarchy
pairs in different cases, we generate the final merged hierarchy set. Compared to the
hierarchy merging approaches in the literature, we not only merge the equivalent levels,

88

8. CONCLUSION 89

but also create new hierarchy relationships for non-matched levels based on functional de-
pendencies. At the dimension merging stage, we defined algorithms to merge dimension
schemas by calling hierarchy merging algorithms. The instance merging is also proposed
in the algorithms. For the fact merging, we match measures and carry out the schema and
instance merging. Moreover, we also consider different cases where a star or constellation
schema may be generated, which is not taken into account in the literature.

We conducted experiments with TPC-H benchmark data to validate that the merging
process works correctly. Our process is able to generate different kinds of schemas (star
or constellation) in different cases. For both cases, at the schema level, our process
can correctly merge different multidimensional components including facts, dimensions,
hierarchies and weak attributes, etc. At the instance level, the instances are correctly
merged without undesired addition or loss of data. The DW merging approach is validated
through a paper in the international conference IDEAS2021 (YANG, Y. et al., 2021b).

During the merging of DW instances, missing data may be generated which produce
incomplete hierarchies. An analysis form is proposed in this chapter to repair the hier-
archies at the schema level by displaying all complete hierarchies. However, the instance
level repair is also necessary by replacing missing values with appropriate data, which
leads to the data imputation task.

89

Chapter IV

Data Warehouse Imputation

Contents
1 Introduction . 92

1.1 Context . 92
1.2 Challenge . 92
1.3 Our Approach Overview . 92
1.4 Outline . 93

2 Related Work . 94
2.1 General Imputation Approaches . 94
2.2 Analysis of the Approaches . 98
2.3 Imputation Approaches for DW . 101

3 Hierarchical Dimension Imputation . 102
3.1 Intra-dimensional Imputation . 102
3.2 Inter-dimensional Imputation . 103
3.3 Hierarchical Imputation Order . 105

4 Dimension Instance Distance . 106
4.1 Attribute Distance . 108
4.2 Hierarchy Level Instance Distance 109
4.3 Hierarchy Instance Distance . 109
4.4 Dimension Instance Distance . 110
4.5 Using Dependency Degree as Hierarchy Weight 111

5 OLAPKNN . 112
5.1 OLAPKNN Overview . 112
5.2 Imputation for Parameters by OLAPKNN 113
5.3 Imputation of Weak Attributes . 117

6 Experimental Assessments . 118
6.1 Dataset . 118
6.2 Experimental methodology . 119
6.3 Results and analysis for Experiment1 122

90

CONTENTS 91

7 Conclusion . 134

91

1. INTRODUCTION 92

1 Introduction

1.1 Context

As we mentioned in the previous chapter, during the DW merging, if there are different
attributes in the original DWs, missing data are generated in the merged DW. Missing data
may also come from DW sources (operational data sources, missing data of original DWs)
if not treated during the Extract-Transform-Load (ETL) process. There are 2 types of
missing data in DWs: dimensional missing data which are missing data in the dimensions
and factual missing data which are in the facts. These missing data have impact on
OLAP analyses. Factual missing data are usually quantitative, making analysis results
incomplete and preventing users from getting reliable aggregates. Dimensional missing
data are usually qualitative, making aggregated data incomplete and making it hard to
analyse them with respect to hierarchy levels. Therefore, it is significant to replace missing
data.

1.2 Challenge

Data imputation is the process of replacing the missing values by some plausible values
based on information available in the data (Li et al., 2004a). The current DW data im-
putation research mainly focuses on factual data (Wu and Barbará, 2002; de S. Ribeiro
et al., 2011; Amanzougarene et al., 2014; Bimonte et al., 2020). Yet as we mentioned that
dimensional missing also have impact on data analysis. Therefore it is essential to propose
the imputation of dimension attributes in order to ensure that high-quality analyses are
offered to decision makers and even potential new analyses with the addition of missing
attributes. However a DW dimension has a complex structure containing different hier-
archies with different granularity levels having their dependency relationships. When we
replace dimensional missing data, we have to take the DW structure and the dependency
constraints into account.

1.3 Our Approach Overview

However, to the best of our knowledge, there is no other specific data imputation method
for DW dimensions. Thus, in this chapter, we propose a dimensional data imputation
approach named Hie-OLAPKNN based on hierarchical relationships of dimension at-
tributes and k-nearest neighbors (KNN) algorithm. The approach is composed of two
parts (Fig. IV.1).

The first part is a hierarchical imputation (Hie). Since there are functional dependen-
cies between different granularity levels on a hierarchy, we can take advantage of these
functional dependencies to replace missing values. The hierarchical imputation relies on
both inter- and intra-dimensional hierarchical dependency relationships. The hierarchical
imputation is convincible because we use accurate data based on real functional depen-
dency relationships. However, this method is limited owing to the sparsity problem (Song

92

1. INTRODUCTION 93

and Sun, 2020) which means that for an instance to be replaced, there may not be an
instance sharing the same value on a lower-granularity level of the hierarchy. Thus, in
order to replace as many values as possible, we also propose a second part to replace the
remaining missing values.

Figure IV.1: Overview of the Hie-OLAPKNN imputation approach

The second part of imputation is based on KNN algorithm (OLAPKNN). KNN im-
putation finds the k nearest neighbors of an instance with missing data then fill in the
missing data based on the mean or mode of the neighbors’ value (Troyanskaya et al.,
2001). We choose KNN because it is a non-parametric and instance-based algorithm,
which is widely applied for data imputation (Beretta and Santaniello, 2016) and has been
proved to have relatively high accuracy (Li and Parker, 2014; Troyanskaya et al., 2001).
Compared to the basic KNN imputation, OLAPKNN considers the structure complexity
and the dependency constraints of the dimension hierarchies. KNN imputation relies on
the distance among dimension instances, so we also propose a specific distance metric for
dimension instances by considering different dimension elements. As shown in Fig IV.1, in
OLAPKNN, we first calculate the hierarchy weight which is dedicated for the calculation
of dimension instance distance. Then the imputation is realized by a iterative process.
In each loop we replace the missing values of a certain number of continuous attributes.
Next we create a candidate list of replaced values by respecting hierarchical relationships.
Then by the proposed distance metric, we choose the nearest neighbors of the missing
value for the imputation.

1.4 Outline

The remainder of this chapter is organized as follows. In Section 2, we review the related
work about data imputation algorithms. In Section 3, we introduce the first part of our

93

2. RELATED WORK 94

imputation approach, the hierarchical imputation. In Section 4.1, we propose a distance
calculation metric for dimension instances which serves to find the nearest neighbors in
KNN algorithm. In Section 5, we explain in detail the OLAPKNN dimension imputation
algorithm. In Section 6, we validate our proposal by some experiments. In Section 7, we
conclude this chapter.

2 Related Work
Data imputation is an important topic that arises a lot of attentions. Most of the data
imputation techniques are dedicated for missing data in flat files, while only few works
focus specifically on the imputation of missing data in DWs. In this section, we present
the general data imputation techniques and analyse them in terms of their target data
types as well as their advantages and disadvantages. Then we discuss the data imputation
approaches for DWs.

2.1 General Imputation Approaches

There are various data imputation techniques for missing data in flat files (Miao et al.,
2018; Lin and Tsai, 2020; Osman et al., 2018). These techniques can be classified into
four categories: statistical-based, machine learning-based, rule-based and external source-
based.

2.1.1 Statistical-based

Mean/mode imputation (Schafer and Graham, 2002; Twala et al., 2005) The mean/-
mode imputation is the most basic and simplest data imputation approach. For missing
numerical data, the mean approach is applied where the average of the existing attribute
values are used to replace the missing data. For missing textual data, the mode approach
is applied where the value appears the most is used to replace the missing data.

EM algorithm The Expectation-maximization (EM) algorithm (McLachlan and Kr-
ishnan, 2007) is also a widely used statistical technique for data imputation. The EM
algorithm is an iterative algorithm which aims to carry out maximum likelihood estima-
tion for statistical models in the presence of latent variables. It is compose of E-step and
M-step: the E-step estimates parameters from the data and existing models and then
calculates the likelihood function based on the estimated parameters; the M-step finds
the parameters which maximize the likelihood function. The two steps repeat until the
algorithm converge. Then with the final obtained estimated parameter, the missing data
can be expected and be replaced (Graham et al., 2009; Lin, 2010; Schneider, 2001).

Regression imputation Regression techniques can be applied for missing data im-
putation. In regression techniques, the non-missing data are trained to estimate the

94

2. RELATED WORK 95

regression coefficients. Then the missing data can be estimated and replaced by the re-
gression model. The numerical and categorical data can respectively be replaced by the
linear regression (Beaumont, 2000; Qin et al., 2007; Baraldi and Enders, 2010) and the
logistic regression (Allison, 2005; Sentas and Angelis, 2006).

Hot and cold deck There are also hot and cold deck techniques for missing data
imputation. In the hot deck technique (Andridge and Little, 2010; Wu et al., 2012), for
a missing value, its closest record containing non-missing value of the attribute in the
dataset is found. Then the missing value is replaced by the this non-missing value. Cold
deck (Little and Rubin, 2019) is similar to the hot deck except that it searches for the
replaced value in a previous data collection or a different dataset.

2.1.2 Machine learning-based

KNN KNN algorithm is the most used machine learning-based data imputation algo-
rithm (Lin and Tsai, 2020). In the KNN algorithm, the k-nearest neighbor tuples of a
missing value tuple are found. A distance function is defined, the process of find the
nearest neighbors is the process of minimizing the distance between the missing value
tuple and the other tuples. Thus the distance function attracts a lot of attentions in
the literature. In terms of the distance metric, the Euclidean distance is a typical one
(Troyanskaya et al., 2001; Garćıa-Laencina et al., 2009; Lee and Styczynski, 2018). The
grey theory-based distance is also employed in (Zhang, 2012; Huang and Lee, 2004; Pan
et al., 2015). Moreover, the normalized numerical distance and string similarity measures
are used in (Song and Sun, 2020).

In the distance function, each attribute may have an equivalent weight (Zhang, 2012;
Huang and Lee, 2004; Troyanskaya et al., 2001; Lee and Styczynski, 2018). They may
also have specific weights defined by some dependency measurements such as mutual
information (Garćıa-Laencina et al., 2009; Pan et al., 2015).

For the final replaced value, it may be obtained by the average or mode value (Zhang,
2012; Huang and Lee, 2004), or the distance-based weighted average or mode value of
the k-nearest neighbors (Dudani, 1976; Garćıa-Laencina et al., 2009; Pan et al., 2015;
Troyanskaya et al., 2001; Lee and Styczynski, 2018). Here, average values are applied
for the imputation of numerical data and mode values are applied for the imputation of
categorical data.

Other Supervised Learning Techniques Other supervised learning algorithms are
also employed for data imputation. The tuples without missing data are trained to gain
a model. Then the missing values can be predicted with the relevant attribute values
based on the trained model. The algorithms include the decision tree algorithms such as
CART (Hapfelmeier et al., 2012; Ding and Simonoff, 2010; Burgette and Reiter, 2010) and
C4.5(Twala, 2009; Ding and Simonoff, 2010), random forest (Pantanowitz and Marwala,

95

2. RELATED WORK 96

2009; Xia et al., 2017; Tang and Ishwaran, 2017; Kokla et al., 2019), support vector
machine (Wang et al., 2006; Zhang and Liu, 2009), naive bayes (Garcia and Hruschka,
2005; Hruschka et al., 2007), and so on.

Clustering Clustering algorithm is the only unsupervised algorithm for data imputa-
tion. In clustering-based imputation, the tuples not containing missing data are classified
into different clusters. Then the distance between the tuples containing missing data and
the centroid of the clusters are calculated. The missing data can thus be replaced by the
kernel function or by cluster values such as the centroid’s value or the closest neighbor
in the cluster. The clustering algorithms for data imputation include k-means or fuzzy
k-means (Zhang et al., 2008; Li et al., 2004b; Liao et al., 2009), fuzzy c-means (Samat
and Salleh, 2016; Sefidian and Daneshpour, 2019), Gaussian mixture clustering (Ouyang
et al., 2004; Yan et al., 2015), and so on.

Neural Network Neural network algorithms receive many attentions in recent years’
research. Several imputation approaches are proposed based on various neural network
algorithms such as the probabilistic neural network (Nishanth and Ravi, 2016), generalized
regression neural networks (Gheyas and Smith, 2010), artificial neural network (Verpoort
et al., 2018), auto-encoder neural network (Choudhury and Pal, 2019). Some neural
network-based imputation approaches are also proposed for specific types of data like the
imputation of traffic data using convolutional neural network (Zhuang et al., 2019) and
for time-variant data using recurrent neural network (Sangeetha and Senthil Kumaran,
2020)

2.1.3 Rule-based

Editing Rule (Fan et al., 2010) propose an approach for fixing errors and replacing
missing data based on editing rules and master data. Editing rules are dynamic constraints
that tell us which attributes should be changed and how to update them. Editing rules
can be extracted by business rules. Then can also be reasoned from master data by the
techniques proposed in the paper. The missing data can thus be replaced by the patterns
of the editing rules.

Dependency Rule Data dependencies are important integrity constraints in the database
theory. They are also used for the imputation of missing data. For a missing value, know-
ing it is determined by which attributes, it can be replaced by searching for the same
values of these attributes. (Wijsen, 2005) propose to repair databases by using functional
dependencies with a chase algorithm for data imputation. Some extended dependencies
such as conditional functional dependencies and conditional inclusion dependencies (Bo-
hannon et al., 2006; Fan, 2008) (Bohannon et al., 2006), which are dependencies under
certain conditions like given the value of certain attributes, are also propose for replacing
missing data.

96

2. RELATED WORK 97

Association Rule Association rule is a popular data mining technique which aims
to extract interesting correlations, frequent patterns, associations or casual structures
among sets of items in the databases or other data repositories (Zhao and Bhowmick,
2003). It reflects the co-occurrences of data values. Unlike data dependencies which
should meet strict satisfactions, the association rules are probabilistic (Agrawal et al.,
1994). So the support and the confidence which are respectively statistical significance
and meaningfulness measures should be defined for the association rule mining. Several
approaches (Wu et al., 2004, 2007; Shen et al., 2007) are proposed for data imputation
based on association rule mining.

2.1.4 External Source-based

Crowd-sourcing Crowdsourcing is a type of participative online activity in which an
individual, organization, or company with enough means proposes to a group of individu-
als of varying knowledge, heterogeneity, and number, via a flexible open call, the voluntary
undertaking of a task (Estellés-Arolas and González-Ladrón-de Guevara, 2012). The im-
putation of missing data can be treated as a crowdsourcing task, we can thus get the
different possible answers for the imputed data. According to the obtained values, the
confidence or possibility of each value can be calculated. The value with the highest con-
fidence or possibility can be applied to fill in the missing value (Ye and Wang, 2014; Ye
et al., 2020).

Web Information There exists numerous information on the web. So missing data can
be replaced by searching them on the web. Several web-based imputation approaches are
proposed (Li et al., 2014; Tang et al., 2017; Liu et al., 2018). In these approaches, data
imputation queries are generated and are input into the web to search for the answer. The
most important part in the web-based imputation is the query formulation, the result is
more accurate if the query is better defined. Different query formulation algorithms are
proposed in these articles including greedy iterative scheduling algorithm (Li et al., 2014),
dependency-based graph model (Tang et al., 2017), genetic-based algorithm (Liu et al.,
2018), etc.

Knowledge Base A knowledge base is a machine-readable collection of knowledge
about the real world containing entities and relations between them (Pellissier Tanon
et al., 2020). Some approaches (Qi et al., 2017, 2018) are proposed to extract the replaced
values for missing data. The imputation by knowledge base is based on the knowledge-
based pattern mining. The pattern is described with the subject, predicate and object.
The relationships of the attributes can be detected based on the existing values. The
semantic type of each attribute is also discovered. The missing values can then be im-
puted by the queries obtained by the detected relationships. The results are validated by
semantic types.

97

2. RELATED WORK 98

2.1.5 Hybrid Approaches

The approaches on single technique have different limits or are suitable for different specific
contexts. Thus hybrid approaches are proposed where different techniques are combined
to obtain better imputation results. Hybrid imputation applies techniques of different
categories such as combining naive bayes and EM algorithm (Zhang et al., 2011), combin-
ing dependencies and web information (Li et al., 2015), combining KNN and regression
(Zhang et al., 2019), combining KNN and likelihood maximization (Song and Sun, 2020),
combining k-means and association rules (Chhabra et al., 2018), combining fuzzy c-means,
support vector regression and genetic algorithm (Aydilek and Arslan, 2013), etc. There
are also hybrid approaches using techniques of a same category like combining knn and
random forest (Latifi and Koch, 2012) and combining crowdsourcing and knowledge base
(Wang et al., 2017), etc.

2.2 Analysis of the Approaches

Table IV.1 shows the comparison of the different categories of imputation approaches. We
list the number of approaches that we mention in the literature review in each category
(#), the number of the approaches in each category being able to impute numerical data
and categorical data as well as their ratio. Based on our analysis and the analysis of these
approaches in some surveys (Graham et al., 2009; Miao et al., 2018; Lin and Tsai, 2020;
Osman et al., 2018), we also discuss the advantages and disadvantages for each category of
imputation approaches in the table. Since we focus on dimensional data which are mostly
categorical, we discuss especially the application of these approaches for categorical data.

Regarding the statistical-based imputation, 7 of 13 of the approaches in this category
can treat categorical data. The mean/mode can be used for categorical data imputation
by the mode imputation. However, if we take this strategy, all the missing values of
an attribute will be replaces by a same mode value which may be highly biased. The
EM algorithm imputation approaches focus on numerical data and can not be used for
categorical data. With respect to the regression imputation, the logistic regression can be
used for the imputation of categorical data. However, the regression can not fit a good
model when there is a complex correlation between the attributes. Moreover, when we
apply the logistic regression, the categorical data are treated as dummy values (Graham
et al., 2009). For categorical data of high-cardinality, a large amount dummy values will
be generated and may impact the efficiency. For hot or cold deck imputation, they are
a large category of similarity-based imputation. The KNN-based imputation can also be
considered as hot deck. There are also other hot deck imputation which select randomly
replaced value from potential ones, so the disadvantage of these hot deck approaches is
that the replaced values depend on the selected auxiliary variables.

Regarding the machine learning-based imputation, 12 of 33 of the approaches in this
category can treat categorical data. KNN-based imputation is the most applied approach.
It is suitable for different cases in terms of the amount and the type of data. Since it looks

98

2. RELATED WORK 99

every row to search for the nearest neighbors, it has a relatively high computational cost.
The clustering-based imputation is similar to KNN since it is also based on the similarity.
However, in these clustering algorithms, the centroids are calculated by the mean of the
cluster values, so it is not suitable for categorical data. For the other supervised learning
algorithms, 4 of 13 can treat the imputation of categorical data. And the trained model is
based on the existing data, so when there are a large number of missing data, the model
may not be accurate. Neural network-based imputation can achieve a high accuracy.
However only 1 approach can impute categorical data. To train a good neural network
model, we need a huge amount of data. Moreover, the neural network training usually
takes a long time.

Regarding the rule-based imputation, the approaches are all suitable for both numerical
and categorical data. The editing rules and dependency rules are certain and robust rules,
and the replaced value based on these rules are also robust. However, editing rules are
extracted by some business rules or by master data which are not always available for
users. The dependency rules can be extracted from the schema or from the data, however,
the dependency relationships containing the replaced value in the determined side do not
always exist. So we may only be able to replace a small part of the missing values by
dependency-based approaches. The association rules are conditional rules so they can
reveal more relationships for the imputation. However, the reasoning of association rules
requires the definition of the support and confidence threshold, which may be hard for
the user.

Regarding the external source-based imputation, the approaches can all impute both
numerical and categorical data since they can retrieve the real information from external
sources. However, for crowdsourcing-based imputation, the conduction of crowsourcing
is costly and requires a huge budget. So it is not affordable for everyone. In the web
information-based approaches, appropriate queries should be built to find reliable infor-
mation for missing data. The searching of the results by the execution of a large amount
of queries is also time-consuming. For the imputation based on knowledge base, the ap-
propriate knowledge bases are required to replace the missing data, which are not always
available.

Regarding the hybrid approach, 6 of 8 can replace categorical data. Since they combine
several approaches, they also combine the advantages of different approaches. However,
the combination of the different approaches may increase the computational time.

99

2. RELATED WORK 100

Ta
bl

e
IV

.1
:

C
om

pa
ris

on
of

im
pu

at
io

n
ap

pr
oa

ch
es

#
N

um
er

ic
al

D
at

a
N

um
er

ic
al

D
at

a
(%

)
C

at
eg

or
ic

al
D

at
a

C
at

eg
or

ic
al

D
at

a
(%

)
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

St
at

is
ti

ca
l-

ba
se

d
13

11
85

%
7

54
%

M
od

e/
M

ea
n

2
2

10
0%

2
10

0%
Ea

sy
to

im
pl

em
en

t
H

ig
h

bi
as

EM
Al

go
ri

th
m

3
3

10
0%

0
0%

St
at

ist
ic

al
pa

ra
m

et
er

s
ca

n
be

we
ll

es
tim

at
ed

N
ee

d
to

su
pp

os
e

an
ap

pr
op

ria
te

pr
ob

ab
ili

ty
m

od
el

Re
gr

es
sio

n
5

3
60

%
2

40
%

W
or

k
we

ll
if

th
er

e
is

a
st

ro
ng

co
rr

el
at

io
n

be
tw

ee
n

at
tr

ib
ut

es
R

ep
la

ce
d

va
lu

es
fo

llo
w

a
sin

gl
e

re
gr

es
sio

n
cu

rv
e

H
ot

/C
ol

d
D

ec
k

3
3

10
0%

3
10

0%
N

on
-p

ar
am

et
ric

,e
as

y
to

im
pl

em
en

t
R

ep
la

ce
d

va
lu

es
de

pe
nd

on
th

e
se

le
ct

ed
au

xi
lia

ry
va

ria
bl

es
M

ac
hi

ne
le

ar
ni

ng
-b

as
ed

33
31

94
%

12
36

%

K
N

N
7

7
10

0%
7

10
0%

N
o

ne
ed

of
at

tr
ib

ut
e

re
la

tio
ns

hi
p

di
sc

ov
er

y,
su

ita
bl

e
fo

r
di

ffe
re

nt
am

ou
nt

s
an

d
ty

pe
s

of
da

ta
C

om
pu

ta
tio

na
lly

co
st

ly

Cl
us

te
ri

ng
7

7
10

0%
0

0%
N

o
ne

ed
of

at
tr

ib
ut

e
re

la
tio

ns
hi

p
di

sc
ov

er
y

N
ot

su
ita

bl
e

fo
r

ca
te

go
ric

al
da

ta
ba

ca
us

e
of

th
e

ca
lc

ul
at

io
n

of
ce

nt
ro

id

O
th

er
Su

pe
rv

ise
d

Le
ar

ni
ng

13
12

92
%

4
31

%
H

ig
h

ac
cu

ra
cy

w
he

n
th

e
m

od
el

is
we

ll
fit

te
d

lim
ita

tio
n

of
da

ta
ty

pe
an

d
bi

as
in

ce
rt

ai
n

co
nt

ex
ts

N
eu

ra
lN

et
wo

rk
6

5
83

%
1

17
%

H
ig

h
ac

cu
ra

cy
C

om
pu

ta
tio

na
lly

co
st

ly
,

ba
d

pe
rfo

rm
an

ce
w

he
n

fe
w

sa
m

pl
e

da
ta

R
ul

e-
ba

se
d

8
8

10
0%

8
10

0%

Ed
iti

ng
Ru

le
1

1
10

0%
1

10
0%

R
ep

la
ce

d
va

lu
es

ar
e

ro
bu

st
R

ep
la

ce
d

da
ta

m
ay

no
t

ex
ist

in
th

e
da

ta
se

t,
re

qu
ire

s
th

e
m

as
te

r
da

ta

D
ep

en
de

nc
y

Ru
le

3
3

10
0%

3
10

0%
R

ep
la

ce
d

va
lu

es
ar

e
ro

bu
st

R
ep

la
ce

d
da

ta
m

ay
no

t
ex

ist
in

th
e

da
ta

se
t

As
so

ci
at

io
n

Ru
le

4
4

10
0%

4
10

0%
A

bl
e

to
fin

d
co

nd
iti

on
al

re
la

tio
ns

hi
ps

R
ep

la
ce

d
da

ta
m

ay
no

t
ex

ist
in

th
e

da
ta

se
t,

de
fin

tio
n

of
th

e
th

re
sh

ol
ds

E
xt

er
na

l
So

ur
ce

-b
as

ed
9

9
10

0%
9

10
0%

Cr
ow

ds
ou

rc
in

g
3

3
10

0%
3

10
0%

A
bl

e
to

ob
ta

in
re

al
in

fo
rm

at
io

n
H

ig
h

bu
dg

et
co

st

W
eb

In
fo

rm
at

io
n

3
3

10
0%

3
10

0%
A

bl
e

to
ob

ta
in

re
al

in
fo

rm
at

io
n

N
ee

d
ap

pr
op

ria
te

qu
er

y
an

d
tim

e-
co

ns
um

in
g

fo
r

se
ar

ch
in

g
Kn

ow
led

ge
Ba

se
3

3
10

0%
3

10
0%

A
bl

e
to

ob
ta

in
re

al
in

fo
rm

at
io

n
N

ee
d

ap
pr

op
ria

te
kn

ow
le

dg
e

ba
se

H
yb

ri
d

8
8

10
0%

6
75

%
C

om
bi

ne
th

e
ad

va
nt

ag
e

of
di

ffe
re

nt
m

et
ho

ds
C

om
pu

ta
tio

na
lly

co
st

ly

100

2. RELATED WORK 101

2.3 Imputation Approaches for DW

The existing work concerning the imputation of the missing data in DWs focus on the
imputation of factual missing data. A statistic-based imputation method is proposed
in Wu and Barbará (2002) which is able to predict the missing values of measures by
combining logistic model and loglinear model. In de S. Ribeiro et al. (2011), a KNN
based data imputation for factual missing data is presented. They enrich the fact table
by the selection of their attributes in dimension tables. The enrichment provides a better
characterization of the fact table tuples. Then KNN algorithm is applied to select the
similar tuples to replace the tuples of missing data. In Amanzougarene et al. (2014), the
authors propose a hybrid method using constraint programming and KNN for the missing
measure imputation. They replace missing measures by a CSP (constraint satisfaction
problem) solver using the defined constraints on the measures and the constraints of
aggregation functions. The result is adjusted by the reduced domain obtained through
KNN. A missing data imputation framework for DWs with multi-granular facts based on
linear programming is proposed in Bimonte et al. (2020). They do not propose a specific
imputation method, but a framework to optimise the imputation result. They define
the total of the difference between the adjusted values and the estimated value obtained
by some imputation method as the objective function. The constrains are based on the
aggregated facts and they define different constrains for different aggregation functions.

However, to the best of our knowledge, there is no specific imputation approach for di-
mensions. Therefore, in this manuscript, we propose a hybrid approach for the imputation
of missing data in dimensions. Our approach is based on dependencies and KNN. Since
DWs have multidimensional schema where there are hierarchies in the dimensions. The
different levels of a hierarchy have their functional dependency relationships. So since the
functional dependencies can be easily obtained, we can apply the dependency-based im-
putation approach to replace missing values. However, as we analysed, the disadvantage
is that there may be not enough dependency relationships for replacing all missing values.
We should thus carry out another imputation. We then propose to replace the remaining
missing values by a KNN-based imputation. We choose KNN because as we analysed, it is
suitable for different types and amounts of data. The imputation approaches of the other
categories suffer from the limit of the data types or may be biased in certain contexts or
fit only the large amount of data. The disadvantage of KNN is the high computational
cost. But we firstly replace some missing data by dependencies, which can reduce the
imputation work for KNN.

Hence we propose Hie-OLAPKNN which combines the hierarchical imputation with a
KNN-based imputation method.

101

3. HIERARCHICAL DIMENSION IMPUTATION 102

3 Hierarchical Dimension Imputation
There exists functional dependency relationships between different levels of a dimension
hierarchy. The functional dependency is a robust rule. Knowing the functional depen-
dency relationships, we can know the corresponding higher-granularity level value of a
given level value. Thus, we take advantage of such relationships to replace missing values.
These relationships exist between the attributes of a hierarchy in a dimension. In addition,
if there are identical attributes in different dimensions of a DW, these relationships may
also exist between the attributes of different dimensions. Therefore, we have two types of
hierarchical dimension imputation which can be classified as intra-dimensional imputation
and inter-dimensional imputation, which we explain respectively in this section.

3.1 Intra-dimensional Imputation

Intra-dimension imputation relies on data from the same dimension. There are parame-
ters and weak attributes in a dimension. The functional dependency relationships exist
between the parameters of a hierarchies or between a parameter and its weak attributes.
So for the imputation of a dimension, we first replace the parameters, then when the
parameter imputation is finished, we can carry out the weak attribute imputation. It
is important to note that, since the parameter sets of hierarchy are ordered sets, the
imputation of parameters is sequential (from the lowest-granularity level to the highest-
granularity level parameter). This ensures that imputation is maximal, as the value of
a higher-granularity level parameter depends on its lower-granularity level parameters.
If we replace the values of a higher-granularity level parameter before the imputation
of its lower-granularity level parameters, there may be some missing data of the lower-
granularity level parameters which are not yet replaced but which can be used to replace
the higher-granularity level parameters so that the imputation is not maximal. Our intra-
dimension imputation method is presented in Algo. 9. We first check each parameter in
each hierarchy of the DW (line1−2). If there exist missing data for this parameter (line3),
we search for an instance with the same value in a lower-granularity parameter and whose
value exists (line4−5). Then, we can then fill in the missing data with this value (line6).

The values of a weak attribute depend on the values of its parameter. Then, for each
weak attribute of the parameter we check, if there are missing data (line7), we search
for the instance that has the same value of its parameter or a lower-granularity level
parameter whose value exists (line8−9). The missing weak attribute data can then be
supplied by this value (line10).

Example 3.1. Fig. IV.2 shows the hierarchical intra-dimensional imputation. The di-
mension table D12 is the merged dimension in Example 5.3 of Chapter III. For the instance
of attribute Department whose IdCus is C7, there is a null value after the merging. We
can find another instance whose IdCus is C4 which has the same value as it on a lower-
granularity parameter City. In the same time, it has a value of the attribute Department,

102

3. HIERARCHICAL DIMENSION IMPUTATION 103

Algorithm 9: IntraImputation(D)
Input : A dimension D having empty values to be completed

1 for H ∈ HD do
2 for each pH

v ∈ ParamH do
3 for each iD

e ∈ {iD ∈ ID : iD.pH
v is null} do

4 while pH
v2 ∈ ParamH ∧ pH

v2 ⪯H pH
v do

5 if ∃iD
e2 ∈ ID, iD

e2 .pH
v2 = iD

e .pH
v2 ∧ iD

e2 .pH
v is not null then

6 iD
e .pH

v ← iD
e2 .pH

v ;

7 for each iD
e3 ∈ {i

D ∈ ID : iD.wpH
v

y is null ∧ wpH
v

y ∈ WeakH [pH
v]} do

8 while pH
v3 ∈ ParamH ∧ (pH

v3 ⪯H pH
v ∨ pH

v3 = pH
v)) do

9 if ∃iD
e4 ∈ ID, iD

e4 .pH
v3 = iD

e3 .pH
v3 ∧ iD

e4 .pH
v is not null then

10 iD
e3 .wpH

v
y ← iD

e4 .wpH
v

y ;

Figure IV.2: Hierarchical intra-dimensional imputation

so the value D4 can be used to replace the empty value as shown in the figure. For the
empty value of C5 and C7 on the parameter Continent, we can find instances having the
same value on parameter Country as them and whose values of Continent (C3, C6) are
not empty. These values can thus be applied for the imputation. For the empty values of
C5 and C7 on weak attribute Population, they are replaced in the same way.

3.2 Inter-dimensional Imputation

In a DW, there may be common attributes in different dimensions. Therefore, we can
replace missing data with such inter-dimensional common attributes. The main idea of
inter-dimension imputation is similar to intra-dimension imputation’s, except that instead
of searching for parameters in the same hierarchy, we search for common parameters of
hierarchies in other dimensions (Algo. 10, line3−4 and line9−10). When performing the

103

3. HIERARCHICAL DIMENSION IMPUTATION 104

imputation of weak attributes, we must make sure that, in the searched dimension, the
searched parameter is semantically identical with the parameter of the weak attribute
to be replaced; and that it bears a semantically identical weak attribute (line10−11).
We say “semantically identical” because in a DW, common attributes may be presented
differently in different dimensions. Since in a DW, the designer would normally not use
two vocabularies to describe a same entity, but may use the different prefixes or suffixes to
distinguish the same entity in different dimensions, we must therefore use string similarity
to match attribute names.

Algorithm 10: InterImputation(D, DW)
Input : A dimension D having empty values to be completed and the data

warehouse to which it belongs DW

1 while pH
v ∈ ParamH , where H ∈ HD do

2 for each iD
e ∈ {iD ∈ ID : iD.pH

v is null} do
3 for each pH2

v2 ∈ ParamH2, where H2 ∈ HD2, D2 ∈ DDW ∧D2 ̸= D do
4 if pH2

v2 ≃ pH
v then

5 while pH2
v3 ∈ ParamH2 ∧ pH2

v3 ⪯H2 pH2
v2 do

6 if
∃iD2

e2 ∈ ID2∃pH
v4 ∈ ParamH , pH2

v3 ≃ pH
v4∧iD2

e2 .pH2
v3 = iD

e .pH
v4∧iD2

e2 .pH2
v2

is not null then
7 iD

e .pH
v ← iD2

e2 .pH2
v2 ;

8 for each iD
e3 ∈ {i

D ∈ ID : ∃wpH
v

y ∈ WeakH [pH
v], iD.wpH

v
y is null} do

9 for each pH3
v5 ∈ H3, where H3 ∈ HD3, D3 ∈ DDW ∧D3 ̸= D do

10 if pH3
v5 ≃ pH

v ∧ ∃w
p

H3
v5

y2 ∈ WeakH3 [pH3
v5], w

p
H3
v5

y2 ≃ wpH
v

y then
11 while pH3

v6 ∈ ParamH3 ∧ (pH3
v6 ⪯H3 pH3

v5 ∨ pH3
v6 ≃ pH

v) do
12 if ∃iD3

e4 ∈ ID3∃pH
v7 ∈ ParamH , pH3

v6 ≃ pH
v7 ∧ iD3

e4 .pH3
v6 =

iD
e3 .pH

v7 ∧ iD3
e4 .w

p
H3
v6

y2 is not null then

13 iD
e3 .wpH

v
y ← iD3

e4 .w
p

H3
v6

y2 ;

Example 3.2. The inter-dimensional imputation for the merged dimensions D12 and D21

of Example 5.4 in Chapter III is shown in Fig. IV.3. D12 and D21 have common parameter
Region, which is a lower-granularity parameter of the missing value attribute Continent

of D12 and of the missing value attribute Country of D21. For the instances of D12 having
missing values on Continent, we can find the instances of D21 having the same values
of Region and replace the missing values with the values of Continent of D21. Missing
values of D21.Country can also be replaced in the same way.

104

3. HIERARCHICAL DIMENSION IMPUTATION 105

Figure IV.3: Hierarchical inter-dimensional imputation

3.3 Hierarchical Imputation Order

When there are common attributes among different dimensions, we can carry out both
intra- and inter- dimensional imputation. It is necessary to define the order of these two
types of imputation to replace a maximal number of values with the least operations. The
intra-dimensional imputation is based on functional dependency relationships of the di-
mensional values. Thus if we do not add other new values into the dimension, the number
of the relationships will not change. The intra-dimensional imputation is indeed a process
of spreading the existing FD relationships of the dimension to every instance. However,
by launching inter-dimensional imputation, we may add some new FD relationships of
other dimensions’ values into the dimension whose values are to be replaced. If we carry
out intra-dimensional imputation before inter-dimensional imputation, the newly added
FD relationships by inter-dimensional imputation may not be applied to every instance.
We should thus repeat intra-dimensional imputation to apply them for all the dimension.
Therefore, the proper imputation order should be first carrying out inter-dimensional im-
putation and then intra-dimensional imputation. We can first add new FD relationships
and then apply the original FD relationships and the new ones to every instance so that we
replace a maximal number of values. We take an example to show why can not launching
intra-dimensional imputation before the inter-dimensional imputation.

Example 3.3. For the original dimensions D12 and D21 in Fig. IV.4 and in Fig. IV.5,
there are common attributes between them so we can carry out inter-dimensional impu-
tation to replace the missing values. These 2 figures show respectively the cases where
we first launch the intra-dimensional imputation and first launch the inter-dimensional
imputation. For the instance of D12 whose IdCus is C1, its missing value of attribute
Continent can be replaced by the instances of D21 whose value of Region is the same.
However since the imputation of this value is accomplished with the aid of the attribute
Region, and the Region of C3 is missing, the missing value of Continent of C3 can
not be replaced during the inter-dimensional imputation. But it can then be replaced
by intra-dimensional imputation with the aid of the values of Country. So if we first
launch intra-dimensional imputation, as shown in Fig. IV.4, we should carry out three

105

4. DIMENSION INSTANCE DISTANCE 106

times of imputations (intra-dimensional, inter-dimensional, intra-dimensional) to be able
to replace all missing values that can be replaced. If we first launch inter-dimensional im-
putation, as shown in Fig. IV.5, we only need two times of imputations (inter-dimension,
intra-dimensional).

Figure IV.4: Example of first launching intra-dimensional imputation

4 Dimension Instance Distance
As mentioned in Section 1, the hierarchical imputation suffers from the limit of sparsity.
Thus, after the hierarchical imputation, we propose to use the KNN-based algorithm
named OLAPKNN to replace the remaining missing data. In KNN algorithm, the value or
the class of an object is obtained based on its k-nearest neighbors. So in KNN imputation,
the replaced missing value is obtained based on the k-nearest neighbors of the missing data
instance. We should thus calculate the distance between dimension instances containing
missing data to be replaced and other instances in the dimension. In a dimension D,
for an instance i1 ∈ ID containing missing data in a hierarchy H1 ∈ HD, and another
instance i2 ∈ ID, we propose to calculate their distance by 4 levels:

• The dimension instance distance is the final distance between two instances
i1 and i2, denoted by ∆(i1, i2). Since the attributes on the same hierarchy have
their dependency relationships, we consider the attributes of a hierarchy as an en-
tirety. ∆(i1, i2) is thus calculated by the weighted sum of the hierarchy instance

106

4. DIMENSION INSTANCE DISTANCE 107

Figure IV.5: Example of first launching inter-dimensional imputation

distances.

• The hierarchy instance distance is the distance of the attributes of a hierarchy
H2 ∈ HD i.e. distance between {i1.a1 ∈ i1 : a1 ∈ AH2} and {i2.a1 ∈ i2 : a1 ∈ AH2},
denoted by ∆H2(i1, i2). It is calculated by the weighted sum of the hierarchy level
instance distances. The lowest-granularity level of each hierarchy is the same i.e.
dimension identifier with its weak attributes, so we consider the hierarchy instance
distance from the second level of the hierarchy and we regard each weak attribute
of id as a hierarchy containing only one parameter.

• The hierarchy level instance distance is the instance distance between the at-
tributes of a level l on a hierarchy H2 i.e. distance between {i1.a2 ∈ i1 : a2 ∈
pH2

l ∪ WeakH2 [pH2
l]} and {i2.a2 ∈ i2 : a2 ∈ pH2

l ∪ WeakH2 [pH2
l]}, denoted by

∆
p

H2
l

(i1, i2). It is calculated by the average of the instance distances of the level’s
parameter and weak attributes (attribute distances).

• The attribute distance is the instance distance of an individual attribute au ∈ AD

i.e. distance between i1.au and i2.au, denoted by ∆(i1.au, i2.au).

We next explain how to go from calculating the attribute distance to calculating the
hierarchy level instance distance then to calculating the hierarchy instance distance and
finally obtaining the dimension instance distance between i1 and i2 with a series of exam-
ples.

Example 4.1. Given a dimension Product containing two hierarchies H1 and H2 whose
schema and instances are shown in Fig. IV.6. Instance i1 contains missing values on H1,
Fig. IV.7 shows the calculation of the distance ∆(i1, i2) between i1 and another instance

107

4. DIMENSION INSTANCE DISTANCE 108

(a) Schema (b) Instances

Figure IV.6: Schema and instances of dimension Product

i2.

Figure IV.7: Distance between i1 and i2

4.1 Attribute Distance

There are different attribute data types which can be mainly classified into numerical and
textual. For numerical data, we propose to use normalized distance of numerical data
(Han et al., 2012) because it is a distance normalized to the range between 0 and 1.

For textual data, the different distance metrics can be classified into semantic dis-
tance and syntactic distance (Wang and Dong, 2020). For the strings having semantically
meaningful information, the semantic distance is more accurate than syntactic distance
because two strings may describe the similar or identical entity but without being syn-
tactically similar. Therefore, we first apply semantic distance e.g. cosine distance based
on word2vec (Jatnika et al., 2019). If the attribute value can not be found in the model,
which means that the strings do not having semantically meaningful information, we can
then use the syntactic distance e.g. normalized Levenshtein Distance (Yujian and Bo,
2007).

For an attribute au1 , if i1.au1 is missing, then ∆(i1.au1 , i2.au1) cannot be calculated
and is not taken into count for the distance calculation. For an attribute au2 , if i2.au2

is missing, then ∆(i1.au2 , i2.au2) is obtained by the average distance between i1.au2 and
other instances whose value of au2 is not missing.

Example 4.2. Following the calculation rules of the attribute distance, we obtain ∆(i1.Brand,

108

4. DIMENSION INSTANCE DISTANCE 109

i2.Brand) = 0.71, ∆(i1.CompanySize, i2.CompanySize) = 0, ∆(i1.Name, i2.Name) =
0.8, ∆(i1.IdCat, i2.IdCat) = 0, ∆(i1.Category, i2.Category) = 0. Since i1.IdSub and
i1.Subcategory are missing, ∆(i1.IdSub, i2.IdSub) and ∆(i1.Subcategory, i2.Subcategory)
cannot be calculated and are not taken into count for the calculation of ∆(i1, i2).

4.2 Hierarchy Level Instance Distance

The hierarchy level instance distance ∆
p

H2
l

(i1, i2) is calculated as (IV.1).

∆
p

H2
l

(i1, i2) =
∆(i1.p

H2
l , i2.p

H2
l) + ∑

w∈W eak[pH2
l

]
∆(i1.w, i2.w)

1 + |Weak[pH2
l]|

(IV.1)

As a hierarchy level may contain several attributes including a parameter and some
weak attributes, we obtain the average distance of each attribute as the hierarchy level
instance distance. As we mentioned that we only consider the levels from the second level
of each hierarchy, we do not calculate the distance for the first level of hierarchies.

Example 4.3. According to (IV.1), for the levels in H1, we have ∆H1
p3 (i1, i2) = (0 +

0)/2 = 0. As the parameter and weak attribute values of the second level i1.IdSub and
i1.Subcategory are missing, the distance of this level is not taken into account. For H2,
since the two levels contain only one parameter without weak attribute, their hierarchy
level is equal to the attribute distance of the parameter, so we have ∆H2

p2 (i1, i2) = 0.71,
∆H2

p3 (i1, i2) = 0.

4.3 Hierarchy Instance Distance

The hierarchy instance distance is calculated as (IV.2), where Wl(pH2
l) is the hierarchy

level weight.

∆H2(i1, i2) =
∑

p
H2
l

∈H2\{id}

Wl(pH2
l)∆

p
H2
l

(i1, i2) (IV.2)

The hierarchy instance distance is calculated by multiplying the distance of each hier-
archy level with a hierarchy level weight and by adding them together. The hierarchy level
weight is considered because the parameters on the lower-granularity levels have thinner
granularity, their weight for measuring the hierarchy instance distance should be higher.
For two instances, it is harder for two instances to be similar on a lower-granularity level
than on a higher-granularity level. For a weak attribute w ∈ WeakH2 [id] of the first
hierarchy level, ∆w(i1, i2) = ∆(i1.w, i2.w).

Hierarchy Level Weight The lower granularity-level parameter has higher hierarchy
level weight. Thus, we propose two hierarchy level weights: one is based on the cardinal-

109

4. DIMENSION INSTANCE DISTANCE 110

ities of the parameters and another is an incremental weight.

• For the cardianlity-based weight, we consider the number of the distinct values of
the level as the portion of the weight. Thus for the cardianlity-based hierarchy level
weight of the lth level at H2 is calculated as (IV.3), where dv(n) denotes the number
of distinct values of the nth level.

W c
l (pH2

l) = dv(l)∑|P aramH2 |
j=2 dv(j)

(IV.3)

• However, when the cardinality ratio between certain parameters is very large, the
cardinality-based weight may be biased. So we also propose another type of incre-
mental hierarchy level distance weight. For the incremental weight, we consider the
weight of the highest-granularity as one portion and it increases by one portion for
each neighboring lower-granularity level. The total weight should be equal to 1,
thus the incremental hierarchy level weight of the lth level at H2 is calculated as
(IV.4).

W i
l (pH2

l) = 2(|ParamH2| − l + 1)
|ParamH2 |2 − |ParamH2|

(IV.4)

Example 4.4. Our example has only 5 instances, so we can use cardinality-based weight
to get hierachy level weight. We thus have for H1: Wl(pH1

2) = 3/(3 + 2) = 0.6 and
Wl(pH1

3) = 2/(3+2) = 0.4. For H2: Wl(pH2
2) = 3/(3+2) = 0.6 and Wl(pH2

3) = 2/(3+2) =
0.4. We can then calculate the hierarchy instance distances: ∆H1(i1, i2) = 0.4 × 0 = 0,
∆H2(i1, i2) = 0.6× 0.71 + 0.4× 0 = 0.426, ∆w1(i1, i2) = 0.8.

4.4 Dimension Instance Distance

The dimension instance distance ∆(i1, i2) is calculated as (IV.5), where Wh(H1, H2) and
Wh(H1, w) are hierarchy weights of H2 and w with respect to H1.

∆(i1, i2) =
∑

H2∈HD

Wh(H1, H2)∆H2(i1, i2) +
∑

w∈W eakH2 [id]
Wh(H1, w)∆w(i1, i2) (IV.5)

It is calculated by multiplying each hierarchy instance distance with a hierarchy weight
and by adding them together. Since the attributes of a hierarchy provide the same cate-
gory of information and have the dependency relationships among them, we can consider
them as an entirety of attributes. We consider the hierarchy weight because the attribute
values of a hierarchy have different correlation and dependency with respect to other dif-
ferent hierarchies. We should thus evaluate to how many degrees the values of the other

110

4. DIMENSION INSTANCE DISTANCE 111

hierarchies determine the values of the missing value hierarchy to decide the hierarchy
weights.

4.5 Using Dependency Degree as Hierarchy Weight

The dependency degree in the rough set theory measures the degree of the dependency
between attributes, so it is applied for the hierarchy weight. The rough set theory is
an important mathematical approach to deal with vagueness (Pawlak, 1982; Pawlak and
Skowron, 2007). In the rough set theory (Pawlak and Skowron, 2007; Pawlak, 1977), a
dataset is called an information system defined as a pair S = (U, A), where U and A are
non-empty finite sets, U is a set of objects and A is a set of attributes. For each attribute
a ∈ A, it determines a function fa : U → Va, where Va is the domain of attribute
a containing the set of values of a. Any subset B of A determines an indiscernibility
relation:

I(B) = {(x, y) ∈ U × U : fa(x) = fa(y),∀a ∈ B} (IV.6)

In fact, it can be seen that the indiscernibility relation is indeed a binary equivalence
relation containing all the object pairs having the same attribute values on B. The family
of all equivalence classes of I(B) is denoted by U/I(B), in short U/B. An equivalence
class containing an element x is denoted as I(B)(x), in short B(x). The indiscernibility
relation is further used to define the approximations on sets X ⊆ U :

B∗(X) = {x ∈ U : B(x) ⊆ X} (IV.7)

B∗(X) = {x ∈ U : B(x) ∩X ̸= ∅} (IV.8)

B∗(X) is the lower approximation of the set X with respect to B which can be certainly
classified as X using B, while B∗(X) is the upper approximation of the set X with respect
to B which can be possibly classified as X using B.

For an information system S = (U, A), we can distinguish A into two classes C, D ⊆ A,
which are respectively called condition and decision attributes. We then get a decision
system S = (U, C, D), the degree k to which D depends on C, denoted C ⇒k D is defined
as:

k = γ(C, D) = card(POSc(D))
card(U) (IV.9)

where

POSc(D) =
⋃

X∈U/D

C∗(X) (IV.10)

and card(X) represents the cardinality of an non-empty set X.

111

5. OLAPKNN 112

Hierarchy Weight When calculating the hierarchy distance weight, we can consider
a decision system S = (ID, AH2

n , AH1
n), since we do not take the first level of a hierarchy

into account, AH1
n = AH1 \ ({id} ∪WeakH1 [id]), AH2

n = AH2 \ ({id} ∪WeakH2 [id]). The
second hierarchy level parameters pH1

2 , pH2
2 determine all the other hierarchy attributes in

AH1
n and AH2

n , we can reduce the attribute sets of AH1
n and AH2

n to the sets containing
only the values of the second hierarchy level parameter pH1

2 , pH2
2 . According to (IV.9), the

degree k to which H1 depends on H2, denoted H2 ⇒k H1 is thus defined as:

k = γ(AH2
n , AH1

n) = γ(pH2
2 , pH1

2) =
card(POS

p
H2
2

(pH1
2))

card(ID) (IV.11)

where POS
p

H2
2

(pH1
2) = ⋃

X∈ID/p
H1
2

pH2
2∗ (X) and card(X) is the cardinality of an non-empty

set X, the missing second level parameter values are not taken into account. For H1 itself,
we have γ(AH1

n , AH1
n) = 1.

The hierarchy distance weight of H2 with respect to H1 is the ratio of their dependency
degree with respect to the sum of the dependency degrees of all hierarchies and first level
weak attributes in D with respect to H1 as (IV.12).

Wh(H1, H2) = γ(AH2
n , AH1

n)∑
H3∈HD

γ(AH3
n , AH1

n) + ∑
w∈W eakH1 [id]

γ(w, AH1
n) (IV.12)

Example 4.5. In our example, we have card(ID) = 5, card(POS
p

H2
2

(pH1
2)) = 2, so

γ(AH2
n ,

AH1
n) = 2/5 = 0.4. In the same way, we can get γ(w1, AH1

n) = 2/5 = 0.4, we also have
γ(AH1

n , AH1
n) = 1. We can thus get the hierarchy weights: Wh(H1, H2) = 0.4/(0.4 + 0.4 +

1) = 0.22, Wh(H1, H1) = 1/(0.4 + 0.4 + 1) = 0.56 and Wh(w1, H2) = 0.4/(0.4 + 0.4 + 1) =
0.22. We can finally obtain the dimension instance distance ∆(i1, i2) = 0.22 × 0.46 +
0.22× 0.8 + 0.56× 0 = 0.28

5 OLAPKNN

5.1 OLAPKNN Overview

The OLAPKNN imputation is shown in Algo. 11. Since there are parameters and weak
attributes in a dimension, OLAPKNN is composed of two steps including the imputation
of parameters and the imputation of weak attributes. The weak attributes’ values are
determined by their parameters’ values, so we impute the parameters before imputing
their weak attributes. In order to respect the dependency constraints of the hierarchy
levels, we create candidate lists for possible replaced values in the imputation process.
We also consider possible conflicts during the imputation and propose solutions to deal
with them. The imputation steps can be briefly summarized as follow.

112

5. OLAPKNN 113

1. For missing data of each hierarchy (line1), we create candidate lists of the instances
containing possible replaced values and select the k nearest neighbors in the candi-
date lists to replace the missing data (line2).

2. There are weak attributes which can be imputed together with their parameter.
Finally for the remaining missing weak attribute data, they are imputed in the
similar way (line3).

Algorithm 11: OLAPKNN(D)
1 for H ∈ HD do
2 imputeParam(D, H) ;
3 imputeWeak(D, H) ;

Next, we explain in detail the OLAPKNN imputation algorithm.

5.2 Imputation for Parameters by OLAPKNN

5.2.1 Parameter Imputation Order

We first introduce the continuous missing parameter group in order to explain the impu-
tation order for parameters.

Definition 5.1. For an instance ir ∈ ID in the dimension D containing missing values on
parameters of a hierarchy H, all these parameters are in a set PmH

r = {pH
v ∈ ParamH :

ir,pH
v

is empty}. For the parameters in PmH
r , they can be divided into one or several con-

tinuous missing parameter groups. A continuous missing parameter group (CG)
contains one or several parameters which are neighbors on H and are maximal neighbors
in PmH

r . By neighbors on H, we mean that for the parameter plowest having the lowest-
granularity level in the CG on H and the one phighest having the highest-granularity level,
if there exists any parameter pmiddle ∈ ParamH , such that plowest ⪯H pmiddle ⪯H phighest,
then pmiddle ∈ PmH

r . By maximal neighbors in PmH
r , we mean that if there exists any

parameter plow2 ∈ ParamH , such that plow2 ⪯H plowest, then plow2 ̸∈ PmH
r ; if there exists

any parameter phigh2 ∈ ParamH , such that phighest ⪯H phigh2, then phigh2 ̸∈ PmH
r . We

call all CGs of a hierarchy H containing a same number of parameters a n-CGs of H,
where n denotes the number of parameters.

Algo. 12 shows the imputation of the parameters. For a given hierarchy H on a
dimension D, we carry out the imputation for parameters in the n-CGs by the ascending
order of n (line1). We can thus make sure that all the (n− 1)-CGs instances are imputed
so that we can carry out the imputation for the n-CGs based on the existing data. Then
for each n-CGs, we look at all possible CG combinations (line2−3). Next we verify if
there are instances containing missing values for each possible CG (line4−9). According
to Definition 5.1, the instances of a CG on H have missing values on all parameters of
the group. If there is a neighboring lower-granularity or higher-granularity parameters of

113

5. OLAPKNN 114

the group, the instances do not have missing value on them (line9).

Algorithm 12: imputeParam(D, H)
1 for ncontinuous← 1 to |ParamH | − 1 do
2 for i← 1 to |ParamH | − ncontinuous do
3 PCG ← ParamH [i : i + ncontinuous− 1] ;
4 plow, phigh ← ø ;
5 if i > 1 then
6 plow ← Param[i− 1] ;
7 if i < |ParamH | − ncontinuous then
8 phigh ← Param[i + ncontinuous] ;
9 Imissing = {ir ∈ ID : (∀pcg ∈ PCG, i.r, pcg = null) ∧ (∃plow =⇒ ir.plow ̸=

null) ∧ (∃phigh =⇒ ir.phigh ̸= null)} ;
10 lowMap←Map ;
11 for im ∈ Imissing do
12 Icandidate ← getCandidateList(D, PCG, phigh, im, 1) ;
13 vWeightMap← getV WeightMap(D, im, Icandidate, k, PCG) ;
14 lowMap←

replaceNoP low(D, H, lowMap, vWeightMap, im, PCG, plow) ;
15 if ∃plow then
16 replaceP low(lowMap, PCG, H, D, plow) ;

Algorithm 13: getCanList(D, PCG, phigh, im, parameter)
1 if parameter = 1 then
2 if ∃phigh then
3 Icandidate ← {ir ∈ ID : (∃pcg ∈ PCG, ir.pcg ̸= null)∧(ir.phigh = irmissing

.phigh)}
;

4 else
5 Icandidate ← {ir ∈ ID : (∃pcg ∈ PCG, ir,pcg ̸= null)} ;

6 else
7 Icandidate ← {ir ∈ ID : (ir.weak ̸= null)} ;
8 return Icandidate

5.2.2 Candidate List

Since some missing data are already replaced by the hierarchical imputation, for the
remaining missing data, they can no longer be replaced with the aid of their lower-
granularity level parameters. For a value of one parent parameter, there may be several
possible values on a child parameter of its. So for a missing data instance of a CG,
we can find all possible replaced values based on their neighboring higher parameter
and create a candidate list (Algo. 12 line11). The candidate list contains not only the
candidate replaced values of CG attributes but also the values of all other attributes of
the dimension because we need all attribute’s value for the calculation of the distances.

114

5. OLAPKNN 115

Algo. 13 shows the candidate list creation for an instance of a CG. If the neighboring
higher-granularity level parameter phigh of the CG exists, we search for all the instances
having the same values on phigh as the CG instance, and containing non-missing values on
the CG parameters. Then these instances can be added into the candidate list (line1−3).
If there does not exist a neighboring higher parameter for a CG, we add all the instances of
the dimension which contain non-missing values on the CG parameters into the candidate
list (line4−5).

5.2.3 Creation of Replaced Value Weight Map

For the CG instance, we can get a map for each possible replaced values in the nearest
neighbors with their distance-based weight for the selection of the final replaced value as
described in Algo. 14. We first create a map of each instance in the candidate list with its
distance with respect to the missing instance (line1−3). Then we can select the k nearest
candidate instance to create a candidate list if the candidate list contains more than k

instances, if not, we can keep all candidate instances (line4−5). The selected candidate
instances may contain same replaced values, so we create a map of each replaced values
with their weight (line6). According to (Dudani, 1976), for a instance im of a CG, for a
selected candidate list containing k instances, the distance weight of the n nearest instance
icn can be calculated as (IV.13), where ick denotes the kth nearest instance and ic1 denotes
the nearest instance. It is to be noted that Wd(im, ic) = 1 when ∆(im, ick) = ∆(im, ic1).

Wd(im, ic) = ∆(im, ick)−∆(im, icn)
∆(im, ick)−∆(im, ic1)

(IV.13)

Thus the weight of a candidate of replaced values is the sum of the weight of the
instances which contain them (line4−5).

Algorithm 14: getV WeightMap(D, im, Icandidate, k, PCG)
1 iDistanceMap←Map ;
2 for ic ∈ Icandidate do
3 iDistanceMap[ic,id]← ∆(im, ic) ;
4 if |Icandidate| > k then
5 iDistanceMap← iDistanceMap.top(k);
6 vWeightMap←Map ;
7 for ic,id ∈ iDistanceMap.keys() do

/* addMap(Map, key, value): Create the map if it does not exist. Add the
value to the existing value if the key exists, assign the value to the key
if not. */

8 addMap(vWeightMap, {ic.pcg : ic.pcg ∈ ic.PCG}, Wv(im, ic));
9 return vWeightMap

115

5. OLAPKNN 116

5.2.4 Replacement of Values

To fill in the missing values of CG, we have two cases: the first case (Algo. 12 line13)
is that there is no lower non-id parameter of the missing parameter group, the second
case (Algo. 12 line14−15) is that there is such parameter. The difference is that for the
second case, we have to take the strictness of hierarchy into account by making sure that
a lower parameter value of the CG has only one higher-granularity level parameter after
the imputation.

The replacement of missing values in the first case is described in Algo. 15. We can
take the values having the highest weight in the weight map (line1) to fill in the missing
values of the CG (line2−3).

The replacement of missing values in the second case is described in Algo. 15 and Algo.
16. We create a map lowMap for each neighboring lower-granularity level parameter value
which corresponds to another map of the each possible replaced value and its total weight
(Algo. 12 line10). For each instance of the CG, we get the replaced values with the
highest value weight (Algo. 15 line1). For the value of its neighboring lower-granularity
parameter, we update the replaced values and the weight (Algo. 15 line8−10). When all
the missing instances of a CG are treated, we get a final lowMap. For each value of the
neighboring lower-granularity level parameter in lowMap, we can take the replaced values
with the highest weight to fill in the missing values (Algo. 16 line1−5).

Algorithm 15: replaceNoP low(D, H, lowMap, vWeightMap, im, PCG, plow)
1 ireplace, PCG ← vWeightMap.top(1).key() ;
2 if ̸ ∃plow then
3 im.PCG ← ireplace.PCG ;
4 for pcg ∈ PCG do
5 for wpcg ∈ WeakH [pcg] do
6 if im.wpcg = ø then
7 im.wpcg ← {ir.w

pcg ∈ ID : ir.pcg = im.pcg}.getOne() ;

8 else
9 addMap(lowMap[im.plow], ireplace.PCG, vWeightMap[ireplace.PCG]) ;

10 addMap(lowMap, im.plow, lowMap[im.plow]) ;
11 return lowMap

Example 5.1. In the example of Fig. IV.6. For the imputation of the missing values of
the level of “IdSub” for the instance i1, we first create a candidate list. Its neighboring
higher-granularity level parameter is “IdCat”, we can find that the instances i2 and i5

have the same value on this parameter as i1, so they are added into the candidate list. We
already got the distance between i1 and i2 in the previous example ∆(i1, i2) = 0.28, by the
same way, we get ∆(i1, i5) = 0.32. By IV.13, we get Wd(i1, i2) = 1 and Wd(i1, i5) = 0. If
we choose k = 1, we can thus select the instance i2 which has the highest replaced value

116

5. OLAPKNN 117

Algorithm 16: replaceP low(lowMap, PCG, H, D, plow)
1 for im.plow ∈ lowMap.keys() do
2 vWeightMap← lowMap[im.plow].top(1) ;
3 ireplace.plow ← vWeightMap.key() ;
4 for im ∈ {ir ∈ ID : ir.plow = im.plow} do
5 im.PCG ← ireplace.PCG ;
6 for pcg ∈ PCG do
7 for wpcg ∈ WeakH [pcg] do
8 if im.wpcg = ø then
9 im.wpcg ← {ir.w

pcg ∈ ID : ir.pcg = im.pcg}.getOne() ;

weight. We then replace the IdSub of i1 with “Ph”. The weak attribute SubCategory of
this level of i2 is not empty, so we can also replace the missing value of SubCategory of
i1 by “Phone”.

5.3 Imputation of Weak Attributes

In this part, we discuss the imputation of weak attributes which is performed during
(Algo. 11 line4) and after (Algo. 11 line5) the imputation of parameters.

5.3.1 Weak Attribute Imputation During Parameter Imputation

When replacing a missing value of a parameter, if there are missing values on its weak
attributes, they can be replaced by the non-missing corresponding weak attribute value
of the replaced parameter since the weak attribute values are determined by the value of
the corresponding parameter (Algo. 15 line4−7, Algo. 16 line6−9).

5.3.2 Weak Attribute Imputation After Parameter Imputation

The imputation for weak attributes after the parameter imputation is described in Algo.
17. For a hierarchy H of dimension D, we search for the missing values for each weak
attribute of each parameter (line1−4). As the weak attribute value is determined by its
parameter, we create a map pwMap for each parameter value corresponds to another map
of the each possible replaced weak attribute value and its total weight (line5). Then for
each instance containing missing values of the weak attribute, we create a candidate list
(line6−7) containing instances of the dimension having non-missing values on the weak
attribute (Algo. 13 line6−7). We then get the replaced value weight map (line8) and take
the value having the highest weight as the candidate replaced value (line9). We can thus
then update the replaced weak attribute value and its weight for the current parameter
value (line10−11). When we finish selecting the replaced values and getting their weights
for each value of the parameter, we can choose the value having the highest weight as the
final replaced value for the weak attribute (line12−13).

117

6. EXPERIMENTAL ASSESSMENTS 118

Algorithm 17: imputeWeak(D, H)
1 for p ∈ ParamH do
2 if p ∈ WeakH .keys() then
3 for w ∈ WeakH [p] do
4 Imissing = {ir ∈ ID : ir,w = null} ;
5 pwMap←Map ;
6 for im ∈ Imissing do
7 Icandidate ← getCandidateList(Imissing, D, [w], phigh, 0) ;
8 vWeightMap← getV WeightMap(D, im, Icandidate, k, [w]) ;
9 replaceweak(type, vWeightMap, w) ;

10 ireplace,w ← vWeightMap.top(1).key() ;
11 addMap(pwMap, im.p, pwMap[im.p]) ;
12 for im,p ∈ pwMap.keys() do
13 im,w ← pwMap[im.p].top(1) ;

6 Experimental Assessments
To validate the effectiveness and efficiency of out proposed Hie-OLAPKNN algorithm, we
implement our algorithm and conduct experiments with different datasets.

6.1 Dataset

We apply one benchmark dataset TPCH (as in chapter III) and four real-world datasets
from the relational dataset repository site1 including Adventure which is a dataset about
a fictious, multinational bicycle manufacturer called Adventure Works Cycles; F1 which
has information concerning Formula 1 races, starting from the 1950 season until today;
GoSales is a dataset from IBM containing information about daily sales, methods, retail-
ers, and products of a fictitious outdoor equipment retail chain “Great Outdoors” (GO);
Organisation is a geography dataset from University of Göttingen describes information
about 185 countries. These dataset are in the relational database form. We create a data
warehouse for each dataset according to the schema provided in their source and based
on the attribute semantics. The DW schema of each dataset and the number of tuples
in each dimension are shown in Appendix B. The DWs are integrated in R-OLAP format
with Oracle 11g. The benchmark dataset is used to validate the application of combing
intra- and inter- dimensional imputation in case of dimensions having same parameters
in hierarchical imputation. The four real-world datasets are used to validate the applica-
tion of combining hierarchical imputation and OLAPKNN and to compare our proposed
algorithm to other approaches from the literature.

1https://https://relational.fit.cvut.cz/

118

https://https://relational.fit.cvut.cz/

6. EXPERIMENTAL ASSESSMENTS 119

6.2 Experimental methodology

6.2.1 Experimental Metrics

The objective of the experiments is to validate the effectiveness and the efficiency of our
algorithm and the strictness of the hierarchies with the imputed data.

• For the effectiveness, we use the accuracy metrics of recall, precision and F-score
defined as follow.

– Recall =
{Imputed} ∩ {True}

{True}
;

– Precision =
{Imputed} ∩ {True}

{Imputed}
;

– F-score =
2× Precision×Recall

Precision + Recall
,

where {Imputed} is the set of the imputed values by the algorithms and {True}
is the set of the ground truth imputed values.

• For the efficiency, we use run time as the metric.

• For the strictness of the hierarchies, we define a metric of strictness degree.

The strictness degree can be calculated for a parameter p with respect to a single
attribute a which may be its higher-granularity level parameter or its corresponding
weak attribute. We first count the number of distinct values Nd(p) for the parameter.
Then for each distinct value, the corresponding value of a should be single. So
this means that there should be Nd(p) strict relationships. We then verify each
relationships in the dimension with imputed values and get the number Nr(p, a)
of relationships that do not bear conflicts. Finally, the strictness degree of p with
respect to a is calculated as (IV.14).

SD(p, a) = Nr(p, a)
Nd(p) (IV.14)

The strictness degree can also be calculated for several parameters P = {p1, ...pn}
with respect to several attributes A = {a1, ...an}. Here, we also have a mapping
M = P → A indicating for each parameter, the strictness degree is calculated with
respect to which attributes. So the number of relationships can be obtained by
the addition of multiplying the distinct value of each parameter with the number
of its corresponding weak attributes. We also verify these relationships and obtain
the number of relationships that do not bear conflicts Nr(pi, ai) for each parameter
pi ∈ P and each of its corresponding weak attribute ai ∈ M [pi]. Then we can
get the number of all relationships without conflict. Finally, the strictness degree

119

6. EXPERIMENTAL ASSESSMENTS 120

SD(P, A, M) can be calculated as (IV.15).

SD(P, A, M) =

∑
pi∈P

∑
ai∈M [pi]

Nr(pi, ai)∑
pi∈P

Nd(pi)|M [pi]|
(IV.15)

6.2.2 Experimental Strategies

We apply different missing rates (1%, 5%, 10%, 20%, 30%, 40%) for the categorical
attributes. To generate a certain percentage of missing data for an attribute, we sort
randomly all the instances and remove attribute data of the first certain percentage of
instances. For each dataset, we carry out 20 tests and get the average metrics.

We conduct the experiments with two strategies. The calculation of the strictness
degree is different in these two strategies.

1. The first one is to apply each missing rate for each single attribute. We then
obtain the average metrics for each missing rate of the application of all categorical
attributes.

Then we discuss the calculation of the strictness degree in different cases. Since
the values of dimension identifier are all unique, we do not need to calculate the
strictness degree of the identifier with respect to other attributes. Thus, we have
several cases as follows.

• If the attribute is a parameter, and it does not have a non-id lower-granularity
level parameter, we calculate the strictness degree SD(P, A, M) of the pa-
rameter with respect to its higher-granularity level parameter and its weak
attributes. Therefore, P contains only the parameter itself, A contains its
higher-granularity level parameter and its weak attributes, M is obtained by
the dimension schema. If the parameter does not have higher-granularity level
parameter or weak attributes, we do not calculate the strictness degree for it.

• If the attribute is a parameter, and it has a non-id lower-granularity level
parameter, we calculate the strictness degree SD(P, A, M) of the parameter
with respect to its higher-granularity parameter and its weak attributes. In
addition, we should also calculate the strictness degree of its non-id lower-
granularity level parameter with respect to itself. Therefore, in this case, P

contains the parameter itself and its non-id lower-granularity level parameter,
A contains the parameter itself, its higher-granularity level parameter and its
weak attributes, M is obtained by the dimension schema.

• If the attribute is a weak attribute and its corresponding parameter is non-
id, we calculate the strictness degree SD(p, a) of its corresponding parameter
with respect to itself. Therefore, p is the corresponding parameter of the weak

120

6. EXPERIMENTAL ASSESSMENTS 121

attribute and a is the weak attribute itself.

2. The second strategy is to apply each missing rate for all categorical attributes and
obtain the average metrics of each missing rate.

We calculate the strictness degree SD(P, A, M) of each non-id parameter with re-
spect to their higher-granularity parameter and weak attributes. Therefore, P con-
tains all non-id parameters of the dimension, A contains the higher-granularity
parameter and weak attributes of each non-id parameters of the dimension, M is
obtained by the dimension schema.

We carry out these two strategies because the missing data may exist only in one at-
tribute, which means that we only replace the missing values of one attribute based on the
instances containing no missing value. Missing data may also exist in several attributes,
which means that we may replace missing values based on the instances containing missing
values, which may have impacts on the accuracy.

6.2.3 Comparison with Other Approaches

We compare our Hie-OLAPKNN algorithm with some other approaches to verify is it
performs better. The approaches include the single algorithm of Hie-OLAPKNN, i.e.
hierarchical imputation and OLAPKNN, and approaches from the literature. They are
presented as follows.

H: This is the hierarchical imputation of Hie-OLAPKNN algorithm.

OLAPKNN: This is the OLAPKNN algorithm of Hie-OLAPKNN algorithm

KNN (Domeniconi and Yan, 2004): This approach uses the basic KNN algorithm to
generate the replaced values for missing data.

NB (Garcia and Hruschka, 2005): This is a machine learning-based imputation ap-
proach based on the naive bayes algorithm.

MIBOS (Wu et al., 2012): This is a statistical-based hot deck imputation method.

6.2.4 Parameter choice of the algorithms

For the algorithms applied in the experiments, there are parameters in KNN and (Hie-
)OLAPKNN. For KNN, we have to choose the k, and for (Hie-)OLAPKNN, we
have to choose the k as well as the hierarchy level weight which may be cardinality-based
weight (wc) or incremental weight (wi). To decide the value of these parameters, we test
with different k between 1 and 10 for KNN and (Hie-)OLAPKNN and with different
hierarchy level weight for (Hie-)OLAPKNN. We test with the missing rate of 20%, we
still carry out 20 times of tests and take the average F-score. Finally, we choose the k

and hierarchy weight having the best F-score for the experiments.

121

6. EXPERIMENTAL ASSESSMENTS 122

Table IV.2: Algorithms’ parameters

Algorithm Parameter
Dataset and dimension

TPCH Adventure F1 GoSales Organisation
Cus Supp Prod Race Prod Ret Organisation

KNN k 1 2 1 1 3

(Hie-)OLAPKNN k 2 2 1 2 2 1 1
Hierarchy

level weight wc wc wi wc wi wi wc

6.3 Results and analysis for Experiment1

6.3.1 Effectiveness

The effectiveness for single attribute imputation strategy and multiple attribute imputa-
tion of experiment1 are respectively shown in Fig. IV.8 and Fig. IV.10.

We can observe that there is no difference with respect to the effectiveness among
using only inter- or intra- dimensional hierarchical imputation and using both. There is
no difference neither among using these three types of hierarchical imputation in Hie-
OLAPKNN. By analysing the imputation results, we find that the application of only
intra- or inter-dimensional hierarchical imputation is able to replace all possibly replaced
missing values (attributes expect for the weak attributes of the first level and the first
and second level parameters). Then we analyse the data and find that for the attributes
that can be replaced, the distinct value ratio is (number of distinct values divided by
number of total values) very low. For example, in the attribute Nationkey of dimension
Customer, there are 1500 values while there are only 25 distinct values, thus the distinct
ratio is 0.017, which is very low. The distinct ratio of attributes Regionkey in dimension
Customer is 0.003. The distinct ratios of attribute Nation and Regionkey in dimension
Supplier are respectively 0.025, and 0.005. These attributes work as lower-granularity
level parameters to which we reference for searching for replaced values. Moreover, for an
attribute, each distinct value occurs uniformly. This means that when we generate missing
data with missing rates from 1% to 40%, it is hard to have all values of a distinct value
get deleted. The two dimensions also have the same distinct values on these attributes.
Thus, for the missing values that can be possibly replaced, we can always find an instance
having the same value on a lower parameter. The missing values can then always be
replaced even by using only intra- or inter-dimensional hierarchical imputation.

As this experiment cannot show the difference between using only intra- or inter-
dimensional imputation and using both, we design another strategy for generating missing
data. As we discussed, Nationkey and Regionkey are parameters to which we reference
for searching for replaced values. So we first generate missing data by deleting all values
of certain distinct values for these attributes and then generate random missing data for
these and other attributes. Regionkey has 5 distinct values and they uniformly distribute
in the dimensions. Therefore, to delete all values of a distinct value for this attribute,
we delete about 20% missing values. So we take three missing rates 30%, 50% and 70%

122

6. EXPERIMENTAL ASSESSMENTS 123

0 10 20 30 40
50

60

70

80

90

100

T
P

C
H

C
u

s
Recall [%]

0 10 20 30 40
50

60

70

80

90

100

Precision [%]

0 10 20 30 40
50

60

70

80

90

100

F-score [%]

0 10 20 30 40
50

60

70

80

90

100

T
P

C
H

S
u

p
p

Hie(intra) Hie(inter) Hie(inter+intra)
Hie(intra)-OLAPKNN Hie(inter)-OLAPKNN Hie(inter+intra)-OLAPKNN

0 10 20 30 40
50

60

70

80

90

100

Missing rate (%)

0 10 20 30 40
50

60

70

80

90

100

Figure IV.8: Effectiveness results of single attribute imputation of experiment1

0 10 20 30 40
40

50

60

70

80

90

100

T
P

C
H

C
u

s

Recall [%]

0 10 20 30 40
50

60

70

80

90

100

Precision [%]

0 10 20 30 40
50

60

70

80

90

100

F-score [%]

0 10 20 30 40
50

60

70

80

90

100

T
P

C
H

S
u

p
p

Hie(intra) Hie(inter) Hie(inter+intra)
Hie(intra)-OLAPKNN Hie(inter)-OLAPKNN Hie(inter+intra)-OLAPKNN

0 10 20 30 40
50

60

70

80

90

100

Missing rate (%)

0 10 20 30 40
50

60

70

80

90

100

Figure IV.9: Effectiveness results of multiple attribute imputation of experiment1

123

6. EXPERIMENTAL ASSESSMENTS 124

in order to delete all values of 1, 2 and 3 distinct values and then generate randomly
about 10% missing values for Regionkey. Nationkey has 25 distinct values and they also
uniformly distribute in the dimensions. Thus by applying these missing rates, we delete
all values of 5, 10 and 15 distinct values and then generate randomly about 10% missing
values for Nationkey and Regionkey. For the other attributes, we apply these missing
rates to generate randomly missing data as the previous strategy.

The effectiveness results for this second missing data generation strategy is shown in
Fig. IV.8 and Fig. IV.10.

In the three Hie imputations, we can observe that they all have 100% precision. The
combination of inter- and intra-dimensional imputation performs better than only using
inter- and intra-dimensional imputation in terms of recall and F-score. For example, for
TPCH Cus, it has recall and F-score of up to respectively 10.86% and 11.3% higher with
respect to the intra-dimensional imputation; and respectively 3.04% and 4.4% higher with
respect to the inter-dimensional imputation. It means that by applying both inter- and
intra-dimensional imputation, there are more missing values which are replaced. Since we
delete randomly distinct values from the two dimensions, after the generation of missing
data, there may be (1) deleted distinct values that do not exist in one of the two dimensions
and (2) deleted distinct values that do not exist in both dimensions. As the attributes of
these deleted distinct values are used as the reference of lower-granularity level parameter,
by combining inter- and intra-dimensional imputation, the missing values which should
be replaced based on deleted distinct values not existing in both dimensions cannot be
replaced. However, by using only inter- or intra-dimensional imputation, the missing
values which should be replaced based on these two types of deleted distinct values cannot
be replaced. That is why the combination of inter- and intra-dimensional imputation
replaces more missing values than the application of only one of them. Between inter-
and intra-dimensional imputation, we see that in these two dimensions, inter-dimensional
imputation replace more missing values than intra-dimensional imputation. The inter-
dimensional imputation has a recall of up to respectively 10.13% and 4.39% higher in
TPCH Cus and TPCH Supp. This is because of our missing generation strategy. For a
dimension, we delete all values of certain distinct values, so there are more missing data for
these distinct values. However, they cannot be replaced by intra-dimensional imputation.
But as the distinct values are selected randomly in different dimensions, the deleted
distinct values may exist in other dimensions. So by inter-dimensional imputation, more
data can be replaced. But this does not mean that the inter-dimensional imputation is
always better than intra-dimensional imputation. Because the effectiveness of hierarchical
imputation depends on the dimension instances, i.e. whether a missing value can be
replaced depends on whether there exists an instance having same lower-granularity level
parameter.

For the three Hie-OLAPKNN imputations with different hierarchical imputations, we
can observe that Hie-OLAPKNN with intra-dimensional imputation performs worst (e.g.

124

6. EXPERIMENTAL ASSESSMENTS 125

F-score of up to 12,50% and 12,59% lower with respect to inter-dimensional imputation
and the combination of both in TPCH Cus) since it applies intra-dimensional imputation
and then OLAPKNN, which are both based on intra-dimensional data. Hie-OLAPKNN
with the combination of inter- and intra-dimensional imputation performs best since it first
carry out inter- and intra-dimensional imputation which can replace most missing values
among these three hierarchical imputation. But it performs only a litter better than
Hie-OLAPKNN with inter-dimensional imputation (F-score of up to 0.08% and 0.09%
higher in TPCH Cus and TPCH Supp). This is because the missing values that can be
replaced by intra-dimensional imputation but that are not replaced in inter-dimensional
imputation are replaced by OLAPKNN with intra-dimensional data. The little difference
is due to the high effectiveness of OLAPKNN for this dataset.

30 50 70
0

20

40

60

80

100

T
P

C
H

C
u

s

Recall [%]

30 50 70
0

20

40

60

80

100

Precision [%]

30 50 70
0

20

40

60

80

100

F-score [%]

30 50 70
0

20

40

60

80

100

T
P

C
H

S
u

p
p

Hie(intra) Hie(inter) Hie(inter+intra)
Hie(intra)-OLAPKNN Hie(inter)-OLAPKNN Hie(inter+intra)-OLAPKNN

30 50 70
0

20

40

60

80

100

Missing rate (%)

30 50 70
0

20

40

60

80

100

Figure IV.10: Effectiveness results of with second missing data generation strategy

6.3.2 Run time

The run time of the single attribute imputation, multiple attribute imputation and multi-
ple attribute imputation with the second missing data generation strategy are respectively
shown in Fig. IV.11, Fig. IV.12 and Fig. IV.13. We can see that Hie-OLAPKNN impu-
tations are slower than hierarchical imputations, which is no doubt since they carry out
OLAPKNN after hierarchical imputation.

For the three hierarchical imputations, we can observe that there is nearly no difference
in terms of run time in these different tests. But we can still find that in general, the
inter-dimensional imputation costs more time (up to 0.43s in TPCH Cus and 0.22s in
TPCH Supp) than intra-dimensional imputation because it costs time to search for iden-

125

6. EXPERIMENTAL ASSESSMENTS 126

0 10 20 30 40
0

2

4

6

8

10

12
R

u
n

ti
m

e
(s

)
TPCH Cus

Hie(intra)
Hie(inter)

Hie(inter+intra)
Hie(intra)-OLAPKNN
Hie(inter)-OLAPKNN

Hie(inter+intra)-OLAPKNN

0 10 20 30 40
0

0.4

0.8

1.2

1.6

TPCH Supp

Figure IV.11: Run time results of single attribute imputation of experiment1

tical attributes in other dimensions. Also, the combination of inter- and intra-dimensional
imputation costs more time (up to 0.17s in TPCH Cus and 0.16s in TPCH Supp) than
inter-dimensional imputation since it launches two types of hierarchical imputation in-
stead of one.

For the three Hie-OLAPKNN imputations, we can see that the results are different in
these three tests. For the simple and multiple attribute imputations with the first missing
value generation strategy, the run time order of the Hie-OLAPKNN imputations with dif-
ferent hierarchical imputations is the same as the order for the hierarchical imputations
since they replace the same number of values and the run time difference only comes from
the hierarchical imputations. In the multiple attribute imputation with the second miss-
ing value generation strategy, we observe that the Hie-OLAPKNN with intra-dimensional
imputation costs most time (up to 7.68s and 9.28s more with respect to inter-dimensional
imputation and the combination in TPCH Cus; 1.23s and 1.71s in TPCH Supp) be-
cause the intra-dimensional hierarchical imputation replace less data so that OLAPKNN
takes more time to replace the remaining data. For the same reason, The Hie-OLAPKNN
with inter-dimensional imputaion costs more time (up to 3.97s in TPCH Cus and 0.49s
in TPCH Supp) than the one with the combination of inter- and intra-dimensional im-
putation. We can also observe that Hie-OLAPKNN with intra-dimensional runs faster
than Hie-OLAPKNN with inter-dimensional in TPCH Cus at the missing rate of 10%.
It can be explained by the fact that when there are so many missing data, there are even
more missing values after the hierarchical imputation with intra-dimensional imputation
than other hierarchical imputations. It will be harder to find candidate replaced values
and thus costs less time for the search of nearest neighbors.

6.3.3 Strictness

The strictness degrees of these algorithms are always 100% with different experiment
strategies since both Hie and OLAPKNN considers the dependency constraints of hi-
erarchy levels.

126

6. EXPERIMENTAL ASSESSMENTS 127

0 10 20 30 40
0

10

20

30

40

50

60
R

u
n

ti
m

e
(s

)
TPCH Cus

Hie(intra)
Hie(inter)

Hie(inter+intra)
Hie(intra)-OLAPKNN
Hie(inter)-OLAPKNN

Hie(inter+intra)-OLAPKNN

0 10 20 30 40
0

2

4

6

8

10

12

TPCH Supp

Figure IV.12: Run time results of multiple attribute imputation of experiment1

30 50 70
0

20

40

60

80

R
u

n
ti

m
e

(s
)

TPCH Cus

Hie(intra)
Hie(inter)

Hie(inter+intra)
Hie(intra)-OLAPKNN
Hie(inter)-OLAPKNN

Hie(inter+intra)-OLAPKNN

30 50 70
0

4

8

12

16

TPCH Supp

Figure IV.13: Run time results second missing data generation strategy

6.3.4 Results and Analysis for Experiment2

6.3.5 Effectiveness

The effectiveness results for single attribute imputation strategy and multiple attribute
imputation are respectively shown in Fig. IV.14 and Fig. IV.15.

In the single attribute imputation, we can see that the effectiveness metrics of the
algorithms decrease (e.g. decrease of F-score of 0.94% for Hie-OLAPKNN in F1) or
increase (e.g. increase of F-score of 3.19% for NB in Adventure) for the missing rates from
1% to 10%. This is because when the missing rate is low, there are not so many missing
values. So the denominators of the metrics are small, a small change of the numerator may
largely change the results of the metrics, which make the results of the metrics not stable
and may decrease or increase. For the missing rate from 10% to 40%, the effectiveness
metrics of the algorithms slightly decrease (e.g. F-score has 4.99% and 3.05% decrease for
Hie-OLAPKNN and MIBOS in Adventure). They decrease because with the increase
of the missing value number, the number of correctly replaced values decreases, which
make it harder to find the correct values. The decreases are slight because we have only
one attribute where there are missing values and all the other attributes are complete.
So if there are correctly replaced values, the algorithms always have nearly the same
effectiveness. We can also observe that the algorithms KNN, NB and MIBOS always
have the same values on precision, recall and F-score for the same dataset at the same
missing rate. This means that they always replace all missing values. They always obtain
best F-scores than Hie as Hie replaces less missing values. However, they always perform

127

6. EXPERIMENTAL ASSESSMENTS 128

worse (lower F-score) than OLAPKNN and Hie-OLAPKNN algorithms since they do
not consider the DW structure and constraints as we do in (Hie)-OLAPKNN.

In the multiple attribute imputation, we can observe that the effectiveness metrics
of the algorithms decrease or increase for the missing rates from 1% to 10% due to the
same reason as the single attribute imputation. For the missing rate from 10% to 40%,
the effectiveness metrics decrease larger (e.g. decrease of F-score of 8.16% and 4.99%
in multiple and single attribute imputation for Hie-OLAPKNN in Adventure; 35.31%
and 9.12% for KNN) than the single attribute imputation and the metric values are
lower (e.g. F-score of 68.13% and 74.19% in multiple and single attribute imputation for
OLAPKNN in Organisation at missing rate of 20%; 42.4% and 64.2% for NB). The
metrics decrease due to the same reason as the single attribute imputation that there are
less correctly replaced values. Moreover, when replacing missing values for one attributes,
there are also missing values or wrongly replaced values in the other attributes, which
makes the metrics decrease more largely and makes the metrics value lower than the single
attribute imputation. Also, the algorithms KNN, NB and MIBOS always replace all
missing values and always perform worse than OLAPKNN and Hie-OLAPKNN.

We then analyse in detail the results for the proposed algorithms Hie, OLAPKNN
and Hie-OLAPKNN.

Hierarchical imputation For the hierarchical imputation Hie, it always has the worse
recall and F-score than the other approaches in single attribute imputation (e.g. F-score
of up to 20.37%, 23.72%, 20.17%, 22.28%, 26.78% lower with respect to KNN, NB,
MIBOS, OLAPKNN and Hie-OLAPKNN in Adventure). It has the worst recall
and F-score in most datasets at most of the missing rates (e.g. F-score of up to 66.35%,
60.02%, 52.02%, 65.35%, 65.85% lower with respect to KNN, NB, MIBOS, OLAP-
KNN and Hie-OLAPKNN in GoSales Prod). This is because of the sparsity limit as
we introduced in the previous sections. However, in the multiple attribute imputation, it
has precision of 100% for datasets Adventure, F1 and GoSales Prod since it is based
on the functional dependencies of the hierarchy levels. For dataset Organisation, the
precision ranges from 98.60% to 100%. By analysing the data, we find that there is a
non-strict hierarchy in this dimension because there is a value of the parameter province

which corresponds to three different values of the parameter country. For Gosales Ret,
it has precision of 0%. By analysing the schema of this dimension, we find that the two
hierarchies of this dimension have only two levels and the highest-granularity levels do
not have weak attribute. Thus by employing hierarchical imputation, all missing value
parameters have only the dimension identifier as lower-granularity parameter whose val-
ues are unique. This is why there is no missing value which can be replaced and the
metrics of effectiveness are all 0% for this dataset. In the single attribute imputation,
as the weak attributes of the dimension identifier and the parameter of the second level
cannot be replaced and we take the average metrics for the experiments with different
attribute, we obtain relatively low precision. However, for the attributes whose missing

128

6. EXPERIMENTAL ASSESSMENTS 129

values are replaced by hierarchical imputation, the precision is always 100% or nearly
100% (for Organisation due to the non-strict hierarchy).

OLAPKNN For OLAPKNN imputation (OLAPKNN), we can observe that it always
has the second best effectiveness metrics in the single (e.g. F-score of up to 1.89%, 4.22%,
4.55% higher with respect to KNN, NB, MIBOS in F1) and multiple (e.g. F-score of up
to 42.70%, 33.88%, 11.71% higher with respect to KNN, NB, MIBOS in F1) attribute
imputation experiments. The advantage is more obvious when it comes to the multiple
attribute imputation. Few exceptions may happen when the missing rate is between 1%
and 10% due to the unstable results of the missing rate of this range as we explained.
Other exceptions are the precision results for certain dataset in the multiple attribute
imputation since the hierarchical imputation can reach 100% of precision. The better
effectiveness of OLAPKNN thanks to two reasons. First, we define the specific distance
metric which takes into account the dimension structure and characteristics. Second,
we create candidate lists by considering hierarchy dependency constraints. OLAPKNN
replaces all missing values for datasets Adventure, Gosales Prod and Gosales Ret
in the single and multiple attribute imputation experiments. But it does not replace all
missing values for F1 and Organisation because for certain attributes, their neighboring
higher-granularity level parameter value is unique or we cannot find the candidate value
by the neighboring higher-granularity level parameter.

Hie-OLAPKNN For the hybrid imputation combining hierarchical and OLAPKNN
(Hie-OLAPKNN), we can observe that it always has the best effectiveness metrics in
the single (e.g. F-score of up to 1.89%, 4.22%, 4.55%, 0.38% higher with respect to KNN,
NB, MIBOS, OLAPKNN in F1) and multiple attribute imputation experiments (e.g.
F-score of up to 44.84%, 38.01%, 15.84%, 3.51% higher with respect to KNN, NB, MI-
BOS, OLAPKNN in F1). Exceptions may happen in the same case and due to the
same reasons as OLAPKNN. As Hie-OLAPKNN combines hierarchical imputation
and OLAPKNN, it absorbs the advantages of these two approaches. The hierarchical im-
putation is first launched which have 100% precision for missing values in strict hierarchies.
Even if the hierarchical imputation cannot replace missing values for the weak attributes
of the dimension identifier and the second level parameter and may replace few missing
values in case of high distinction ratio, the remaining missing values can be replaced by
OLAPKNN. The application of the hierarchical imputation makes Hie-OLAPKNN
outperforms OLAPKNN. As OLAPKNN already outperforms other approaches, Hie-
OLAPKNN thus achieve the best effectiveness with respect to all compared aproaches.

6.3.6 Efficiency

The efficiency results for single attribute imputation strategy and multiple attribute im-
putation are respectively shown in Fig. IV.17 and Fig. IV.16. We can observe that in
the single attribute imputation, the run time increases with the increase of the missing
rate for all algorithms. In the multiple attribute imputation, the run time increases with

129

6. EXPERIMENTAL ASSESSMENTS 130

0 10 20 30 40
50

60

70

80

90

100

A
d

ve
nt

u
re

Recall [%]

0 10 20 30 40
50

60

70

80

90

100

Precision [%]

0 10 20 30 40
50

60

70

80

90

100

F-score [%]

0 10 20 30 40
50

60

70

80

90

100

F
1

0 10 20 30 40
50

60

70

80

90

100

0 10 20 30 40
50

60

70

80

90

100

0 10 20 30 40
0

20

40

60

80

100

G
oS

al
es

P
ro

d

0 10 20 30 40
0

20

40

60

80

100

0 10 20 30 40
0

20

40

60

80

100

0 10 20 30 40
0

10

20

30

40

50

G
oS

al
es

R
et

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
40

50

60

70

80

90

100

O
rg

an
is

at
io

n

KNN NB MIBOS Hie OLAPKNN Hie-OLAPKNN

0 10 20 30 40
40

50

60

70

80

90

100

Missing rate (%)

0 10 20 30 40
40

50

60

70

80

90

100

Figure IV.14: Effectiveness results of single attribute imputation

130

6. EXPERIMENTAL ASSESSMENTS 131

0 10 20 30 40
30
40
50
60
70
80
90

100

A
d

ve
nt

u
re

Recall [%]

0 10 20 30 40
30
40
50
60
70
80
90

100

Precision [%]

0 10 20 30 40
30
40
50
60
70
80
90

100

F-score [%]

0 10 20 30 40
30
40
50
60
70
80
90

100

F
1

0 10 20 30 40
30
40
50
60
70
80
90

100

0 10 20 30 40
30
40
50
60
70
80
90

100

0 10 20 30 40
0

20

40

60

80

100

G
oS

al
es

P
ro

d

0 10 20 30 40
0

20

40

60

80

100

0 10 20 30 40
0

20

40

60

80

100

0 10 20 30 40
0

10

20

30

40

50

G
oS

al
es

R
et

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
0

10

20

30

40

50

0 10 20 30 40
20
30
40
50
60
70
80
90

100

O
rg

an
is

at
io

n

KNN NB MIBOS Hie OLAPKNN Hie-OLAPKNN

0 10 20 30 40
20
30
40
50
60
70
80
90

100

Missing rate (%)

0 10 20 30 40
20
30
40
50
60
70
80
90

100

Figure IV.15: Effectiveness results of multiple attribute imputation

131

6. EXPERIMENTAL ASSESSMENTS 132

0 10 20 30 40
0

0.5

1

1.5

2

2.5
R

u
n

ti
m

e
(s

)
Adventure

0 10 20 30 40
0

5

10

15

21
F1

0 10 20 30 40
0
5

10
15
20
25
30
35
40

GoSales Prod

0 10 20 30 40
0

20
40
60
80

100

130

R
u

n
ti

m
e

(s
)

GoSales Ret

0 10 20 30 40
0

2

4

6

8

10

12

Missing rate (%)

Organisation

KNN NB
MIBOS Hie

OLAPKNN Hie-OLAPKNN

Figure IV.16: Run time results of single attribute imputation

the increase of the missing rate for most of the algorithms. However, for KNN and NB,
the run time first increases and then decreases. This is because when the missing rate is
high, there are more instances containing missing values and which cannot be used for
imputation in KNN and NB.

We can also observe that our proposed algorithms Hie, OLAPKNN and Hie-OLAPKNN
run faster than other approaches for the applied datasets in both single and multiple at-
tribute imputation. OLAPKNN runs faster than KNN, NB and MIBOS (e.g. up to
respectively 1.98s, 0.63s, 0.7s faster in Adventure of single attribute imputation; 2.51s,
0.51s, 1.39s in Adventure of multiple attribute imputation) since it create candidate lists
based on the neighboring higher-granularity level parameters and which reduce the search-
ing range of the nearest neighbors. Hie-OLAPKNN runs faster than OLAPKNN (e.g.
up to 0.14s and 1.75s faster in F1 of single and multiple attribute imputation) because it
applies hierarchical imputation which has the lowest run time before carrying out OLAP-
KNN. Hie has the lowest run time among all approaches (e.g. up to 0.21s and 0.93s
faster than Hie-OLAPKNN in F1 of single and multiple attribute imputation). It has
the highest efficiency because Hie replaces missing values based on functional dependen-
cies between the hierarchy levels and by only searching for instances having the same
lower parameter values which can be realised by SQL queries.

6.3.7 Strictness

The strictness results for single attribute imputation strategy and multiple attribute impu-
tation are respectively shown in Fig. IV.18 and Fig. IV.19. Since dataset GoSales Prod

132

6. EXPERIMENTAL ASSESSMENTS 133

0 10 20 30 40
0

0.5

1

1.5

2

2.7
R

u
n

ti
m

e
(s

)
Adventure

0 10 20 30 40
0

5

10

15

21
F1

0 10 20 30 40
0

5

10

15

20

25
GoSales Prod

0 10 20 30 40
0

20

40

60

80

100

R
u

n
ti

m
e

(s
)

GoSales Ret

0 10 20 30 40
0

2

4

6

8

10

12

Missing rate (%)

Organisation

KNN NB
MIBOS Hie

OLAPKNN Hie-OLAPKNN

Figure IV.17: Run time results of multiple attribute imputation

has no second level parameter, It is not considered in the strictness experiments.

For the other datasets, we can observe that KNN, NB and MIBOS always have
strictness degree less than 100%. Moreover, the strictness degrees of these approaches
slightly decrease in the single attribute imputation and largely decrease in the multiple
attribute imputation with the increase of missing rate (e.g. strictness degree decrease of
1.66s 27.95s for KNN in Advanture of single and multiple attribute imputation). The
decrease trend of the strictness is similar as the decrease trend of the effectiveness since
the wrongly replaced values may make the hierarchies non-strict.

Our Hie, OLAPKNN and Hie-OLAPKNN approaches always have 100% of strict-
ness degree for datasets Adventure, F1 and GoSales Prod. Hie is a dependency-based
imputation approach, so the replaced values respect the strictness of the hierarchies. Di-
mensions with replaced values by OLAPKNN achieve 100% strictness degree thanks to
two reasons. First, it create candidate lists according to the neighboring higher-granularity
level parameter, which makes replaced values respect the dependency relationships be-
tween the missing value parameters and their higher-granularity level parameters. Second,
when there exists lower-granularity non-id parameters of the missing value parameter, we
unify the replaced missing parameter values in case of conflicts. This ensures the re-
spect of dependency relationships between the missing value parameters and their lower-
granularity level parameters. Since Hie-OLAPKNN combines these two approaches, it
also replaces missing values by respecting the hierarchy strictness. For dataset Organisa-
tion, these three approaches do not get 100% strictness degree in both single and multiple
attribute imputations due to the non-strict hierarchy in the dimension. Nevertheless, the

133

7. CONCLUSION 134

0 10 20 30 40
90

92

94

96

98

100
S

tr
ic

tn
es

s
d

eg
re

e
(%

)

Adventure

0 10 20 30 40
80

85

90

95

100
F1

0 10 20 30 40
85

88

91

94

97

100
GoSales Prod

0 10 20 30 40
80

85

90

95

100

Missing rate (%)

S
tr

ic
tn

es
s

d
eg

re
e

(%
)

Organisation

KNN NB MIBOS
Hie OLAPKNN Hie-OLAPKNN

Figure IV.18: Strictness results of single attribute imputation

strictness degree is always more than 99%.

7 Conclusion
In this chapter, we proposed a hybrid approach for dimensional data imputation named
Hie-OLAPKNN which combines a rule-based, i.e., hierarchical relationship-based ap-
proach and a machine learning-based, i.e., KNN-based approach. To our knowledge,
it is the first specific work for the imputation of dimensional data.

Dimensional imputation requires the consideration of the dimension structure complex-
ity and the preservation of hierarchical dependency relationships. Our approach meets
the requirements. The hierarchical imputation is based on the existing data found in
both intra- and inter-dimensional hierarchical relationships. The OLAPKNN replaces
missing values by their nearest neighbors in the candidate list. We proposed a novel
distance metric for dimension instances by considering different dimension elements and
their relationships. We also proposed the creation of candidate list by taking into account
dependency constraints of hierarchies. In our imputation approach, we take in charge
the imputation of both parameters and weak attributes. The hierarchical imputation and
OLAPKNN imputation are respectively validated through papers in the international
conference DEXA2021 (YANG, Y. et al., 2021a) and ADBIS2022 (YANG, Y. et al.,
2022b).

We carry out various experiments which have shown that (1) combining inter- and
intra-dimensional imputation in case of identical attributes between different dimensions

134

7. CONCLUSION 135

0 10 20 30 40
70

75

80

85

90

95

100
S

tr
ic

tn
es

s
d

eg
re

e
(%

)

Adventure

0 10 20 30 40
30
40
50
60
70
80
90

100
F1

0 10 20 30 40
50

60

70

80

90

100
GoSales Prod

0 10 20 30 40
75

80

85

90

95

100

Missing rate (%)

S
tr

ic
tn

es
s

d
eg

re
e

(%
)

Organisation

KNN NB MIBOS
Hie OLAPKNN Hie-OLAPKNN

Figure IV.19: Strictness results of multiple attribute imputation

can correctly replace more missing values than applying one of them in hierarchical im-
putation or Hie-OLAPKNN (e.g. up to 12.59% higher F-score in TPCH Cus); (2) com-
bining inter- and intra-dimensional imputation in case of identical attributes between dif-
ferent dimensions is faster than applying only one of them in Hie-OLAPKNN (e.g. up to
9.28s less run time in TPCH Cus); (3) Hie-OLAPKNN can correctly replace more miss-
ing values than applying only hierarchical imputation, OLAPKNN or other approaches
from the literature (e.g. up to 44.84% higher F-score in F1); (4) Hie-OLAPKNN runs
faster than applying only OLAPKNN or other approaches (e.g. up to 2.51s less run time in
Adventure); (5) dimensions with missing values replaced by Hie-OLAPKNN, OLAPKNN
and hierarchical imputation respect the hierarchy strictness while the other approaches
do not able to respect such strictness.

135

Chapter V

Implementation

Contents
1 Introduction . 137

1.1 Functional Architecture . 137
1.2 Technical Architecture . 138
1.3 Outline . 139

2 Automatic DW Design and Implementation 140
2.1 Front-end . 140
2.2 Back-end . 145

3 Automatic DW Merging . 145
3.1 Front-end . 145
3.2 Back-end . 149

4 Dimensional Data Imputation . 149
4.1 Front-end . 149
4.2 Back-end . 152

5 Conclusion . 153

136

1. INTRODUCTION 137

1 Introduction
In the previous chapters, we proposed a solution to automate the DW design from tabular
data, merge different DWs in case of multiple sources and replace missing values during
the merging. The different parts of the solution have been validated through various
experiments. To put our solution into practice, all these parts should be integrated into
one application to offer a complete solution for users. Since the target users of our solution
are non-expert users, our application should be user-friendly especially for non-expert
users. So the application should use non-technical vocabularies instead of technical ones
so that non-expert users can understand DW information and the process. Expert users
are not targeted, but they may also get involved in the process to make deeper validation
and customisation, we should also consider the requirements of such users. As a result,
we implement an application which (1) combines our three proposed functionalities, (2)
has a user-friendly interface and (3) provides different versions for non-expert and expert
users. We first present the functional and technical architectures of the application.

1.1 Functional Architecture

The functional architecture of our application is shown in Fig V.1. It has three function-
alities corresponding to the three parts of our proposal.

Figure V.1: Technical architecture

• The first functionality is the automatic DW design and implementation. The input
tabular data are processed by our proposed automatic DW design approach. First,
the measure detection is carried out. Second, the detected measures are proposed
to users and the application asks the user to validate the measures. Third, the

137

1. INTRODUCTION 138

dimensions are detected. Finally, the DW is implemented into the database by
following the detected schema.

• The second functionality is the automatic DW merging. The user can choose the
DWs to be merged. The DW merging is then carried out to generate a merged DW
at the schema and instance levels.

• The third functionality is the dimensional data imputation. The merged DW gen-
erated by the second functionality may contain missing values, this functionality
aims to replace dimensional missing data by our algorithms. Our algorithm Hie-
OLAPKNN combines hierarchical imputation and OLAPKNN imputation. The
hierarchical imputation replaces missing data with exact values, while OLAPKNN
replace missing data with estimated values. Therefore, hierarchical imputation can
always be employed, but OLAPKNN should be used according to the user’s toler-
ance of estimated values that may be inexact. We thus give alternatives to the user
of applying Hie-OLAPKNN, or only hierarchical imputation. The merged DW with
replaced data is then generated.

1.2 Technical Architecture

The technical architecture of our application is shown in Fig. V.2.

Figure V.2: Technical architecture

1.2.1 Development Framework

We apply the framework Eletron 1 to develop our application. Eletron is a framework to
build cross-platform desktop applications using JavaScript, HTML and CSS. It combines
the Chromium browser as rendering engine and the Node.js runtime as back-end environ-
ment. We apply Eletron because it has the following advantages (Peguero and Cheng,
2021).

1https://www.electronjs.org/

138

https://www.electronjs.org/

1. INTRODUCTION 139

• It is an open-source framework maintained by Github and has a large active com-
munity of contributors.

• The combination of Chromium and Node.js allows developers to facilitate the user
interface creation by using web technologies such as JavaScript, HTML and CSS.

• It allows the development of one application version which is compatible with various
operating systems such as Mac, Windows, and Linux.

1.2.2 Front-end and Back-end

Regarding the front-end, we create the user interface by using HTML, CSS and JavaScript,
which are typical front-end web development languages.

Regarding the back-end, the development is carried out in the Node.js environment as
we use the Electron framework. Node.js is a JavaScript runtime built on Chrome’s V8 JS
engine. Our research is a part of the BI4people project, other parts of the automatic BI
solution are implemented by other groups with different languages such as Java, Python.
The advantage of using Node.js is that it provides modules to easily run code of various
programming languages. The algorithms of our solution are implemented by Python
since it has rich libraries which are helpful for implementing machine learning algorithms
(e.g. sklearn2, pycaret3) and different distance metrics (e.g. textdistance4,gensim5). The
Python code is run in Node.js by the module child process6. We use Oracle as the database
for the implementation of the DWs. In Python, the library cx Oracle7 is used to connect
to Oracle database for the implementation of DWs and the extraction of DW data. The
MongoDB database is used to store DW schema data. We choose MongoDB because it
is a document database, which offers various data types such as embedded document,
making it convenient to store the complex structure schema of DWs. Moreover, data in
MongoDB are stored in BSON (Binary JSON) format, and data represented in JSON
can be natively stored in MongoDB. We can thus present scheme data in JSON to users
allowing them to easily modify them and update them in MongoDB.

1.3 Outline

The remainder of this chapter is organized as follows. In Section 2, we present the
functionality of automatic DW design and implementation. In Section 3, we introduce the
functionality of DW merging. In Section 4, we illustrate the functionality of dimensional
data imputation. In Section 5, we conclude this chapter.

2https://scikit-learn.org/stable/
3https://pycaret.org/
4https://pypi.org/project/textdistance/
5https://radimrehurek.com/gensim/
6https://nodejs.org/api/child_process.html
7https://oracle.github.io/python-cx_Oracle/

139

https://scikit-learn.org/stable/
https://pycaret.org/
https://pypi.org/project/textdistance/
https://radimrehurek.com/gensim/
https://nodejs.org/api/child_process.html
https://oracle.github.io/python-cx_Oracle/

2. AUTOMATIC DW DESIGN AND IMPLEMENTATION 140

2 Automatic DW Design and Implementation
We illustrate our application with TPCH benchmark data by generating two CSV files
containing different attributes and whose DW schemas are the same as those in Section 7.4.

2.1 Front-end

As shown in Fig. V.3, the front-end contains a user interface where a user can select
one or several tabular files from the file system by clicking the button “Choose files”. In
the left of the interface, there are our proposed three functionalities, the user can choose
to carry out one of them independently. In our application, we provide two versions
including a non-expert version and an expert version that the user can choose in the left.
The non-expert version is the default version which shows DW information to the user
with non-technical vocabularies and supplementary explications to help non-expert users
understand DW information. The expert version use technical vocabularies to describe
DW information and allows users to carry out more customised operations.

Figure V.3: Upload files

As shown in Fig. V.4, when the user choose the files and click “Upload & Execute”,
the measure detection will run for each file. The name of each file will be shown in the
interface and we can continue other steps for each file independently by clicking on the
file name.

The measure detection results of non-expert and expert versions are respectively shown
in Fig. V.5 and Fig. V.6. In the non-expert version, the vocabulary “indocator” is used
instead of “measure”. In the interface, we show the user the proposed measures that are
detected by the machine learning algorithm. We also show the other numerical columns
by asking the user if they can also be measures. The user can validate the measures
by checking the check boxes. Then by clicking “Next”, the dimension detection will be
carried out.

140

2. AUTOMATIC DW DESIGN AND IMPLEMENTATION 141

Figure V.4: Files uploaded successfully

Figure V.5: Measure detection in non-expert version

141

2. AUTOMATIC DW DESIGN AND IMPLEMENTATION 142

Figure V.6: Measure detection in expert version

The dimension detection results of non-expert and expert versions are respectively
shown in Fig. V.7 and Fig. V.9. In the non-expert version, the vocabularies “Axis”,
“Analysis vision”, “Levels”, “Supplementary information” are used to respectively de-
scribe dimensions, hierarchies, parameters and weak attributes. When the user move the
mouse onto the information icons, some explications of the multidimensional components
are shown to the non-expert user. Since the hierarchies contain much information, the
detail information about the parameters and weak attributes can be consulted or hidden
by expand bars. The names of the dimensions, hierarchies and facts do not exist in the
original data, they are generated automatically. For example, the dimensions have the
name of “D1”,“D2”, “D3”. The application allows the user to modify the names manually.

Figure V.7: Dimension detection in non-expert version

142

2. AUTOMATIC DW DESIGN AND IMPLEMENTATION 143

If there is a date dimension, the application also proposes some possible date granu-
larity to choose like shown in Fig. V.8. The pre-defined hierarchies are created based on
the chosen granularities. This functionality is also provided in the expert version.

Figure V.8: Date granularity selection

In the expert version (Fig. V.9), there is an additional functionality of schema editing.
By clicking the button “Edit schema”, the expert user can edit the schema, which is in a
JSON-like format like shown in Fig. V.10

Figure V.9: Dimension detection in expert version

143

2. AUTOMATIC DW DESIGN AND IMPLEMENTATION 144

Figure V.10: Schema editing

Finally, the user can click “create database” to implement the DW. A window is dis-
played which asks the user to enter the database name and password. A confirmation
interface is then shown as in Fig. V.11

Figure V.11: DW implementation

144

3. AUTOMATIC DW MERGING 145

2.2 Back-end

Figure V.12: Back-end illustration of automatic DW design and implementation

We illustrate the back-end in Fig. V.12. When the user selects the files, the file information
is extracted from the file system and is first processed by the measure detection algorithm
(Algo. 3 line1). The detected measures and other numerical column information are
sent back to the front-end. When the user validate the measures, the final measure
information is returned to the application and is stored in MongoDB. Then when the
user continue the next step, the dimension detection (Algo. 3 line2−31) is carried out to
detect the hierarchies and identify attributes as parameters or weak attributes. Then
the multidimensional schema is generated and is stored in MongoDB. If the user finish
modifying the schema, the schema information in MongoDB will be updated. When the
user enter the database name and password, a new database will be created in Oracle to
implement the detected DW by creating a fact table, dimension tables as well as table
relationships, and key constraints.

3 Automatic DW Merging

3.1 Front-end

The front-end contains a user interface where all existing DWs are shown (Fig. V.13).

145

3. AUTOMATIC DW MERGING 146

Figure V.13: DW selection

The user can consult the DW schema information by clicking the button “info” as
shown in Fig. V.14.

Figure V.14: DW schema information

The user can select the DWs to be merged and click the button “merge”. Then a
window of confirmation is shown (Fig. V.15) where there are the DWs’ name. The user
can enter the name and the password of the database for the merged DW. By clicking
“Yes”, the DWs will be merged and the merged DW will be implemented.

146

3. AUTOMATIC DW MERGING 147

Figure V.15: Confirmation window

The merged DW schema is then shown in the interface as shown in Fig. V.16 and
Fig. V.17. We can see that a constellation schema is created where there are two facts
(Fig. V.17). The user can also modify the name of the multidimensional components.

Figure V.16: Merged DW

147

3. AUTOMATIC DW MERGING 148

Figure V.17: Merged DW

In the expert version, there is an important difference with respect to the non-expert
one that the user can choose the analysis form as shown in Fig. V.18

Figure V.18: Analysis form

148

4. DIMENSIONAL DATA IMPUTATION 149

3.2 Back-end

Figure V.19: Back-end illustration of automatic DW merging

We illustrate the back-end in Fig. V.19. The schema of the DWs are extracted from
MongoDB and are shown to the user. When the user selects the DWs to be merged and
confirm the selection, the DW information will be sent to the DW merging algorithm
(Algo. 8) will be carried out. The schema are obtained from MongoDB and the instances
are obtained from Oracle. The name and password of the merged DW that the user
enters are also collected. At the schema level, a multidimensional schema of the merged
DW is created and is stored in the MongoDB database and its information is sent back
to the front-end. At the instance level, a new database is created based on the entered
merged DW name and password in Oracle. The merged DW instances are obtained and
are inserted into the new database.

4 Dimensional Data Imputation

4.1 Front-end

The front-end contains a user interface which allows the user to choose the DW for the
imputation as shown in Fig. V.20

149

4. DIMENSIONAL DATA IMPUTATION 150

Figure V.20: DW selection

Once the user select the DW, the DW schema information is shown in the interface
(Fig. V.21). The missing value number of each attribute as well as the total record name
of the dimension are also shown in the interface. The user can then choose the attributes
to be replaced.

Figure V.21: Attribute selection

Next, the user will see a confirmation window as shown in Fig. V.22. We provide the
user with the choice of applying only hierarchical imputation which replaces missing data
with exact values or applying Hie-OLAPKNN which replaces as many missing values as
possible. In the non-expert version, these two imputation approaches are called “Complete
with exact values” and “Complete as many values as possible” so that the non-expert user
can understand the advantages of these two approaches. If the non-expert choose using
Hie-OLAPKNN, the parameters k and hierarchy level weight are set with default values
2 and wc since they are the most used optimal values in our experiments.

150

4. DIMENSIONAL DATA IMPUTATION 151

Figure V.22: Imputation confirmation in non-expert version

The confirmation window in the expert version is shown in Fig. V.23. In this version,
the two approaches are displayed as their original names “hierarchical imputation” and
“Hie-OLAPKNN”. When the user chooses using Hie-OLAPKNN, the user can manually
change the value of k and choose the hierarchy level weight.

Figure V.23: Imputation confirmation in expert version

Finally, after the confirmation, the imputation is carried out and an interface of result
is shown (Fig. V.24). The interface shows the missing value number, the replaced value
number and the replaced value rate for each attribute.

151

4. DIMENSIONAL DATA IMPUTATION 152

Figure V.24: Imputation result

4.2 Back-end

Figure V.25: Back-end illustration of data imputation

We illustrate the back-up in Fig. V.25. When the user selects a DW, the application
will receive the information of the DW to connect to the Oracle database. Then the DW
schema information is extracted from MongoDB. And the missing value number of each
attribute is obtained by SQL queries from Oracle. When the user selects the attributes to
be replaced and the imputation algorithm, the selected attributes and imputation algo-
rithm will be sent to the back-end. If the user selects to use hierarchical imputation, the
inter-dimensional imputation (Algo. 10) and intra-dimensional imputation (Algo. 9) are
carried out. If the user selects to apply Hie-OLAPKNN imputation, the algorithm param-

152

5. CONCLUSION 153

eters are obtained by the expert user’s input or by the default values. The hierarchical
imputation Algo. 10 and Algo. 9 first run, then the OLAPKNN algorithm (Algo. 11) is
carried out with the obtained parameters.

5 Conclusion
In this chapter, we illustrated the implementation of our solution. We developed an
application by integrating all parts of our solution including automatic DW design and
implementation, automatic DW merging and data imputation. The application provides
a user-friendly interface which allows the user to easily use our proposed three func-
tionalities. Since our target users are non-expert users, we created a non-expert version
where the technical vocabularies are replaced by non-technical ones and where there are
supplementary explications. We also created an expert version which provides the user
with more operation choices. The front-end interface of each functionality was shown
with an example of TPCH data to illustrate the use of the application and the back-end
functioning was also explained.

153

Chapter VI

Conclusion

Contents
1 Contributions . 155

1.1 Contributions on Automatic DW Design from Tabular Data 155
1.2 Contributions on Automatic DW Merging 156
1.3 Contributions on Dimensional Data Imputation 156
1.4 Contributions on Automatic Data Warehousing System 157

2 Future Work . 157
2.1 Short-term Plan . 157
2.2 Mid-term Plan . 158
2.3 Long-term Plan . 158

154

1. CONTRIBUTIONS 155

1 Contributions
It is hard for small companies and organisations to take advantage of BI systems to
analyse their data mostly in tabular form due to the lack of experts and budget. Thus, it
is necessary to automate the DW design and implementation process from tabular data,
which induces three main challenges. (1) Automatic DW design requires the detection of
different multidimensional components, but tabular data do not have an explicit schema
that represents relationships between attributes. (2) Users’ data may come from multiple
sources, so DWs need to be merged at both schema and instance levels by considering
different multidimensional components. (3) The different original DW attributes cause
missing data in the merged DW and should be replaced, because missing data make
aggregated data incomplete and may lead to inaccurate decision making. Thus, in this
thesis, we proposed a complete solution to automate the DW design and implementation
from tabular data to allow non-expert users taking advantage of BI systems for decision
making. The solution consists of three parts: (1) automatic DW design from tabular
data, (2) automatic DW merging and (3) dimensional data imputation.

1.1 Contributions on Automatic DW Design from Tabular Data

First, we proposed a process to automatically design a DW from tabular data without
explicit schema. The process is composed of measure detection and dimension detection.

1.1.1 Measure Detection

Measure detection aims to find all potential measures to build facts. Our measure de-
tection approach is based on machine learning. We considered numerical columns as
candidate measures. So first, we proposed to carry out a pre-processing step to iden-
tify all numerical columns. Second, we proposed three categories of features including
general features, statistical features and inter-column features that are defined by the
characteristics of measures. Third, features are extracted and fed into machine learning
algorithms for model training or measure prediction. Finally, users are asked to validate
the measures. The experiment results have shown that (1) random forest is the machine
learning algorithm having the best effectiveness for measure detection, with a F-score of
93.65%, and has an F-score augmentation of 17.2% with respect to baseline methods; (2)
each category of features has a contribution to measure detection; (3) the trained model
is generic regardless of the data source or domain; and (4) the feature values vary with
respect to different algorithms and the location ratio is the most important feature in
random forest.

1.1.2 Dimension Detection

Our dimension detection consists of hierarchy detection and the distinction of parameters
and weak attributes. Hierarchy detection is based on functional dependencies that exist
among hierarchy levels. We modelled the discovered functional dependencies as tree

155

1. CONTRIBUTIONS 156

structures and by finding the root-to-leaf paths to retrieve hierarchies. Tree roots are
dimension identifiers. The distinction of parameters and weak attributes is carried out
for equivalent attributes and for the detected highest-granularity levels. We proposed
several syntactic and semantic rules based on the characteristics of parameters and weak
attributes. Experiment results have shown that, for the applied datasets, our approach
detect all dimension identifiers and attributes in each dimension with 100% precision. Our
approach also accurately identifies most of the parameters, weak attributes and accurately
detects most hierarchies or equivalent attribute relationships.

1.2 Contributions on Automatic DW Merging

We proposed a process to merge DWs, which operates at both schema and instance
levels. The process considers the merging of all multidimensional components and is com-
posed of level merging, hierarchy merging, dimension merging and star schema merging.
Level merging merges identical parameters into one parameter with their weak attributes
merged. Hierarchy merging creates new hierarchies and applies level merging. Dimension
merging is performed based on hierarchy merging. In star schema merging, facts may be
merged or not according to their associated dimensions to generate a star or constellation
schema. We carried out experiments with the TPC-H benchmark’s data. The results re-
vealed that our process is able to correctly merge two DWs at both schema and instance
levels and may generate a star or constellation schema.

1.3 Contributions on Dimensional Data Imputation

We proposed a hybrid imputation approach named Hie-OLAPKNN for dimensional miss-
ing data. The approach combines a hierarchical imputation (Hie) and a k-nearest neighbor-
based imputation (OLAPKNN). Hierarchical imputation is based on the functional de-
pendencies in intra- and inter-dimensional hierarchies. It is thus reliable and replaces
missing values with exact values. However, when the distinct value ratios of the param-
eters are high, the number of missing values that can be replaced is limited. Therefore,
OLAPKNN can then be carried out based on missing value instances’ nearest neighbors.
We defined specific dimension instance distance metrics for looking for nearest neighbors,
which takes DW dimension structure and characteristics into account. We also proposed
the creation of candidate lists based on the dependency constraints among hierarchy lev-
els. Moreover, we proposed to solve the dependency conflicts between replaced values
and their lower-granularity level parameter values. Therefore, OLAPKNN can replace
missing values by following dependency constraints. We conducted experiments compar-
ing Hie-OLAPKNN with other approaches from the literature. The results showed that
Hie-OLAPKNN outperforms the other approaches in terms of (1) effectiveness, e.g., up
to 44.84% higher F-score in the F1 dataset; (2) efficiency, e.g., up to 2.51s less run time
in the Adventure dataset and (3) respect of hierarchy strictness.

156

2. FUTURE WORK 157

1.4 Contributions on Automatic Data Warehousing System

To bring up a complete solution for automatic DW design, we implemented our solution
by developing an application that enforces the functionalities of automatic DW design,
automatic DW merging and dimensional data imputation. The application provides a
user-friendly interface allowing the user to easily carry out different functions. There
are two versions in the application. The non-expert version is the default one, where
vocabulary is non-technical. Moreover, supplementary explanations help non-expert users
understand the DW’s information. The expert version offers more operations to expert
users so that they can modify the detected schema according to their requirement and set
customized algorithm parameters.

2 Future Work

2.1 Short-term Plan

2.1.1 Automatic DW Design Approach Augmentation

In the short term, we intend to enhance our automatic DW design approach. For measure
detection, we will consider the automatic detection of textual measures (Ravat et al.,
2008b) that may exist in DWs. For dimension detection, we will integrate some commonly
used ontologies and apply ontology matching techniques (Euzenat et al., 2007) to help
detect hierarchies and identify attributes as parameters or weak attributes. Integration
of an ontology can provide pre-defined data semantics that are useful for algorithms to
identify relationships between attributes.

2.1.2 Imputation Approach Extension

Our OLAPKNN dimensional data imputation considers data of one dimension, we will ex-
tend it by also considering inter-dimensional data relationships such as sequential patterns
(Plantevit et al., 2010). Our imputation approach focused on categorical data in dimen-
sions. There are also other types of data in DWs, such as non-categorical textual data in
dimensions and numerical data in dimensions and facts. Therefore, we will also propose
imputation algorithms to replace missing data of these types. For non-categorical textual
data in dimensions, the replaced values usually do not exist in the DW. Thus, we will re-
place them with the help of external source-based imputation such as crowdsourcing-based
approaches (Ye and Wang, 2014; Ye et al., 2020) and web information-based approaches
(Li et al., 2014; Tang et al., 2017; Liu et al., 2018). For numerical data in dimensions
and measures, we will apply statistical-based (Graham et al., 2009; Lin, 2010; Schneider,
2001) and machine learning-based imputation approaches (Miao et al., 2018; Lin and Tsai,
2020; Osman et al., 2018) by considering DW structure characteristics.

157

2. FUTURE WORK 158

2.2 Mid-term Plan

In the middle term, we intend to consider the data evolution that may occur at the schema
and instance levels. The user may obtain new data in existing or non-existing attributes,
which leads to DW evolution at the instance level or at both schema and instance levels,
respectively. We will thus propose an automatic process to update DWs at both levels.
In terms of updated DW, the process will propose the choices of updating the original
DW generated from tabular data, the merged DW based on the original one, or both
ones. In terms of update processing way, we will propose batch or stream update. At
the schema level, the process will automatically detect new multidimensional components
and relationships and merge them with the original schema. At the instance level, the
process will automatically update the DW data by inserting new instances and updating
existing instances.

2.3 Long-term Plan

In the long term, we intend to extend our automatic DW design approach so that it can
be applied for big data analytics (Cuzzocrea et al., 2013). To do this, we have to first
extend our approach for other types of data, since there are various data types involved
in big data management solutions such as data lake (Ravat and Zhao, 2019). We will
address data types such as semi-structured data type like JavaScript Object Notation
(JSON) or non-structure data type like Portable Document Format (PDF) and images.
Regarding JSON data, there are existing approaches (Piech and Marcjan, 2018; Bahta
and Atay, 2019) that transform JSON data into relational data so that our approach
can then be applied. There are also approaches (Frozza et al., 2018; Spoth et al., 2021)
discovering schemas from JSON data, which are helpful for detecting multidimensional
schemas. Regarding PDF files and images, tables can be extracted by existing approaches
(Khusro et al., 2015; Burdick et al., 2020) and then be processed by our approach. In
addition, DWs are implemented in a parallel way (Santoso et al., 2017) in distributed
big data architectures such as Hadoop. We will have to parallelize the processing and
DW implementation of our approach to fit big data architectures (Zhang et al., 2016).
Recently, the concept of Lakehouse (Armbrust et al., 2021) is proposed, which combines
the low-cost storage advantage of data lakes and the powerful management advantage of
data warehouses. Data in lakehouses are stored in Parquet format 1, which also has a
tabular structure (Peltenburg et al., 2020). Thus eventually, we can integrate our solution
for automatically designing DW schemas in lakehouses.

1https://parquet.apache.org/

158

https://parquet.apache.org/

Annexes

159

Appendix A

Ground truth and Detected Schemas
in Dimension Detection

1 Dataset - Example

Figure A.1: Ground truth schema of dataset Example

Figure A.2: Detected schema of dataset Example

160

2. DATASET - SALES1 161

2 Dataset - Sales1

Figure A.3: Ground truth schema of dataset Sales1

Figure A.4: Detected schema of dataset Sales1

3 Dataset - Sales2

Figure A.5: Ground truth schema of dataset Sales2

Figure A.6: Detected schema of dataset Sales2

161

4. DATASET - DEVAPP 162

4 Dataset - DevApp

Figure A.7: Ground truth schema of dataset DevApp

Figure A.8: Detected schema of dataset DevApp

162

5. DATASET - COUNTRIES 163

5 Dataset - Countries

Figure A.9: Ground truth schema of dataset Countries

Figure A.10: Detected schema of dataset Countries

6 Dataset - Covid

Figure A.11: Ground truth schema of dataset Covid

Figure A.12: Detected schema of dataset Covid

163

Appendix B

DW Schemas in Imputation
Experiments

Figure B.1: Schema of dataset TPCH

Figure B.2: Schema of dataset Adventure

Figure B.3: Schema of dataset F1

164

APPENDIX B. DW SCHEMAS IN IMPUTATION EXPERIMENTS 165

Figure B.4: Schema of dataset GoSales

Figure B.5: Schema of dataset Organisation

165

BIBLIOGRAPHY 166

Bibliography
Abelló, A., Darmont, J., Etcheverry, L., Golfarelli, M., Mazón, J.-N., Naumann, F., Ped-

ersen, T., Rizzi, S. B., Trujillo, J., Vassiliadis, P., and Vossen., G. (2013). Fusion cubes:
Towards self-service business intelligence. International Journal of Data Warehousing
and Mining, 9(12):66–88.

Adelfio, M. D. and Samet, H. (2013). Schema extraction for tabular data on the web.
VLDB Endowment, 6(6):421–432.

Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules.
In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499.
Citeseer.

Allison, P. D. (2005). Imputation of categorical variables with proc mi. SUGI 30 proceed-
ings, 113(30):1–14.

Alobaid, A., Kacprzak, E., and Corcho, O. (2019). Typology-based semantic labeling of
numeric tabular data. Semantic Web, 1(0):1–5.

Amanzougarene, F., Zeitouni, K., and Chachoua, M. (2014). Predicting missing values in
a data warehouse by combining constraint programming and knn. In EDA.

Andridge, R. R. and Little, R. J. (2010). A review of hot deck imputation for survey
non-response. International statistical review, 78(1):40–64.

Ariyan, S. and Bertossi, L. (2011). Structural repairs of multidimensional databases. In
5th Alberto Mendelzon Inter. Workshop on Foundations of Data Management, volume
748.

Armbrust, M., Ghodsi, A., Xin, R., and Zaharia, M. (2021). Lakehouse: a new generation
of open platforms that unify data warehousing and advanced analytics. In Proceedings
of CIDR.

Armstrong, W. W. (1974). Dependency structures of data base relationships. In IFIP
congress, volume 74, pages 580–583.

Aydilek, I. B. and Arslan, A. (2013). A hybrid method for imputation of missing values
using optimized fuzzy c-means with support vector regression and a genetic algorithm.
Information Sciences, 233:25–35.

Bahta, R. and Atay, M. (2019). Translating json data into relational data using schema-
oblivious approaches. In Proceedings of the 2019 ACM Southeast Conference, pages
233–236.

Banek, M., Vrdoljak, B., Tjoa, A. M., and Skočir, Z. (2007). Automating the schema
matching process for heterogeneous data warehouses. In Data Warehousing and Knowl-

166

BIBLIOGRAPHY 167

edge Discovery, pages 45–54.

Baraldi, A. N. and Enders, C. K. (2010). An introduction to modern missing data analyses.
Journal of school psychology, 48(1):5–37.

Beaumont, J.-F. (2000). On regression imputation in the presence of nonignorable non-
response. In Proceeding of the Survey Research Methods Section, American Statistical
Asssociation, pages 580–585.

Beretta, L. and Santaniello, A. (2016). Nearest neighbor imputation algorithms: a critical
evaluation. BMC medical informatics and decision making, 16(3):197–208.

Bergamaschi, S., Olaru, M., Sorrentino, S., and Vincini, M. (2011). Semi-automatic dis-
covery of mappings between heterogeneous data warehouse dimensions. J. of Computing
and Information Technology, pages 38–46.

Bernstein, P. A., Madhavan, J., and Rahm, E. (2011a). Generic schema matching, ten
years later. Proc. VLDB Endow., 4(11):695–701.

Bernstein, P. A., Madhavan, J., and Rahm, E. (2011b). Generic schema matching, ten
years later. Proceedings of the VLDB Endowment, 4(11):695–701.

Bimonte, S., Ren, L., and Koueya, N. (2020). A linear programming-based framework
for handling missing data in multi-granular data warehouses. Data & Knowledge Engi-
neering, 128.

Bleiholder, J. and Naumann, F. (2009). Data fusion. ACM computing surveys (CSUR),
41(1):1–41.

Boehnlein, M. and Ulbrich-vom Ende, A. (1999). Deriving initial data warehouse struc-
tures from the conceptual data models of the underlying operational information sys-
tems. In Proceedings of the 2nd ACM international workshop on Data warehousing and
OLAP, pages 15–21.

Bohannon, P., Fan, W., Geerts, F., Jia, X., and Kementsietsidis, A. (2006). Conditional
functional dependencies for data cleaning. In 2007 IEEE 23rd international conference
on data engineering, pages 746–755. IEEE.

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., and Kasneci, G. (2021).
Deep neural networks and tabular data: A survey. arXiv preprint arXiv:2110.01889.

Braunschweig, K., Eberius, J., Thiele, M., and Lehner, W. (2012). The state of open
data. Limits of current open data platforms.

Burdick, D., Danilevsky, M., Evfimievski, A. V., Katsis, Y., and Wang, N. (2020). Table
extraction and understanding for scientific and enterprise applications. Proceedings of
the VLDB Endowment, 13(12):3433–3436.

167

BIBLIOGRAPHY 168

Burgette, L. F. and Reiter, J. P. (2010). Multiple imputation for missing data via sequen-
tial regression trees. American journal of epidemiology, 172(9):1070–1076.

Céret, E., Dupuy-Chessa, S., Calvary, G., Front, A., and Rieu, D. (2013). A taxonomy of
design methods process models. Information and Software Technology, 55(5):795–821.

Chaudhuri, S., Dayal, U., and Narasayya, V. (2011). An overview of business intelligence
technology. Communications of the ACM, 54(8):88–98.

Chen, Z. and Cafarella, M. (2013). Automatic web spreadsheet data extraction. In 3rd
International Workshop on Semantic Search Over the Web, pages 1–8.

Chhabra, G., Vashisht, V., and Ranjan, J. (2018). Missing value imputation using hy-
brid k-means and association rules. In 2018 International Conference on Advances
in Computing, Communication Control and Networking (ICACCCN), pages 501–509.
IEEE.

Choudhury, S. J. and Pal, N. R. (2019). Imputation of missing data with neural networks
for classification. Knowledge-Based Systems, 182:104838.

Chugh, R. and Grandhi, S. (2013). Why business intelligence?: Significance of business in-
telligence tools and integrating bi governance with corporate governance. International
Journal of E-Entrepreneurship and Innovation (IJEEI), 4(2):1–14.

Cuzzocrea, A., Bellatreche, L., and Song, I.-Y. (2013). Data warehousing and olap over big
data: current challenges and future research directions. In Proceedings of the sixteenth
international workshop on Data warehousing and OLAP, pages 67–70.

de S. Ribeiro, L., Goldschmidt, R. R., and Cavalcanti, M. C. (2011). Complementing
data in the etl process. In DaWaK, pages 112–123.

Ding, Y. and Simonoff, J. S. (2010). An investigation of missing data methods for classi-
fication trees applied to binary response data. Journal of Machine Learning Research,
11(1).

Domeniconi, C. and Yan, B. (2004). Nearest neighbor ensemble. In ICPR, volume 1.

Dorneles, C. F., Gonçalves, R., and dos Santos Mello, R. (2011). Approximate data
instance matching: a survey. Knowledge and Information Systems, 27(1):1–21.

Du, L., Gao, F., Chen, X., Jia, R., Wang, J., Zhang, J., Han, S., and Zhang, D. (2021).
Tabularnet: A neural network architecture for understanding semantic structures of
tabular data. In 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, page 322–331.

Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions
on Systems, Man, and Cybernetics, (4):325–327.

168

BIBLIOGRAPHY 169

Elamin, E., Altalhi, A., and Feki, J. (2017). Heuristic based approach for automating
multidimensional schemas construction. International Journal of Computer and Infor-
mation Technology, 764.

Elamin, E., Alzaidi, A., and Feki, J. (2018). A semantic resource based approach for star
schemas matching. Inter. J. of Database Management Systems, 10(6).

Elavarasi, S. A., Akilandeswari, J., and Menaga, K. (2014). A survey on semantic simi-
larity measure. Inter. J. of Research in Advent Technology, 2.

Estellés-Arolas, E. and González-Ladrón-de Guevara, F. (2012). Towards an integrated
crowdsourcing definition. Journal of Information science, 38(2):189–200.

Euzenat, J., Shvaiko, P., et al. (2007). Ontology matching, volume 18. Springer.

Fan, W. (2008). Dependencies revisited for improving data quality. In Proceedings of the
twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 159–170.

Fan, W., Jianzhong, L., Shuai, M., Nan, T., and Wenyuan, Y. (2010). Towards certain
fixes with editing rules and master data. The VLDB Journal, pages 173–184.

Feki, J., Majdoubi, J., and Gargouri, F. (2005). A two-phase approach for multidimen-
sional schemes integration. In 17th Inter. Conference on Software Engineering and
Knowledge Engineering, pages 498–503.

Fisher, A., Rudin, C., and Dominici, F. (2019). All models are wrong, but many are
useful: Learning a variable’s importance by studying an entire class of prediction models
simultaneously. Journal of Machine Learning Research, 20(177):1–81.

Frozza, A. A., dos Santos Mello, R., and da Costa, F. d. S. (2018). An approach for schema
extraction of json and extended json document collections. In 2018 IEEE International
Conference on Information Reuse and Integration (IRI), pages 356–363. IEEE.

Garcia, A. J. and Hruschka, E. R. (2005). Naive bayes as an imputation tool for clas-
sification problems. In Fifth International Conference on Hybrid Intelligent Systems
(HIS’05), pages 3–pp. IEEE.

Garćıa-Laencina, P. J., Sancho-Gómez, J.-L., Figueiras-Vidal, A. R., and Verleysen, M.
(2009). K nearest neighbours with mutual information for simultaneous classification
and missing data imputation. Neurocomputing, 72(7):1483–1493.

Gheyas, I. A. and Smith, L. S. (2010). A neural network-based framework for the recon-
struction of incomplete data sets. Neurocomputing, 73(16-18):3039–3065.

Golfarelli, M., Rizzi, S., , and Vrdoljak, B. (2001). Data warehouse design from xml
sources. In 4th ACM international workshop on Data warehousing and OLAP, page

169

BIBLIOGRAPHY 170

40–47.

Golfarelli, M. and Rizzi, S. (2009). Data Warehouse Design: Modern Principles and
Methodologies. McGraw-Hill, Inc., 1 edition.

Grabova, O., Darmont, J., Chauchat, J.-H., and Zolotaryova, I. (2010). Business intelli-
gence for small and middle-sized entreprises. SIGMOD Record, 39(2):39–50.

Graham, J. W. et al. (2009). Missing data analysis: Making it work in the real world.
Annual review of psychology, 60(1):549–576.

Han, J., Kamber, M., and Pei, J. (2012). Preface. In Data Mining. third edition.

Hapfelmeier, A., Hothorn, T., and Ulm, K. (2012). Recursive partitioning on incomplete
data using surrogate decisions and multiple imputation. Computational Statistics &
Data Analysis, 56(6):1552–1565.

Horner, J., Song, I.-Y., and Chen, P. P. (2004). An analysis of additivity in olap systems.
In 7th ACM International Workshop on Data Warehousing and OLAP, page 83–91.

Hruschka, E. R., Hruschka, E. R., and Ebecken, N. F. (2007). Bayesian networks for impu-
tation in classification problems. Journal of Intelligent Information Systems, 29(3):231–
252.

Huang, C.-C. and Lee, H.-M. (2004). A grey-based nearest neighbor approach for missing
attribute value prediction. Applied Intelligence, 20(3):239–252.

I.-Y.Song, Khare, R., and Dai, B. (2007). Samstar: A semi-automated lexical method
for generating star schemas from an entity-relationship diagram. In ACM 10th Inter-
national Workshop on Data Warehousing and OLAP, pages 9–16.

Jatnika, D., Bijaksana, M. A., and Suryani, A. A. (2019). Word2vec model analysis for
semantic similarities in english words. Procedia Computer Science, 157:160–167.

Jensen, M. R., Holmgren, T., and Pedersen, T. B. (2004). Discovering multidimensional
structure in relational data. In Kambayashi, Y., Mohania, M., and Wöß, W., editors,
Data Warehousing and Knowledge Discovery, pages 138–148.

Khusro, S., Latif, A., and Ullah, I. (2015). On methods and tools of table detection,
extraction and annotation in pdf documents. Journal of Information Science, 41(1):41–
57.

Kimball, R. and Ross, M. (2011). The data warehouse toolkit: the complete guide to
dimensional modeling. John Wiley & Sons.

Koci, E., Thiele, M., Romero, O., and Lehner, W. (2016). A machine learning approach
for layout inference in spreadsheets. In International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management, page 77–88.

170

BIBLIOGRAPHY 171

Kokla, M., Virtanen, J., Kolehmainen, M., Paananen, J., and Hanhineva, K. (2019).
Random forest-based imputation outperforms other methods for imputing lc-ms
metabolomics data: a comparative study. BMC bioinformatics, 20(1):1–11.

Kwakye, M., Kiringa, I., and Viktor, H. L. (2013). Merging multidimensional data mod-
els: A practical approach for schema and data instances. In 5th Inter. Conference on
Advances in Databases, Data, and Knowledge Applications.

Lapa, J., Bernardino, J., and Figueiredo, A. (2014). A comparative analysis of open
source business intelligence platforms. In Proceedings of the International Conference
on Information Systems and Design of Communication, pages 86–92.

Latifi, H. and Koch, B. (2012). Evaluation of most similar neighbour and random forest
methods for imputing forest inventory variables using data from target and auxiliary
stands. International Journal of Remote Sensing, 33(21):6668–6694.

Lautert, L. R., Scheidt, M. M., and Dorneles, C. F. (2013). Web table taxonomy and
formalization. ACM SIGMOD Record, 42(3):28–33.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521:436–444.

Lee, D. and Chu, W. W. (2000). Constraints-preserving transformation from xml docu-
ment type definition to relational schema. In International Conference on Conceptual
Modeling, pages 323–338. Springer.

Lee, J. Y. and Styczynski, M. P. (2018). Ns-knn: a modified k-nearest neighbors approach
for imputing metabolomics data. Metabolomics, 14(12):1–12.

Li, D., Deogun, J., Spaulding, W., and Shuart, B. (2004a). Towards missing data impu-
tation: A study of fuzzy k-means clustering method. In RSCTC, pages 573–579.

Li, D., Deogun, J., Spaulding, W., and Shuart, B. (2004b). Towards missing data im-
putation: a study of fuzzy k-means clustering method. In International conference on
rough sets and current trends in computing, pages 573–579. Springer.

Li, Y. and Parker, L. E. (2014). Nearest neighbor imputation using spatial–temporal
correlations in wireless sensor networks. Information Fusion, 15:64–79.

Li, Z., Qin, L., Cheng, H., Zhang, X., and Zhou, X. (2015). Trip: An interactive retrieving-
inferring data imputation approach. IEEE Transactions on Knowledge and Data Engi-
neering, 27(9):2550–2563.

Li, Z., Sharaf, M. A., Sitbon, L., Sadiq, S., Indulska, M., and Zhou, X. (2014). A web-
based approach to data imputation. World Wide Web, 17(5):873–897.

Liao, Z., Lu, X., Yang, T., and Wang, H. (2009). Missing data imputation: a fuzzy k-
means clustering algorithm over sliding window. In 2009 Sixth International Conference

171

BIBLIOGRAPHY 172

on Fuzzy Systems and Knowledge Discovery, volume 3, pages 133–137. IEEE.

Lin, J. and Mendelzon, A. O. (1998). Merging databases under constraints. International
Journal of Cooperative Information Systems, 7(01):55–76.

Lin, T. H. (2010). A comparison of multiple imputation with em algorithm and mcmc
method for quality of life missing data. Quality & quantity, 44(2):277–287.

Lin, W.-C. and Tsai, C.-F. (2020). Missing value imputation: a review and analysis of
the literature (2006–2017). Artificial Intelligence Review, 53(2):1487–1509.

Little, R. and Rubin, D. (2019). Statistical Analysis with Missing Data. Wiley Series in
Probability and Statistics. Wiley.

Liu, H., Li, Z., Chen, Q., and Chen, Z. (2018). Automatic web-based relational data
imputation. Frontiers of Computer Science, 12(6):1125–1139.

Liu, J., Li, J., Liu, C., and Chen, Y. (2012). Discover dependencies from data—a review.
IEEE Transactions on Knowledge and Data Engineering, 24(2):251–264.

Llave, M. R. (2017). Business intelligence and analytics in small and medium-sized en-
terprises: A systematic literature review. Procedia Computer Science, 121:194–205.

Malinowski, E. and Zimányi, E. (2004). Olap hierarchies: A conceptual perspective. In
Advanced Information Systems Engineering, pages 477–491.

Markl, V., Ramsak, F., and Bayer, R. (1999). Improving olap performance by multidi-
mensional hierarchical clustering. In Proceedings. IDEAS’99. International Database
Engineering and Applications Symposium, pages 165–177. IEEE.

McLachlan, G. J. and Krishnan, T. (2007). The EM algorithm and extensions. John
Wiley & Sons.

Meng, L., Huang, R., and Gu, J. (2013). A review of semantic similarity measures in
wordnet. Inter. J. of Hybrid Information Technology, 6.

Miao, X., Gao, Y., Guo, S., and Liu, W. (2018). Incomplete data management: a survey.
Frontiers of Computer Science, 12:4–25.

Miller, G. A. (1995). Wordnet: A lexical database for english. Communications of the
ACM, 38(11):39–41.

Moody, D. L. and Kortink, M. A. (2000). From enterprise models to dimensional models:
a methodology for data warehouse and data mart design. In DMDW, page 5.

Negash, S. and Gray, P. (2008). Business intelligence. In Handbook on decision support
systems 2, pages 175–193. Springer.

172

BIBLIOGRAPHY 173

Nelson, G. S. (2010). Business intelligence 2.0: Are we there yet. In SAS global forum,
volume 2010. Citeseer.

Nishanth, K. J. and Ravi, V. (2016). Probabilistic neural network based categorical data
imputation. Neurocomputing, 218:17–25.

Olaru, M. O. and Vincini, M. (2014). Integrating multidimensional information for the
benefit of collaborative enterprises. Journal of Digital Information Management, 12(4).

Osman, M. S., Abu-Mahfouz, A. M., and Page, P. R. (2018). A survey on data imputation
techniques: Water distribution system as a use case. IEEE Access, 6:63279–63291.

Ouaret, Z., Chalal, R., and Boussaid, O. (2014). An approach for generating an xml data
warehouse schema using model transformation language. Journal of Digital Information
Management, 12(6).

Ouyang, M., Welsh, W. J., and Georgopoulos, P. (2004). Gaussian mixture clustering
and imputation of microarray data. Bioinformatics, 20(6):917–923.

Pan, R., Yang, T., Cao, J., Lu, K., and Zhang, Z. (2015). Missing data imputation by K
nearest neighbours based on grey relational structure and mutual information. Applied
Intelligence, 43(3):614–632.

Pantanowitz, A. and Marwala, T. (2009). Missing data imputation through the use of
the random forest algorithm. In Advances in computational intelligence, pages 53–62.
Springer.

Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., and Naumann, F. (2015a). Data
profiling with metanome. VLDB Endowment, 8(12):1860–1863.

Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J., Schönberg, M.,
Zwiener, J., and Naumann, F. (2015b). Functional dependency discovery: An ex-
perimental evaluation of seven algorithms. In VLDB Endowment, volume 8, page
1082–1093.

Papenbrock, T. and Naumann, F. (2016). A hybrid approach to functional dependency
discovery. In International Conference on Management of Data, page 821–833.

Pawlak, Z. (1977). Rough set approach to knowledge-based decision support. European
J. of Operational Research, 99(1):48–57.

Pawlak, Z. (1982). Rough sets. Inter. J. of Computer & Information Sciences, 11(5):341–
356.

Pawlak, Z. and Skowron, A. (2007). Rudiments of rough sets. Information Sciences,
177(1):3–27.

Peguero, K. and Cheng, X. (2021). Electrolint and security of electron applications.

173

BIBLIOGRAPHY 174

High-Confidence Computing, 1(2):100032.

Pellissier Tanon, T., Weikum, G., and Suchanek, F. (2020). Yago 4: A reason-able
knowledge base. In European Semantic Web Conference, pages 583–596. Springer.

Peltenburg, J., Van Leeuwen, L. T., Hoozemans, J., Fang, J., Al-Ars, Z., and Hofstee,
H. P. (2020). Battling the cpu bottleneck in apache parquet to arrow conversion using
fpga. In 2020 international conference on Field-Programmable technology (ICFPT),
pages 281–286. IEEE.

Phipps, C. and Davis., K. C. (2002). Automating data warehouse conceptual schema
design and evaluation. In 4th International Workshop on Design and Management of
Data Warehouses, pages 23–32.

Piech, M. and Marcjan, R. (2018). A new approach to storing dynamic data in relational
databases using json. Computer Science, 19.

Plantevit, M., Laurent, A., Laurent, D., Teisseire, M., and Choong, Y. W. (2010). Mining
multidimensional and multilevel sequential patterns. ACM Transactions on Knowledge
Discovery from Data (TKDD), 4(1):1–37.

Pottinger, R. A. and Bernstein, P. A. (2003). Merging models based on given correspon-
dences. In Proceedings 2003 VLDB Conference, pages 862–873. Elsevier.

Pujolle, G., Ravat, F., Teste, O., Tournier, R., and Zurfluh, G. (2011). Multidimensional
database design from document-centric xml documents. In International Conference
on Data Warehousing and Knowledge Discovery, pages 51–65. Springer.

Qi, Z., Wang, H., Li, J., and Gao, H. (2018). Frog: Inference from knowledge base for
missing value imputation. Knowledge-Based Systems, 145:77–90.

Qi, Z., Wang, H., Meng, F., Li, J., and Gao, H. (2017). Capture missing values with
inference on knowledge base. In International Conference on Database Systems for
Advanced Applications, pages 185–194. Springer.

Qin, Y., Zhang, S., Zhu, X., Zhang, J., and Zhang, C. (2007). Semi-parametric optimiza-
tion for missing data imputation. Applied Intelligence, 27(1):79–88.

Quix, C., Kensche, D., and Li, X. (2007). Generic schema merging. In Advanced Infor-
mation Systems Engineering, pages 127–141.

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic schema
matching. the VLDB Journal, 10(4):334–350.

Raj, R., Wong, S. H., and Beaumont, A. J. (2016). Business intelligence solution for an
sme: A case study.

Ravat, F., Teste, O., Tournier, R., and Zurfluh, G. (2008a). Algebraic and graphic lan-

174

BIBLIOGRAPHY 175

guages for olap manipulations. Inter. J. of Data Warehousing and Mining, 4:17–46.

Ravat, F., Teste, O., Tournier, R., and Zurfluh, G. (2008b). Top keyword: An aggregation
function for textual document olap. In Data Warehousing and Knowledge Discovery,
pages 55–64.

Ravat, F., Teste, O., Tournier, R., and Zurfluh, G. (2009). Designing and implementing
olap systems from xml documents. In New Trends in Data Warehousing and Data
Analysis, pages 1–21. Springer.

Ravat, F. and Zhao, Y. (2019). Data lakes: Trends and perspectives. In Database and
Expert Systems Applications, pages 304–313.

Riazati, D. and Thom, J. A. (2011). Matching star schemas. In International Conference
on Database and Expert Systems Applications, pages 428–438. Springer.

Roman, D., Dimitrov, M., Nikolov, N., Putlier, A., Sukhobok, D., Elvesæter, B., Berre, A.,
Ye, X., Simov, A., and Petkov, Y. (2016). Datagraft: Simplifying open data publishing.
In European Semantic Web Conference, pages 101–106. Springer.

Romero, O. and Abelló, A. (2007). Automating multidimensional design from ontologies.
In Proceedings of the ACM tenth international workshop on Data warehousing and
OLAP, pages 1–8.

Romero, O. and Abelló, A. (2009). A survey of multidimensional modeling methodologies.
International Journal of Data Warehousing and Mining, 5(2):1–23.

Romero, O. and Abelló, A. (2010). A framework for multidimensional design of data
warehouses from ontologies. Data & Knowledge Engineering, 69(11):1138–1157.

Samat, N. A. and Salleh, M. N. M. (2016). A study of data imputation using fuzzy c-means
with particle swarm optimization. In International Conference on Soft Computing and
Data Mining, pages 91–100. Springer.

Sangeetha, M. and Senthil Kumaran, M. (2020). Deep learning-based data imputation on
time-variant data using recurrent neural network. Soft Computing, 24(17):13369–13380.

Sanprasit, N., Jampachaisri, K., Titijaroonroj, T., and Kesorn, K. (2021). Intelligent ap-
proach to automated star-schema construction using a knowledge base. Expert Systems
with Applications, 182:115 – 226.

Santoso, L. W. et al. (2017). Data warehouse with big data technology for higher educa-
tion. Procedia Computer Science, 124:93–99.

Sautot, L., Faivre, B., Journaux, L., and Molin, P. (2015). The hierarchical agglomerative
clustering with gower index: A methodology for automatic design of olap cube in
ecological data processing context. Ecological Informatics, 26:217–230.

175

BIBLIOGRAPHY 176

Schafer, J. L. and Graham, J. W. (2002). Missing data: our view of the state of the art.
Psychological methods, 7(2):147.

Schneider, T. (2001). Analysis of incomplete climate data: Estimation of mean values and
covariance matrices and imputation of missing values. Journal of climate, 14(5):853–
871.

Sefidian, A. M. and Daneshpour, N. (2019). Missing value imputation using a novel grey
based fuzzy c-means, mutual information based feature selection, and regression model.
Expert Systems with Applications, 115:68–94.

Sen, P. C., Hajra, M., and Ghosh, M. (2020). Supervised classification algorithms in
machine learning: A survey and review. In Emerging Technology in Modelling and
Graphics, pages 99–111.

Sentas, P. and Angelis, L. (2006). Categorical missing data imputation for software
cost estimation by multinomial logistic regression. Journal of Systems and Software,
79(3):404–414.

Shen, J.-J., Chang, C.-C., and Li, Y.-C. (2007). Combined association rules for dealing
with missing values. Journal of Information Science, 33(4):468–480.

Skiena, S. S. (2008). The algorithm design manual. The Algorithm Design Manual:.

Song, S. and Sun, Y. (2020). Imputing various incomplete attributes via distance likeli-
hood maximization. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 535–545.

Spoth, W., Kennedy, O., Lu, Y., Hammerschmidt, B., and Liu, Z. H. (2021). Reducing
ambiguity in json schema discovery. In Proceedings of the 2021 International Conference
on Management of Data, pages 1732–1744.

Tang, F. and Ishwaran, H. (2017). Random forest missing data algorithms. Statistical
Analysis and Data Mining: The ASA Data Science Journal, 10(6):363–377.

Tang, Y., Wang, H., Zhang, S., Zhang, H., and Shi, R. (2017). Efficient web-based data
imputation with graph model. In International Conference on Database Systems for
Advanced Applications, pages 213–226. Springer.

YANG, Y., Abdelhédi, F., Darmont, J., Ravat, F., and Teste, O. (2021a). Internal data
imputation in data warehouse dimensions. In DEXA, pages 237–244.

YANG, Y., Abdelhédi, F., Darmont, J., Ravat, F., and Teste, O. (2022a). Automatic
machine learning-based olap measure detection for tabular data. In International Con-
ference on Big Data Analytics and Knowledge Discovery, pages 173–188. Springer.

YANG, Y., Darmont, J., Ravat, F., and Teste, O. (2020). Automatic Integration Is-

176

BIBLIOGRAPHY 177

sues of Tabular Data for On-Line Analysis Processing. In 16e journées EDA Business
Intelligence & Big Data (EDA 2020), volume B-16, pages 5–18.

YANG, Y., Darmont, J., Ravat, F., and Teste, O. (2021b). An automatic schema-
instance approach for merging multidimensional data warehouses. In 25th International
Database Engineering & Applications Symposium, pages 232–241.

YANG, Y., Darmont, J., Ravat, F., and Teste, O. (2022b). Dimensional data knn-
based imputation. In European Conference on Advances in Databases and Information
Systems, pages 315–329. Springer.

Torlone, R. (2008). Two approaches to the integration of heterogeneous data warehouses.
Distributed and Parallel Databases, 23:69–97.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein,
D., and Altman, R. B. (2001). Missing value estimation methods for DNA microarrays.
Bioinformatics, 17(6):520–525.

Trujillo, J., Palomar, M., Gomez, J., and Song, I.-Y. (2001). Designing data warehouses
with oo conceptual models. Computer, 34(12):66–75.

Tutunea, M. F. and Rus, R. V. (2012). Business intelligence solutions for sme’s. Procedia
economics and finance, 3:865–870.

Twala, B. (2009). An empirical comparison of techniques for handling incomplete data
using decision trees. Applied Artificial Intelligence, 23(5):373–405.

Twala, B., Cartwright, M., and Shepperd, M. (2005). Comparison of various methods
for handling incomplete data in software engineering databases. In 2005 International
Symposium on Empirical Software Engineering, 2005., pages 10–pp. IEEE.

Ullman, J. D. (1983). Principles of database systems. Galgotia publications.

Usman, M., Asghar, S., and Fong, S. (2010). Data mining and automatic olap schema
generation. In 2010 Fifth International Conference on Digital Information Management
(ICDIM), pages 35–43. IEEE.

Usman, M., Pears, R., and Fong, A. C. M. (2013). A data mining approach to knowledge
discovery from multidimensional cube structures. Knowledge-Based Systems, 40:36–49.

Verpoort, P., MacDonald, P., and Conduit, G. J. (2018). Materials data validation and im-
putation with an artificial neural network. Computational Materials Science, 147:176–
185.

Vrdoljak, B., Banek, M., and Rizzi, S. (2003). Designing web warehouses from xml
schemas. In International Conference on Data Warehousing and Knowledge Discovery,
pages 89–98.

177

BIBLIOGRAPHY 178

Wang, H.-Z., Qi, Z.-X., Shi, R.-X., Li, J.-Z., and Gao, H. (2017). Cosset+: Crowdsourced
missing value imputation optimized by knowledge base. Journal of Computer Science
and Technology, 32(5):845–857.

Wang, J. and Dong, Y. (2020). Measurement of text similarity: a survey. Information,
11(9):421.

Wang, X., Li, A., Jiang, Z., and Feng, H. (2006). Missing value estimation for dna mi-
croarray gene expression data by support vector regression imputation and orthogonal
coding scheme. BMC bioinformatics, 7(1):1–10.

Wang, Z., Dong, H., Jia, R., Li, J., Fu, Z., Han, S., and Zhang, D. (2021). Tuta: Tree-
based transformers for generally structured table pre-training. In 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, page 1780–1790.

Watson, H. J. and Wixom, B. H. (2007). The current state of business intelligence.
Computer, 40(9):96–99.

Wijsen, J. (2005). Database repairing using updates. ACM Transactions on Database
Systems (TODS), 30(3):722–768.

Wu, C.-H., Wun, C.-H., and Chou, H.-J. (2004). Using association rules for complet-
ing missing data. In Fourth International Conference on Hybrid Intelligent Systems
(HIS’04), pages 236–241. IEEE.

Wu, J., Song, Q., and Shen, J. (2007). An novel association rule mining based missing
nominal data imputation method. In Eighth ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing
(SNPD 2007), volume 3, pages 244–249. IEEE.

Wu, S., Feng, X., Han, Y., and Wang, Q. (2012). Missing categorical data imputation
approach based on similarity. In 2012 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pages 2827–2832. IEEE.

Wu, X. and Barbará, D. (2002). Modeling and imputation of large incomplete multidi-
mensional datasets. In DaWak, pages 286–295.

Xia, J., Zhang, S., Cai, G., Li, L., Pan, Q., Yan, J., and Ning, G. (2017). Adjusted weight
voting algorithm for random forests in handling missing values. Pattern Recognition,
69:52–60.

Yan, X., Xiong, W., Hu, L., Wang, F., and Zhao, K. (2015). Missing value imputation
based on gaussian mixture model for the internet of things. Mathematical Problems in
Engineering, 2015.

Ye, C. and Wang, H. (2014). Capture missing values based on crowdsourcing. In Interna-
tional Conference on Wireless Algorithms, Systems, and Applications, pages 783–792.

178

BIBLIOGRAPHY 179

Springer.

Ye, C., Wang, H., Lu, W., and Li, J. (2020). Effective bayesian-network-based missing
value imputation enhanced by crowdsourcing. Knowledge-Based Systems, 190:105199.

Yujian, L. and Bo, L. (2007). A normalized levenshtein distance metric. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 29(6):1091–1095.

Zhang, A., Song, S., Sun, Y., and Wang, J. (2019). Learning individual models for
imputation. In 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pages 160–171. IEEE.

Zhang, S. (2012). Nearest neighbor selection for iteratively knn imputation. Journal of
Systems and Software, 85(11):2541–2552.

Zhang, S., Zhang, J., Zhu, X., Qin, Y., and Zhang, C. (2008). Missing value imputation
based on data clustering. In Transactions on computational science I, pages 128–138.
Springer.

Zhang, W., Yang, Y., and Wang, Q. (2011). Handling missing data in software effort
prediction with naive bayes and em algorithm. In Proceedings of the 7th International
Conference on Predictive Models in Software Engineering, pages 1–10.

Zhang, Y., Cao, T., Li, S., Tian, X., Yuan, L., Jia, H., and Vasilakos, A. V. (2016). Parallel
processing systems for big data: a survey. Proceedings of the IEEE, 104(11):2114–2136.

Zhang, Y. and Liu, Y. (2009). Data imputation using least squares support vector ma-
chines in urban arterial streets. IEEE Signal Processing Letters, 16(5):414–417.

Zhao, Q. and Bhowmick, S. S. (2003). Association rule mining: A survey. Nanyang
Technological University, Singapore, 135.

Zhuang, Y., Ke, R., and Wang, Y. (2019). Innovative method for traffic data imputation
based on convolutional neural network. IET Intelligent Transport Systems, 13(4):605–
613.

179

	Introduction
	Research Context
	Problem Definition
	Manuscript Outline

	Automatic Data Warehousing
	Introduction
	Context
	Challenges of Measure Detection
	Challenges of Dimension Detection
	Our Process Overview
	Outline

	Preliminary
	Related Work
	Approaches
	Comparative Analysis
	Summary
	Automatic DW Design for Simple-structured Tabular Data

	Measure Detection
	Overview
	Preprocessing
	Feature Extraction
	Machine Learning Classification
	User Validation

	Dimension Detection
	Functional Dependency Detection
	Functional Dependency Tree
	Functional Dependency Tree Element Set
	Hierarchy Detection
	Distinction between Parameters and Weak Attributes
	Construction of DW

	Experimental Assessment for Measure Detection
	Experimental Conditions
	Experimental Results

	Experimental Assessment for Dimension Detection
	Dataset
	Metrics
	Experimental results and analysis

	Conclusion

	Data Warehouse Merging
	Introduction
	Context
	Challenges of DW merging
	Our Process Overview
	Outline

	Related Work
	Multidimensional Schema Matching
	Multidimensional Schema and Instance Merging
	Analysis of Merging Approaches

	Level Merging
	Record of Matched Parameters
	Merging of Weak Attributes

	Hierarchy Merging
	Generation of Sub-hierarchy Pairs
	Merging of Sub-hierarchies
	Generation of Final Hierarchy Set

	Dimension Merging
	Schema Merging
	Instance Merging

	Star Schema Merging
	Experimental Assessment
	Datasets
	DW Generation Strategy
	Star Schema Generation
	Constellation Schema Generation

	Conclusion

	Data Warehouse Imputation
	Introduction
	Context
	Challenge
	Our Approach Overview
	Outline

	Related Work
	General Imputation Approaches
	Analysis of the Approaches
	Imputation Approaches for DW

	Hierarchical Dimension Imputation
	Intra-dimensional Imputation
	Inter-dimensional Imputation
	Hierarchical Imputation Order

	Dimension Instance Distance
	Attribute Distance
	Hierarchy Level Instance Distance
	Hierarchy Instance Distance
	Dimension Instance Distance
	Using Dependency Degree as Hierarchy Weight

	OLAPKNN
	OLAPKNN Overview
	Imputation for Parameters by OLAPKNN
	Imputation of Weak Attributes

	Experimental Assessments
	Dataset
	Experimental methodology
	Results and analysis for Experiment1

	Conclusion

	Implementation
	Introduction
	Functional Architecture
	Technical Architecture
	Outline

	Automatic DW Design and Implementation
	Front-end
	Back-end

	Automatic DW Merging
	Front-end
	Back-end

	Dimensional Data Imputation
	Front-end
	Back-end

	Conclusion

	Conclusion
	Contributions
	Contributions on Automatic DW Design from Tabular Data
	Contributions on Automatic DW Merging
	Contributions on Dimensional Data Imputation
	Contributions on Automatic Data Warehousing System

	Future Work
	Short-term Plan
	Mid-term Plan
	Long-term Plan

	Annexes
	Appendix Ground truth and Detected Schemas in Dimension Detection
	Dataset - Example
	Dataset - Sales1
	Dataset - Sales2
	Dataset - DevApp
	Dataset - Countries
	Dataset - Covid

	Appendix DW Schemas in Imputation Experiments

