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Abstract

Business Intelligence (BI) plays an important role in companies to support decision making
processes. Nowadays, small companies, organizations or even individuals can exploit
numerous data. However, the lack of experts prevents them from carrying BI projects
out. It is thus necessary to automate the Bl design process to make BI accessible for
everyone. In BI architectures, data are integrated into Data Warehouses (DWs) usually
modeled in a multidimensional way. Yet, tabular data widely exist in small enterprises,
organizations and in the open data world. As a result, we intend to automate the DW

design from tabular data.

Automatic DW design from tabular data requires the detection of different multidimen-
sional components (facts, dimensions, hierarchies...). In case of multiple sources, several
DWs may be generated. If they share common information, it is necessary to merge them
as one integrated DW. During DW merging, missing data imputation should be carried
out to achieve a better data analysis. Therefore, we propose a solution composed of three
parts: (i) automatic DW design, (ii) automatic DW merging and (iii) dimensional data

imputation.

Automatic DW design from tabular data is composed of measure detection and dimen-
sion detection for constructing facts and dimensions, respectively. For measure detection,
we propose a machine learning-based approach that extracts three categories of features
from numerical columns. Dimension detection includes functional dependency-based hier-
archy detection and the distinction of parameters and weak attributes based on syntactic
and semantic rules. We carry out experiments to validate that our approach is able to

detect measures and different dimension elements with high effectiveness and efficiency.

For automatically merging DWs, we propose a process at both the schema and instance
levels, consisting of level merging, hierarchy merging, dimension merging and star schema
merging. Our approach takes the different DW structure elements into account. Moreover,
our approach considers different cases and may generate star or constellation schemas. We
conduct experiments to validate that our DW merging solution can correctly merge DWs
at both schema and instance levels.

Finally, to address dimensional missing data, we propose a hybrid imputation ap-
proach named Hie-OLAPKNN that combines a hierarchical imputation (Hie) and a K-
nearest neighbors-based imputation (OLAPKNN). Hierarchical imputation is based on
functional dependencies between hierarchy levels and is launched first. The remaining
missing data can then be completed by OLAPKNN, which applies a specific dimension
instance distance and considers hierarchy dependency constraints. Our experiments show
that Hie-OLAPKNN outperforms other approaches in terms of effectiveness, efficiency
and respect of hierarchy strictness.

i



Résumé

La Business Intelligence (BI) joue un role important dans les entreprises pour soutenir
les processus de prise de décision. Aujourd’hui, les petites entreprises, les organisa-
tions ou méme les particuliers peuvent exploiter de nombreuses données. Cependant,
le manque d’experts les empéche de mener a bien des projets de BI. Il est donc nécessaire
d’automatiser le processus de conception et d’implémentation de systemes de Bl afin de
le rendre accessible a tous. Dans les architectures BI, les données sont intégrées dans des
entrepots de données (EDs) généralement modélisés de maniére multidimensionnelle. De
plus, les données tabulaires sont largement répandues dans les petites entreprises, les or-
ganisations et dans le monde des données ouvertes. Par conséquent, nous avons l'intention
d’automatiser la conception d’EDs multidimensionnels a partir de données tabulaires sans

connaissance a priori des schémas.

La conception automatique d’EDs a partir de données tabulaires nécessite la détection
de différents composants multidimensionnels (faits, dimensions, hiérarchies...). En cas de
sources multiples, plusieurs EDs peuvent étre générés. S’ils partagent des informations
communes, il est nécessaire de les fusionner en un seul ED intégré. Pendant la fusion
d’EDs, I'imputation de données manquantes doit étre effectuée pour permettre une analyse
de données de meilleure qualité. Par conséquent, nous proposons une solution composée
de trois parties : (i) la conception automatique d’EDs, (ii) la fusion automatique d’EDs

et (iii) I'imputation de données multidimensionnelles.

La conception automatique d’EDs a partir de données tabulaires comprend la détection
de mesure et la détection de dimension pour définir respectivement le fait et les dimensions.
Pour la détection de mesures, nous proposons une approche basée sur 'apprentissage
automatique qui extrait trois catégories de caractéristiques. La détection de dimensions
comprend la détection de hiérarchies (basée sur des dépendances fonctionnelles) et la
distinction des parametres et des attributs faibles (basée sur des régles syntaxiques et
sémantiques). Nous avons réalisé des expérimentations pour valider que notre approche est
capable de détecter les mesures et les différents éléments de dimension avec une efficacité
et une efficience élevées.

Concernant la fusion automatique d’EDs, nous proposons un processus basé sur les
schémas et les instances, composé de la fusion de niveaux, la fusion de hiérarchies, la
fusion de dimensions et la fusion de schémas en étoile. Les expérimentations ont permis

de valider notre solution de fusion d’EDs.

Enfin, pour traiter les données manquantes multidimensionnelles, nous proposons une
approche d’imputation hybride appelée Hie-OLAPKNN qui combine une imputation hiérarchique
(Hie) et une imputation basée sur les K-voisins les plus proches (OLAPKNN). L’'imputation
hiérarchique est basée sur les dépendances fonctionnelles entre les niveaux hiérarchiques.
OLAPKNN applique une distance d’instances de dimension et tient compte des con-
traintes de dépendance hiérarchique. Nos expérimentations montrent que Hie-OLAPKNN

1ii



surpasse les autres approches en termes d’efficacité, d’efficience et de respect des con-
traintes hiérarchiques.
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1 Research Context

Business intelligence (BI) systems are widely used in the industry, especially in large
companies (Llave, 2017)), combining operational data with analytical tools to present
information in a structured and effective way to support decision making for planners
and decision makers (Negash and Gray, [2008; Nelson, 2010). |Chugh and Grandhi| (2013)
summarize the advantages of the application of BI systems in companies including (1)
allowing companies to analyse data from multiple sources in multiple dimensions; (2)
creating intelligence for decision making by seeking out patterns and meanings in data; (3)
improving management strategies by rapidly rendering accurate reporting; (4) supporting
in identifying the causes of operational problems to reduce inventory costs; and (5) helping
to make accurate predictions to find future opportunities.

With the current digitization trend, small companies, organizations or even individuals
can exploit a large number of data every day (Grabova et al. 2010; Raj et al., [2016)) and
the rise of open data makes various data even more accessible (Braunschweig et al., [2012)).
To be competitive and obtain valuable information from such data, these small entities
are also interested in BI systems (Grabova et al., 2010).

Nevertheless, the design and implementation of a BI system need to be realized by
experts who have the professional knowledge and deep skills in BI technologies, such as
data warehousing and data visualization (Romero and Abelld| [2010)). However, there is
a general lack of such technical expertise in small entities (Raj et al., 2016)). Moreover,
commercial BI tools are expensive and are not affordable for them. Despite the existence
of open source BI platforms (Lapa et al. |2014; Tutunea and Rus| 2012), they are still
technically out of the reach of our target users (Abell6 et al., 2013)). As a result, the
project Bl4people E] aims at bringing the power of BI systems to the largest possible
audience, by automating the BI design and implementation process from data integration

to On-Line Analytical Processing (OLAP) analysis and data visualization.

In current BI systems, data are integrated into Data Warehouses (DWs) in a multidi-
mensional way (Chaudhuri et al| [2011). Data warehousing is the most challenging aspect
of BI, requiring about 80% of the time and effort and generating more than 50% of the
unexpected project costs (Watson and Wixom, 2007). Thus, automating the DW design
and implementation process is an indispensable task in the Bl4people project.

There exist various forms of data, but most of the data in small enterprises and orga-
nizations, as well as most of open data, are in tabular form (Roman et al., 2016; Borisov
et al., 2021)). There are different automatic DW design approaches [Romero and Abelld
(2009). Most of these methods focus on data sources with schema: relational data with
Entity-Relationship (ER) schema, XML data with Document Type Definitions (DTDs),
etc. Automatic DW design from tabular data without schema arises little attention and
is not well addressed in the literature.

"https://anr.fr/Project-ANR-19-CE23-0005
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Therefore, as a part of the Bl4people project, in this manuscript, we intend to automate
the DW design and implementation process from tabular data to allow small enterprises,
organizations and even individuals without deep technical expertise to easily analyse data

with BI systems.

2 Problem Definition

As we discussed in Section [I] we focus on tabular data, which are usually without schema.
The lack of schema makes it hard to discover the relationships between attributes to design
DW multidimensional schemas. Tabular data bear simple or complex structures (Adelfio
and Samet,, [2013)). It is thus important to analyse the characteristics of different tabular
data structures and customize different automatic DW design solutions. A DW is usually
modelled as a multidimensional schema, which is composed of analysis subjects (facts)
containing indicators (measures). These subjects are analysed according to different axes
of analysis (dimensions) that are composed of attributes modeled through different views
(hierarchies) (Ravat et al), 2008a). Therefore, we have to identify attributes in
tabular data as different elements such as measures or dimension attributes
and detect the relationships between the attributes to create hierarchies.

Users may have data coming from multiple sources and a DW may be constructed for
each one of them. If there are DWs having common information, users may need to merge
the DWs for analysing the data in a consolidated way. However, merging multidimensional
DWs is challenging because it is not only necessary to merge them at the schema level,
but also to merge the values of different attributes. Complex DW structure also requires
to the consider different multidimensional components when merging DWs. Therefore,
we have to automatically merge these DWs into one integrated DW at both
schema and instance levels by considering the multidimensional structure.
Moreover, a DW may be modelled as a star or constellation schema according to the
number of facts and their association to the dimensions. We must take this into account.

During the merging process, there may be missing values in attributes of the merged
DW. Missing data make aggregated data incomplete and thus have an impact on OLAP
analyses. These missing data produce dashboards containing erroneous values and may
thus lead to decision-making that can negatively impact the company. Therefore, it is
indispensable to carry out data imputation to replace missing data for the sake
of a more complete and accurate data analysis. Missing data imputation requires taking
the DW structure and dependency constraints among hierarchy levels into account.

3 Manuscript Outline

Facing the various problems discussed in Section [2| this PhD thesis aims to automate
the DW design and implementation to enable non-expert users take advantage of BI
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by integrating data into DWs for further OLAP analyses and data visualisation. To
do so, we propose a complete solution covering not only the automatic DW design and
implementation from tabular data, but also the follow-up tasks in case of multiple sources
including automatic DW merging and data imputation. Furthermore, we implement our
solution and develop an application that allows users to implement the designed DW and
carry out the merging and imputation processes.

The manuscript is organized as follows.

o In Chapter we propose a solution for automatic DW design and implementa-
tion from tabular data. The solution is composed of measure detection for the
construction of facts and dimension detection for the construction of dimensions.
Regarding measure detection, we consider numerical columns as candidate measures
and propose a machine learning-based approach by defining general, statistical and
inter-column features extracted from numerical attributes. Regarding dimension de-
tection, we first propose an algorithm to create hierarchies by detecting functional
dependencies. We then propose some syntactic and semantic rules to identify di-
mension attributes as parameters or weak attributes. We carry out experiments to
validate our solution. Measure detection is validated by comparing the effectiveness
of different machine learning algorithms with baseline approaches and by analysing
the feature category effectiveness, model generality and feature importance. Dimen-
sion detection is validated by the efficiency and the effectiveness for the detected
dimensions at dimension aspect, dimension attribute aspect and relationship as-

pects.

o In Chapter [[TI, we propose a process for merging two DWs modelled as star schemas
at both schema and instance levels. Our process is composed of level merging,
hierarchy merging, dimension merging and star merging. The process considers
different multidimensional components and generates a merged DW modelled as
a star or constellation schema in different cases. We carry out experiments with
the TPC-H benchmark’s data to validate the process in both star and constellation
schema generation cases. We verify the merged schema and instance results to
validate the correct merging.

« In Chapter [[V] we propose an approach named Hie-OLAPKNN for DW dimensional
data imputation. The approach is hybrid and combines a hierarchical imputation
(Hie) and a k-nearest neighbors-based imputation (OLAPKNN). Hierarchical im-
putation is carried out first. It is a reliable approach based on actual functional
dependencies among intra- and inter-dimensional hierarchy levels. OLAPKNN is
then carried out to replace the remaining missing data. Since OLAPKNN replaces
missing data by nearest neighbors, we define a specific distance metric for dimension
instances by considering dimensions’ structure. Moreover, the OLAPKNN algorithm
takes hierarchy dependency constraints into account. We conduct experiments to

compare Hie-OLAPKNN with other approaches from the literature by verifying the

4
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effectiveness, efficiency and respect of hierarchy strictness.

o In Chapter [V we implement a complete solution by integrating the approaches of
automatic DW design and implementation, automatic DW merging and data impu-
tation. We first present the functional and technical architecture of the application.
We then explain the different functionalities with the presentation of the front-end

and back-end.
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1 Introduction

1.1 Context

Data Warehouse is the core of the BI system which models the data by a multidimen-
sional way allowing decision makers to analyse data by On-Line Analytical Processing
(OLAP) (Golfarelli and Rizzi, [2009). With the development of information systems and
the availability of numerous open datasets, various data become much more accessible to
small enterprises, organizations and even individuals, who have data analysis needs by
BI tools to help them take decisions. However, the DW design is normally carried out
manually and requires experts with Bl experience (Romero and Abelld, 2010). So the
DW design process is typically costly and time-consuming. However, these users do not
have enough budget or BI experts. Thus, it is difficult for them to take advantage of BI.
Moreover, they may not necessarily know or anticipate precise requirements. They may
also have some requirements but do not know how to express them in a proper way which
help for the DW design. Therefore, it is necessary to automate the DW design process to
make the non-expert users to carry out analysis with warehoused data.

DW design is an important part of information system design (Céret et all 2013)).
There are different approaches of DW design (Romero and Abelld, 2009), which can be
classified into data-driven approaches and demand-driven approaches as shown in Fig. [[L.1]
In the data-driven approaches (Fig. , the DW schema is generated from the data
sources by analysing the data and schema. The user may also get involved in the processes
by validating the results. The data-driven DW design processes are mostly automatic or
semi-automatic solutions. Meanwhile there are demand-driven approaches (Fig.
which start from user requirements and map the data sources to generate the schema
satisfying these requirements manually or automatically. Moreover, there are hybrid ap-
proaches taking both user requirements and the data source into account. Since there
are various DW design difficulties for our target user as we analysed, our work focuses on
the data-driven approaches by proposing automatically DW schema and ask the user’s

participation for the validation.

Most of the data-driven approaches focus on data sources with an explicit schema
(Romero and Abelld, 2009), e.g. relational data with Entity-Relationship (ER) schema,
XML data with Document Type Definitions (DTDs), etc. Nevertheless, tabular data
such as spreadsheet data and Comma Separated Value (CSV) files are very common
in enterprises, and even more in the open data world. We thus focus on tabular data
whose schemas are not available. Thus we have to detect the different multidimensional
components based on the data instances which may arise several challenges. A DW is
composed of fact(s) and dimensions which contain particular multidimensional elements.
In the fact(s), there are measures; in the dimensions there are hierarchies and different
types of attributes including parameters and weak attributes. Thus we have to detect
these different multidimensional components.
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Figure I1.1: Two types of DW design processes

In addition, tabular data may bear quite simple or very complex structures (Adelfio
and Samet|, [2013). Simple structures consist of one header row followed by rows containing
data values. Headers label the data rows below, while data rows contain tuples akin to
relational database tuples. Most CSV files bear a simple structure, while spreadsheet
files and HTML tables can be more complex, e.g., cross tables (Lautert et al., 2013).
Such tables contain two or several dimensions, and may also contain several dimension
levels. Moreover, there also exists other complex structures such as concise tables, nested
tables, multivalued tables and split tables (Lautert et al., |2013). For tabular data of
complex structure, the most important task is to identify the table structure to extract
DW elements or transform them into simple structure. These tasks can be solved by some
existing algorithms (Chen and Cafarella, |2013; Du et al., 2021} [Koci et al., 2016; [Wang
et al., 2021)). Thus, in the following, we focus on the automatic DW design for tabular
data of simple structure.

We then discuss the challenges for the detection of the different multidimensional

components from tabular data of simple structure.

1.2 Challenges of Measure Detection

In simple-structured tabular data without schema or metadata, DW elements cannot be
directly extracted as the data do not bear a particular layout. Measures are usually
numerical data, but numerical columns are not necessarily measures, since there also
exists descriptive numerical attributes. Moreover, a column with the same semantic may
be treated differently in different contexts. For example, the population of a country may
be a measure if the analysis subject is the country information. But if the country is a
hierarchical level in a geographical dimension, population is just a descriptive, so-called
weak attribute, and not a measure. Thence, it is also difficult to detect measures based
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on the semantics of the column

1.3 Challenges of Dimension Detection

To detect dimensions, we should identify the hierarchical relationships between attributes
to create dimension hierarchies. Moreover, we have also to decide which attributes are

parameters and which ones are weak attributes.

For tabular data of simple structure, there is no layout particularity. There is no
schema where we can get the cardinalities neither. We thus have to derive the hierarchi-
cal relationships by discovering the functional dependencies among the attributes. For
the distinction of parameters and weak attributes, a parameter can be regarded as the
identifier of its level. Thus the weak attributes are functionally determined by their pa-
rameters. However, in the functional dependency relationships, we can not simply tell
whether an attribute determined by another attribute is a parameter of a level or a weak
attribute of its determinant attribute. Furthermore, sometimes several attributes of a
same level may all be candidates of parameter, we have to choose the most appropriate

one.

1.4 Our Process Overview

Facing to these challenges, we propose a process to resolve them. The overview of our
process is shown in Fig.

For tabular data of complex structure, existing algorithms (Chen and Cafarella, 2013}
Du et al| 2021; Koci et al., 2016; [Wang et al., [2021) can be used for the identification of
table structure. For cross tables, measures can be extracted from data region. Headers
can be viewed as DW dimensions, and the different levels of hierarchical headers form
hierarchies. The other types of complex structures can be converted into simple structures.

Since the DW design for complex structure tabular data can be solved by existing
approaches, we focus on that of simple structure. We propose an automatic DW design
process for tabular data of simple structure as shown in the red-framed part. To solve the
challenges of measure detection, we propose a machine learning-based measure detection
approach. Then to solve the challenges of dimension detection, we propose a functional
dependency-based hierarchy detection and a rule-based approach for distinction of pa-
rameters and weak attributes.

1.5 Outline

The remainder of this chapter is organized as follows. In Section [3| we review and compare
the related works about data-driven automatic DW design. In Section [}, we detail and
discuss the measure detection process and the machine learning features we propose. In
Section [} we explain how to build hierarchies from functional dependency trees and how

10
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to decide whether an attribute is a parameter or a weak attribute. In Section [6] and
Section [7, we present and interpret our experimental results respectively for measure
detection and dimension detection. Finally, in Section [§, we conclude this chapter.

2 Preliminary

We introduce in this section, basic concepts of a DW (Ravat et al., |2008a) that we use
throughout this manuscript.

Definition 2.1 (Data warehouse). A data warehouse, denoted by DW , is defined as
(NPW FPW DPW StarPW ) where

NPW s the data warehouse’s name,
o FPW (P .., F,} is a set of facts,

« DPW — {Dz, ..., D,} is a non-empty set of dimensions,

o StarPW . pPW _y oDPV 4o g mapping associating each fact to its linked dimensions.
The notation 2% denotes the powerset of the set X.

A DW can be modelled by a star or a constellation schema. In a star schema, there
is a single fact connected with different dimensions, i.e. |FPW| > 1. A constellation

schema consists of more than one fact which share one or several common dimensions,
ie. |FPV| =1,

A dimension models an analysis axis and is composed of attributes.

Definition 2.2 (Dimension). A dimension, denoted by D, € DPW is defined as
(NPe AP
HPe IPe) where

o NPe s the dimension’s name,

11
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o APe = {aPe . aPYU{idP<} is a non-empty set of attributes, where idPe represents

the dimension’s identifier, which is also the parameter of the lowest level and called

the root parameter.
o HPe = {HP" .. HP:} is a non-empty set of hierarchies,

o I[Pe = {il*,...,iD<} is a set of dimension instances. The value of an attribute al*

of the instance i?c is denoted as iqDC.auDC.

A hierarchy represents a particular vision (perspective) of a dimension. Each attribute
represents one data granularity according to which measures could be analysed.

Definition 2.3 (Hierarchy). A hierarchy of a dimension D., denoted by H, € HP<, is
defined as (N, Param®e, Weak®), where

o N is the hierarchy’s name,

o Param™c =< idP, pie, <oy PHe > s a non-empty ordered set of dimension attributes,

called parameters, which set granularity levels along the dimensions: Vk € [1...1}],10?e €
AP The roll up relationship between two parameters can be denoted by pte =H, Py

He

for the case where pi* roll up to p¥e in H.. For Param®, we have id” =u.,

H, H, H, H H.
P1%P1° jHe P25 Dy jHe Py ©-

e WeakHe = Paramfe — 2AP =Param™) o 0 mapping possibly associating each pa-
rameter with one or several weak attributes, which are also dimension attributes
providing additional information. WeakHe[pfle] = {w’ffe ...,wé’fe} is the weak at-
tribute set for parameter p;'c. All parameters and weak attributes of H, constitute the
hierarchy attributes of H,, denoted by Afe = Param®eU( U WeakHe [pHe]).

py ¢ €EParamte

There exists different types of hierarchy, but the most basic and common one is the

strict hierarchy (Malinowski and Zimanyi, 2004) where a value at a hierarchy’s lower-
granularity level belongs to only one higher-granularity level value (Trujillo et al., [2001)).
Thus in this manuscript, we only consider the case of the strict hierarchy:.

A fact reflects information that has to be analysed according to dimensions and is
modelled through one or several indicators called measures.

Definition 2.4 (Fact). A fact, denoted by F, € FPV, is defined as (N*e, M*s, [*s [ Starts),
where

o Nt9 is the fact’s name,
F, .
o MY ={m* ...mls} is a set of measures.

o ITs = {47°, ...,zfg} is a set of fact instances. The value of a measure mts of the
instance 1}7 is denoted as ifo.mls.

12
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e IStar®s : I's — D s a function associating each fact instances to their linked
dimension instances, where Dfs is the cartesian product over sets of dimension

instances, which is defined as D¥s = Ip,estarrw (r,) TPk,

3 Related Work

In this section, we present the different data-driven automatic DW creation approaches
in chronological order. We also analyse these approaches by comparing them in different
aspects including the input source, the pre-processing, the detection of different DW
elements, the DW implementation and user intervention.

3.1 Approaches
3.1.1 Boehnlein and Ulbrich-vom Ende| (1999)

The authors propose an approach to derive a multidimensional DW schema from a Struc-
tured Entity Relationship Model (SERM) that is an extension of ER which allows design-
ing extensive data models, visualizing the dependency order between data objects and
avoiding inconsistencies and unnecessary relationships. This approach consists of three
stages as follows.

1. Identification of Business Measures Measures are determined by business goals.
This stage requires business knowledge about the company’s services. Then by

analysing how services can be evaluated for the business goals, adequate measures
can be defined.

2. Identification of Dimensions and Hierarchies To identify potential dimensions
and hierarchies, the authors propose to enclose the data objects by the dependencies
in the SERM. The starting point is the data objects assigned to the chosen measures.
Data objects are then connected to form different dimensions. Data objects with
one-to-many cardinalities form different hierarchies.

3. Identification of Integrity Constraints Along Dimension Hierarchies In
this stage, the authors transform the identified multidimensional structure into a
star schema. They include primary keys of the dimensions in the fact tables. They
also propose the alternative to create a snowflake schema by the normalization of

dimension tables.

3.1.2 Moody and Kortink (2000)

This paper depicts an approach to create a multidimensional schema from an Entity
Relationship (ER) schema. The approach includes four following steps.

1. Entity Classification In this step, the authors propose to classify entities in the
ER schema into three categories:

13
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(a) Transaction Entities contain business events such as orders, payments and
bookings. This category of entities contain measures that are used to construct
fact tables.

(b) Component Entities define the components and details of a business transac-
tion. A component entity is directly connected to a transaction entity via a
one-to-many relationship. They are entities that help for the construction of
dimension tables.

(c) Classification Entities are connected to component entities via one-to-many
relationships. A classification entity is functionally dependent on a component
entity and is useful for constructing dimension tables, especially dimension
hierarchies.

To remove ambiguities in case an entity can be classified into multiple classes, the
authors also define a precedence rule. The transaction entity has the highest prece-

dence and the component entity has the lowest.

2. Hierarchy Identification Hierarchies are identified by the sequence of entities
joining one-to-many relationships. The authors propose to create maximal hierar-

chies that cannot be extended upwards with other entities.

3. Dimension Model Production Knowing the identified entity categories and hi-
erarchies, the authors propose various dimensional models including flat, terraced,
star, snowflake and star cluster schemas. The generation of a star schema starts with
fact table for each transaction entity whose keys are linked to component entities.
A dimension table is created for each component entity. The related classification

entities are also included in the dimension to form hierarchies.

4. Evaluation and Refinement The authors argue that DW modelling is an iterative
process. Thus, other operations may be needed after the generation of the first

schema. These operations include
(a) combining fact tables with the same primary keys;

(b) combining related dimension tables into a single dimension to avoid a large

number of dimension tables;

(c) dealing with many-to-many relationships to avoid breaks in the hierarchical
chain;

(d) converting sub/supertype relationships into dimension hierarchies.

3.1.3 |Golfarelli et al.| (2001)

The authors propose an approach for building DW conceptual schema starting from an
Extensible Markup Language (XML) source with a Document Type Definition (DTD).

14
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They focus on the DTD, modelling relationships by sub-elements. The output is a star

schema. The approach is composed of four following steps.

1.

DTD Simplification This step simplifies some details in the DTD, such as trans-
forming a nested definition into a flat representation, grouping sub-elements with

same name and transforming many unary operators into single unary operators, e.g.

Wk

transforming all “+” operators into operators.

. DTD Graph Creation In this step, a DTD graph representing the DTD structure

is created by methods from the literature such as the CPI algorithm (Lee and Chu,
2000).

. Fact Definition The user chooses one or many vertices in the DTD graph as

measures, so that each one of them becomes the root of a fact schema.

. Attribute Tree Creation Based on the one-to-many relationships between the

sub-elements, an attribute tree is created. It can then be transformed into a star

schema.

3.1.4 Phipps and Davis.| (2002)

In this paper, the authors propose an automatic DW design approach whose input is an

ER schema. The output of the approach is a Multidimensional Entity-Relationship Model

(MERM). The approach is composed of following steps.

1.

Fact Node Creation The authors claim that numerical fields are more likely to
be measures. Thus the more numerical fields an entity contains, the more likely it is
to be a fact. Therefore, in this step, they order the entities with numerical fields in
descending order. Then, they create a fact node for each entity and create a MERM

for each fact node. We thus get a list of candidate schemas.

. Fact Attribute Creation In this step, the fact node of each candidate MER

schema is added to the numerical fields of the original entity as the fact’s attributes.

. Date Dimensions Creation The date or time fields in each selected entity help

create a date dimension and its levels. The date granularity is decided by the user.

Other Dimension Creation If there are remaining fields in a selected entity, they
are normally text fields. A dimension and a corresponding hierarchy level node are

created for each remaining field.

. Add Hierarchy Levels In this step, the authors recursively include the many

side of one-to-many relationships to create hierarchies. Each candidate schema is

completed after this step.

Candidate Schema Selection and Refinement The final validation of the
schema involves the user. Candidate schemas are evaluated by queries to decide

15
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which schemas best meet users’ needs. Selected schemas are also refined according

to users’ requirements. Refinements includes
(a) verifying whether the identified measures are actual measures;
(b) determining the granularity of date information;
(c) determining whether there are calculated measures;
(d) determining whether there are schemas that can be merged;
(e) verifying whether there are unnecessary fields that can be eliminated;

(f) verifying whether there are required data not existing in the original OLTP
database.

3.1.5 |Vrdoljak et al. (2003)

This paper describes a semi-automatic process for DW design from XML sources modelled
by XML schemas. It follows a similar process as (Golfarelli et al., 2001), but with a
different XML model. It includes the following steps.

1.

XML Schema Preprocessing The XML schema may be sometimes complex and
bear redundancy, so this step simplifies the schema as in (Golfarelli et al., |2001).

Schema Graph Creation and Transformation In this step, a graph is created
based on the XML schema. Two transformations are carried out. First, functional
dependencies are explicitly expressed by key attributes. Second, vertices not storing

any value are eliminated.

. Fact Selection Facts are chosen among the vertices and the arcs representing a

many-to-many relationship by the user.

Dependency Graph Creation For each fact, a dependency graph whose root is
the fact is built based on the schema graph. Vertices are inserted into the depen-
dency graph by verifying the one-to-many cardinalities. When cardinalities are not
provided, XQueries are performed to look for to-one relationships. Many-to-many
relationships may be chosen with respect to users’ interest. The dependency graph

helps building hierarchies.

. Logical Schema Creation With measures and facts being already chosen, dimen-

sions and hierarchies are derived by the dependency graph.

3.1.6 |Jensen et al. (2004)

In this paper, the authors present an approach aiming to discover multidimensional

snowflake schemas from relational databases. The approach includes three following steps.

16
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1. Metadata Collection A metadata model is firstly proposed where there are meta-
data about tables, including attribute information, keys, cardinalities, etc. For each
2 [44

attribute, there is also a metadata “role” being “key”, “measure” or “descriptive”

determined by a Bayesian network taking the collected metadata as inputs.

2. Database Structure Discovery In this step, the authors discover candidate keys
and foreign keys by detecting functional dependencies and inclusion dependencies,
with the help of metadata. These keys are applied for the construction of dimensions
in the snowflake schema.

3. Multidimensional Schema Construction The fact table is identified in the pre-
vious step before the detection of inclusion dependencies. It is a semi-automatic
process requiring the user’s participation. For the construction of dimensions, in-
clusion dependencies can form different connected graphs. If there is an inclusion
dependency that connects an attribute of the fact table and another attribute in a
connected graph, then this connected graph may be a dimension. This attribute on
the connected graph is the root parameter of the dimension. For the construction of
hierarchies, the authors sort the attributes in the dimension by distinct descending
order. Then, the authors verify roll-up relationships via SQL queries to create the
hierarchies.

3.1.7 [1.-Y.Song et al.| (2007)

A semi-automatic method named SAMSTAR is proposed in this paper, which generates
star schema from ER schema. SAMSTAR can be summarized by the following steps.

1. ER schema to binary ER schema Conversion In this step, the authors propose
to split the ER schema into a binary ER schema, by splitting ternary relationships
into three binary ones and splitting many-to-many relationships into two one-to-

many relationships with a new intersection entity.

2. Facts CTV Creation The Connection Topology Value (CTV) is proposed by the
authors, which is a composite function of the topology value of direct and indirect
many-to-one relationships. The CTV is calculated for each entity. A threshold is
set and the entities whose CTV are higher than it are identified as candidate fact
tables.

3. Dimension Creation Dimensions are created by identifying the entities having
direct and indirect many-to-one relationships with a fact entity. Synonyms in the
Wordnet and Annotated Dimensional Design Pattern (A_DDP) are also used to
extend the dimension list.

4. Generated Schema Post-processing Finally, they post-process the generated
schema by requiring the users’ intervention. The user choose the final dimension
entities based on their requirement. The user also checks redundant time dimen-
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sions, possibly merge related dimensions and rename tables. The final star schema
is then generated.

3.1.8 Romero and Abelld| (2007)

The authors propose a semi-automatic multidimensional design approach from OWL on-
tology representing heterogeneous data sources, and express multidimensional patterns
with Description Logic (DL).

1. Fact Creation The authors consider that a concept is more likely to be a fact if
it is related to many potential dimensions and measures. So, they first discover po-
tential dimensions and measures. Dimensions are discovered by deriving functional
dependencies from the ontology and finding many-to-one relationships. Measures
are pointed out by finding the numerical concepts related to one-to-one relation-
ships. Facts can be found. The user chooses the facts according to subjects of
interest.

2. Potential Bases Discovery The authors define a minimal set of levels functionally
determining a fact as a base. This step aims to point out sets of concepts that are
likely to be bases of each identified fact. So they search for the concepts being able
to identify all instances of a fact to be potential bases. The user finally chooses the
bases making sense to her/him. The concepts in the bases form the identifiers of

the dimensions.

3. Dimension Hierarchy Creation In this step, the authors look for the to-one roll-
up relationships and create a directed graph following the paths of these relationships
to build the hierarchies.

3.1.9 |Usman et al. (2010}, 2013)

The authors propose an automatic method to generate a star schema from a tabular data.

It is based on data mining techniques and contains two layers.

1. Data Mining Layer This is a pre-processing layer. The authors use the hierar-
chical agglomerative clustering to generate clustered data with their hierarchical

relationships.

2. Automatic Schema Generation Layer In this layer, the authors identify di-
mensions and facts. Numerical data form the fact table and nominal data form
dimensional tables. The hierarchical relationships obtained in the previous layer
are employed to build the hierarchies.

3.1.10 |Ouaret et al.| (2014)

This paper describes a rule-based approach generating a star schema from an XML

schema. The idea is to transform the XML schema into a UML diagram and then derive

18
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a star schema. The approach is composed of the following steps:

1. UML Class Diagram Generation In this first step, the authors transform the
XML schema into a UML class diagram by pre-defined rules.

2. UML Class Diagram Reduction They reduce the generated UML diagram by
removing some redundant, isolated, trivial classes and merge one-to-one relation-

ships.

3. Star Schema Creation Based on the UML schema, they define rules to construct

different multidimensional elements including
e measures: numerical no-key attribute are potential measures,
« facts: classes with a large number of numerical attributes are potential facts,

o dimensions: the classes having many-to-one and one-to-one relationships with
facts are considered as dimensions.

A tool is developed allowing users to generate an XML multidimensional schema from an
XML schema and create an XML DW from the XML data sources.
3.1.11 |Sautot et al. (2015

This paper introduces an automatic hierarchy design method for OLAP schema from
ecological database based on data mining techniques. The paper focuses on the context
of ecological data, where measures and dimensions are normally clearly identified. Their

method for detecting hierarchies can be summarized as follows.

1. Data and Metadata Collection The authors collect the data and metadata that
are to be used for the creation of hierarchies from the database. Then, the data

type of each attribute is identified, which is necessary for the clustering algorithm.

2. Hierarchical Clustering They propose to use the hierarchical agglomerative clus-
tering with Gower index as a distance metric to cluster the data.

3. Dimension Hierarchy Construction They use the obtained hierarchical rela-

tionships to construct dimension hierarchies.

3.1.12 |[Elamin et al. (2017)

This paper proposes a heuristic-based approach for generating a star schema from an ER
model. The authors define several heuristic rules for different parts of the process.

1. Database Schema Extraction In this phase, they extract table names, column
types, keys, etc.

2. Schema Reverse Engineering Several rules are proposed to identify each table
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as an entity, a relationship or a weak entity that contains partial keys.

3. Multidimensional Schema Generation Then they define rules for the identifi-

cation of different multidimensional components.

Facts can be discovered from relationship tables and weak entity tables.
Measures are identified from numerical non-key attributes in fact tables.

Dimensions are identified from the tables referred by foreign keys in a fact

table. Date and time attributes are also transformed into dimensions.

Hierarchies are created by the foreign key references between tables. Parame-
ters are assigned to tables’ primary keys. The rest of the attributes are weak

attributes.

3.1.13 |Sanprasit et al. (2021)

In this paper, an automatic approach to generate a star schema from semi-structured

data (CSV files and spreadsheets) is proposed using semantic techniques. The approach

contains steps as follows.

1. Attribute Metadata Extraction and Analysis

(a)

(b)
()

The authors propose to use an arithmetic data encoding technique to infer
column names based on the training dataset. Wordnet is used to handle het-

erogeneous terminologies.
Then, they infer the attribute data types by referencing to a data type ontology.

Measures are identified through constraints from the domain ontology.

2. Star Schema Construction

(a)

Attributes that can be semantically classified into a same domain ontology
class construct a dimension.

Hierarchical relationships in the domain ontology help to build up dimension
hierarchies.

The fact table is created based on measures.

Surrogate keys are created to associate the dimension and fact tables.

3.2 Comparative Analysis

Table shows a comparison of the related works accounted for in the previous sections.

We provide an analysis concerning the input source and schema, pre-processing, fact
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generation, dimension generation, DW implementation and user intervention.

3.2.1 Inputs

Approaches’ input can be mainly classified into structured data with schema, semi-

structured data with schema and semi-structured data without schema.

o Structured data with schema We can observe that many approaches (7 out of
12) treat structured data (database data) with schema (Boehnlein and Ulbrich-vom|
Endel [1999; Moody and Kortinkl, [2000} [Phipps and Davis., 2002} [Jensen et al., 2004}
[.-Y.Song et al., 2007; [Sautot et al., 2015, Elamin et al., [2017)).

o Semi-structured data with schema There are 4 approaches taking semi-structured
data as inputs. Some of them take semi-structured data with schema such as XML
files with DTD (Golfarelli et al., 2001)) or XML schema (Vrdoljak et al., 2003} Ouaret|

et al, [2014) or ontology with OWL (Romero and Abelld| 2007).

e Semi-structured data without schema It is a challenge to deal with semi-

structured flat data since they do not have explicit schema. This is also the data
type on which we focus. However there are only 2 approaches dealing with flat data
without schema (Usman et al., 2010, 2013} Sanprasit et al. 2021)).

3.2.2 Preprocessing

All approaches addressing structured and semi-structured data sources with schema in-
clude preprocessing at the schema level. The approaches whose inputs are semi-structured

data without schema conduct preprocessing at the instance level.

« Schema-level preprocessing Some approaches (5 out of 12) transform the orig-
inal schema or create new schemas (Boehnlein and Ulbrich-vom Ende, 1999;

Y.Song et all, 2007 [Golfarelli et al., 2001} [Vrdoljak et all [2003; [Ouaret et al.

2014])). Other approaches perform the classification of schema elements (Moody and
[Kortink|, [2000; Elamin et al., [2017) or the collection of schema information

et al., 2004} Sautot et al) 2015). The other preprocessings include creating candi-
date star schema from the identified facts (Phipps and Davis., 2002) and describing
the multidimensional patterns by DL (Romero and Abelld; 2007)).

o Instance-level Preprocessing The instance level pre-processing for semi-structured
data without schema includes carrying out hierarchical clustering on the data (Us-
man et al), 2010, 2013) and inferring column name from column data
2021)). Such preprocessing can be regarded as extracting schema elements

from data instances.
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3.2.3 Fact Generation

Since the measures are key element of a fact, the main task in fact generation is to

identify measures. A fact is predefined in Sautot et al. (2015). Some approaches consider

the identification of measures and facts as the same process (Boehnlein and Ulbrich-|
vom Ende], 1999; Moody and Kortink, [2000; Phipps and Davis., 2002 [.-Y.Song et al.,
2007; |Jensen et al), 2004} Usman et al., 2010, 2013} Sanprasit et al.), 2021)), while the
others distinguish measure and fact detection (Elamin et al., 2017; Golfarelli et al., 2001}
'Vrdoljak et al., [2003; |Ouaret et al., 2014).

Facts are the analysis subjects and are strongly related to user requirements. Moreover,
fact measures are normally numerical data. Thus, measure or fact detection is mainly
based on user participation and numerical attributes.

o User Participation-based generation There are 6 approaches where measures

and facts are selected manually by the user (Boehnlein and Ulbrich-vom Endeé)
11999; Moody and Kortink, 2000} (Golfarelli et al., 2001; |[Vrdoljak et al., [2003}; |Jensen|
et al. [2004; Romero and Abelld| 2007) and 3 approaches need the user’s validation
(L.-Y.Song et al., 2007; Ouaret et al., [2014}; Elamin et al., 2017)).

o Numerical attribute-based generation There are 5 approaches approaches that

identify measures and facts based on numerical data (Phipps and Davis., 2002}
Romero and Abelld, [2007; [Usman et al., 2010, 2013} (Ouaret et al., [2014).

e Others The other techniques for detecting together measures and facts include

calculating CTV based on many-to-one relationships (I-Y.Song et all [2007) and

exploiting a domain ontology (Sanprasit et al), 2021). The other technique for

detecting facts is considering the number of foreign keys within the primary key
(Elamin et al., [2017)).

User participation decreases the degree of automation. However it can better sat-
isfy user requirements. Numerical-based methods cannot guarantee that all numerical
attributes are appropriate measures. The ontology-based approach is limited because it

requires the appropriate domain ontology to get a good result.

Most of the approaches consider the generation of multi-facts, which means that they

are able to generate star or constellation schemas. There are 3 approaches (Boehnlein and|
'Ulbrich-vom Ende, |1999; [Usman et al. 2010, 2013; [Sanprasit et al.,[2021)) considering only
the generation of one fact. Thus they are only able to generate star schemas. In these

approaches, several schemas are generated in case of multiple analysis subjects, which
increase the workload.

3.2.4 Dimension Generation

Dimension generation is realized by the following techniques:
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¢ One-to-many relationship-based generation Dimensions are identified from
one-to-many relationships associated with facts in 5 approaches out of 12 (Moody
and Kortink, 2000; |Goltarelli et al., 2001; [.-Y.Song et al., [2007; |Romero and Abello,
2007; Ouaret et al., 2014).

« Dependency-based generation 4 approaches are based on functional or inclusion
dependencies to detect dimensions (Boehnlein and Ulbrich-vom Ende| [1999; |Jensen
et al., 2004; Elamin et al., |2017; [Romero and Abelld, 2007)).

o Data Type-based generation There are 2 approaches that consider textual and
date attributes to create dimensions (Phipps and Davis., 2002; Usman et al.| 2010,
2013)).

« Others An ontology (Sanprasit et al., 2021) can also be applied for the creation of
dimensions. Queries (Vrdoljak et al. 2003 can be employed for the validation of
the created dimensions.

One-to-many relationship-based, dependency-based and query-based dimension detec-
tion rely on database constraints and are thus more reliable. Data type and ontology-
based approaches do not verify these constraints and may thus detect wrong dimensions.
Moreover, the ontology-based approach suffers from the problem of getting an appropriate
domain ontology, as we mentioned for the measure and fact detection.

Hierarchy detection is a complex task where we must decide the hierarchical order
of attributes. However, it is not considered or not explained in [[.-Y.Song et al.| (2007)),
Golfarelli et al. (2001)) and |Ouaret et al. (2014). In the approaches considering hierarchy
detection, many approaches are based on one-to-many relationships. The others use

hierarchical clustering or ontology for hierarchy detection.

e One-to-many relationship-based generation There are 7 approaches based
on one-to-many relationships to construct hierarchies (Boehnlein and Ulbrich-vom
Ende), [1999; Moody and Kortink, 2000; Phipps and Davis., 2002} Romero and Abello,
2007). Some other techniques based on SQL queries (Jensen et al., 2004)), foreign
keys (Elamin et al., [2017) and dependency graph (Vrdoljak et al. 2003) can essen-
tially be also regarded as variants of applying one-to-many relationships.

o Hierarchical clustering-based Dimension attributes can be clustered by hier-
archical clustering to form different hierarchies. It is applied in 2 approaches for
detecting hierarchies in a dimension (Sautot et al., 2015; |[Usman et al.; 2010, 2013).

« Ontology-based Domain ontology can also be helpful (Sanprasit et al., 2021) for
hierarchy detection. Dimension attributes can be related to concepts in a domain
ontology. Hierarchies can be generated according to hierarchical relationships of the
domain ontology.

One-to-many relationships exist between different hierarchy levels. This is why it is
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the most applied criterion for hierarchy detection. However, the hierarchy clustering
based approaches provide hierarchical relationships based on instance similarity. They
can be semantically correct but may not match with the cardinality relationships between

hierarchy levels. The ontology-based approach still has the same limit as mentioned above.

The distinction of parameters and weak attributes is only taken into account in |Elamin
et al.| (2017) and Romero and Abelld| (2007). In|Elamin et al.|(2017), the attributes which
are originally primary keys in the ER schema are identified as parameters. In (Romero
and Abelld, [2007)), the distinction is decided manually by the user.

3.2.5 Data Warehouse Implementation

Most of the approaches do not consider DW implementation and focus only on multi-
dimensional schema design. Only Ouaret et al.| (2014), [Usman et al.| (2010, |2013) and
Sanprasit et al.| (2021)) mention an implementation part where Ouaret et al.| (2014]) create
a XML database. However, implementation details are not mentioned in the other two
approaches.

3.2.6 User intervention

Only Ouaret et al|(2014)’s approach does not need the user’s intervention and is claimed
to be fully automatic. However, the authors plan to integrate user requirements in future
works. All the other approaches are semi-automatic, which demand user intervention.

+ Measure/Fact Selection and Validation Most approaches (7 out of 12) ask the
user for measure/fact selection and validation (Boehnlein and Ulbrich-vom Ende,
1999; Moody and Kortink, [2000; Goltarelli et al.l 2001; Vrdoljak et al., 2003; |Jensen
et al., 2004; Romero and Abelld, |2007; |[Elamin et al., 2017).

e Schema or Schema Element Validation In 4 approaches, the user is asked
for validating or selecting the generated schema or schema elements (attributes,

dimensions, etc.).

e Others Other user intervention operations include threshold definition (L.-Y.Song
et al., 2007) and algorithm parameter tuning (Usman et al., 2010} 2013)).

User intervention makes the approaches not fully automatic, yet it is important because

it makes the identified schema conform to user requirement (Ravat et al.; 2009).
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3.3 Summary

There are few approaches addressing the semi-structured data without schema, since the
detection of multidimensional elements can be challenging without a schema. The only
two existing approaches have several limits. Usman et al.| (2010, 2013) only consider data
types for the generation of facts and dimensions. Hierarchies are generated by hierarchical
clustering. The authors do not consider any database constraint, which may render the
result unreliable. (Sanprasit et al., [2021) rely on a domain ontology, the DW element
detection result depends on whether appropriate<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>