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Abstract. A data warehouse is built by collecting data from external sources. Sev-
eral changes on contents and structures can usually happen on these sources. There-
fore, these changes have to be reflected in the data warehouse using schema updat-
ing or versioning. However a data warehouse has also to evolve according to new
users’ analysis needs. In this case, the evolution is rather driven by knowledge than
by data. In this paper, we propose a Rule-based Data Warehouse (R-DW) model,
in which rules enable the integration of users’ knowledge in the data warehouse.
The R-DW model is composed of two parts: one fixed part that contains a fact table
related to its first level dimensions, and a second evolving part, defined by means
of rules. These rules are used to dynamically create dimension hierarchies, allow-
ing the analysis contexts evolution, according to an automatic and concurrent way.
Our proposal provides flexibility to data warehouse’s evolution by increasing users’
interaction with the decision support system.
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Introduction

The design of integrated concurrent engineering platforms has received much attention,
because competing firms strives for shorter design delays and lower costs. Concurrent
engineering allows for parallel design, thus leads to shorter design to market delays.
It however requires advanced coordination and integration capabilities [4]. Concurrent
engineering, also known as simultaneous engineering, is a non-linear product or project
design approach during which all phases operate at the same time.

Data warehouse systems must operate in a fully concurrent environment. Material-
ized views must be maintained within the data warehouse dynamically with the data pro-
vided from data sources. Data sources can generate concurrent data updates and schema
changes within the data warehouse. However, we think that data warehousing is a tech-
nology that is difficult to consider from a concurrent engineering point of view concern-
ing the users’ implication in the process. The data warehouse design corresponds to a
linear process in which users are indirectly implied. First, a study of the data sources
and the users’ analysis needs is needed. Second, the model of the data warehouse has to
be built. Last the ETL (Extract Transform and Loading) process has to be defined and
implemented. End users make analyses entirely driven by the data warehouse model. By
considering a concurrent engineering approach for users in the data warehouse, we need
to cope evolutions of analysis possibilities defined by users.
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Figure 1. Data warehouse model for the NBI analysis.

It is impossible to take into account the evolution of all users’ analysis needs, par-
ticularly when these needs are based on their knowledge. Indeed, sometimes users have
knowledge which is not represented in the data warehouse but which is likely to be used
for an analysis. To enable evolution of data warehouse, the administrator has to centralize
the analysis needs and knowledge on which they are based. This process is a difficult task
to achieve. Thus, we propose a new data warehouse model based on rules, named R-DW
(Rule-based Data Warehouse), in which rules integrate users’ knowledge allowing real
time evolution of the analysis possibilities.

Our R-DW model is composed of two parts: a “fixed” part, defined extensionally,
and an “evolving” part, defined intentionally with rules. The fixed part includes a fact
table and dimensions of the first level (dimensions which have a direct link with the
fact table). The evolving part includes rules which define new analysis axes based on
existing dimensions and on new knowledge. These rules create new granularity levels in
dimension hierarchies. Thus this model makes the evolution of analysis needs expressed
directly by users easier, without the administrator’s intervention.

The remainder of this paper is organized as follows. First, we present a motivating
example in Section 1. Section 2 and Section 3 are devoted to the principles of our R-
DW model and its formal framework. We also present an implementation and a running
example with banking data in Section 4. Then we discuss in Section 5 the related work
regarding schema evolution and flexibility offered by rule-based languages in data ware-
houses. We finally conclude this paper and discuss research perspectives in Section 6.

1. Motivating example

To illustrate our approach throughout this paper, we use a case study defined by Le
Crédit Lyonnais french bank (LCL2). The annual Net Banking Income (NBI) is the profit
obtained from the management of customers account. It is a measure that is studied
according to dimensions customer (marital status, age...), agency and year (Figure 1).

Let us take the case of the students portfolio manager of LCL. This person knows
that a few agencies manage only students accounts. But this knowledge is not visible in
the model. It therefore cannot be used to carry out an analysis about student dedicated
agencies. This knowledge represents a way to aggregate data, under the form of “if-then”
rules, as the following rules which represent the knowledge on the agencies type:
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Figure 2. Rule-based Data Warehouse conceptual model for the NBI analysis.

Figure 3. R-DW model.
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The objective is then to carry out new analysis based on the user’s knowledge. For
an example, the objective is to build aggregates, by considering that the facts to aggregate
concern a student agency (R1), or a classical agency (R2). Our objective is thus to inte-
grate these rules into the model. Indeed, rules allow us to build the level AGENCY_TYPE,
by defining the values of the dim_agency_type attribute in the dimension hierarchy
(Figure 2). To achieve this objective, we propose the R-DW model.

2. The R-DW model

The R-DW model is composed of two parts: one fixed part, defined extensionally, and
one evolving part, defined intentionally with rules (Figure 3). The fixed part can be seen
as a star schema because it is composed of a fact table and first level dimensions. The
evolving part is composed of rules which generate new granularity levels in dimension
hierarchies based on users’ knowledge and existing dimensions.

Our model provides to the users a way to express their rules to define dimensions hi-
erarchies. It presents many advantages comparing to existing models by allowing: (1) to
dynamically create hierarchies, (2)to make analysis on evolving contexts, (3) to increase
the interaction between the user and the information system since the user can integrate
his own knowledge.

In the R-DW model, rules, namely aggregation rules, are used to create dimension
hierarchies by defining the aggregation link between two granularity levels in a dimen-
sion hierarchy. These rules are defined by users who express their knowledge. The aggre-
gation rules are “if-then” rules. These rules have the advantage of being very intelligible



for users since they model information explicitly. The then-clause contains the definition
of a higher granularity level. The if-clause contains conditions on the lower granular-
ity levels. The following rules define the granularity level AGENCY_TYPE through the
dim_agency_type attribute, basing on the AGENCY level (Agency_ID attribute):���������
	�����������

_ ��� � � ‘01903’,‘01905’,‘02256’ ���
 ���"!#�%$ _ & �������� _ � ��'(� ) ‘student’����+,���
	�����������
_ ��� -� � ‘01903’,‘01905’,‘02256’ ���
 ���"!#�%$ _ & �������� _ � ��'(� ) ‘classical’

The rules thus make it possible to integrate knowledge to define the various granu-
larity levels of the dimension hierarchies. The advantage in building the dimension hi-
erarchies with rules is that we are able to take into account the users’ knowledge in real
time. Therefore, the data warehouse model becomes more flexible for analysis. Indeed
the users can analyze data according to the new granularity levels defined by their rules.

To take into account the knowledge or the analysis needs of different users simulta-
neously, we have to deal with “versions” of rules when the users define the same analysis
needs by different ways. Let us take the example of age groups definition starting from
the ages of the table CUSTOMER. The following classes can be defined by two users:

User 1 User 2�
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3. Formal framework

We represent the Rule-based Data Warehouse model R-DW by the following triplet:

R-DW 	�
�����������

where � is the fixed part, � the evolving part et � the universe of the data warehouse
R-DW.

Definition 1. Universe of the data warehouse
The universe of the data warehouse � is a set of attributes, such as:
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where ����� ��,=->.�->13) is the set of 1 predefined attributes (in the fixed part � ) and
�7%�'(��8?9�,<) is the set of generated attributes (defined in the evolving part � ).

Definition 2. Fixed part of R-DW
The fixed part of R-DW is represented by:

�>	A@2BC�EDGF

where B is a fact table and DH	I��J�K���,L-NML-PO&) is the set of O first level dimen-
sions which have a direct link with fact table B . We assume that these dimensions are
independent.

Example 2. In the Figure 1, �>	 < QRB _ S6�AT ,{ URV�WXSY%�Z , ZXWXUR[ , %X\�]^Q#_�`*WX[ }>
is the fixed part of the R-DW for the NBI analysis.

The expression of new analysis needs induces the definition of new granularity levels
in dimension hierarchies.

Definition 3. Dimension hierarchy and granularity level
Let R-DW 	�
E@2BC�EDGF���������� be a data warehouse.



Let J K � ��� ��� 9�, be a dimension hierarchy J�K�� D .
The dimension hierarchy J�K � ��� is composed of a set of � ordered granularity levels

noted �
	 :
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The granularity level ��	 of the hierarchy
���

of dimension J�K is noted J K � ��� � �
	 or
� K
�
	 . The granularity levels are defined with attributes called generated attributes.

Definition 4. Generated attribute
An attribute %�'�� � ��8:9;, , is called generated attribute.
%�' characterizes a granularity level in a dimension hierarchy. To simplify, we sup-

pose that each granularity level of dimension hierarchy is represented by only one gen-
erated attribute, even if it is possible to generate more than one attribute per level.

Thus, the generated attribute %5' which characterized the granularity level ��	 of
hierarchy

���
of dimension J�K is noted � K

�
	 � U . The values of these generated attributes

are defined by using the evolving part of R-DW.

Definition 5. Evolving part of R-DW
The evolving part of R-DW is represented by

�Y	*�$@���	����� K
�
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where ��	��^	 ����	 �$��,�-���-��X��, -! Y-�" ) is a set of " aggregation rules defining the
values of the generated attribute � K

�
	 � U . � represents the set of � granularity levels of

hierarchy
���

of dimension J�K and their associated rules.

Definition 6. Aggregation rule
An aggregation rule defines the aggregation link which exists between two granu-

larity levels in a dimension hierarchy. It is based on a set # of $ rule terms noted [#Q&% ,
such as:

# 	���[#Q'% ��,�-)(=-*$^)#	*�<\,+�( �7M�- O/. "1012 ) )
where \ is an attribute of the universe � ; +�( is a relational operator ( 	 , @ , F , - , 9 , 3	 ,
...), or an ensemblist operator ( � , 4� , ...) ; M�- O is a set of values and "1012 is a given value.

Example 6a. [#Q ��5 U768-�$:9<; _ T$J=�Y� ‘01903’,‘01905’,‘02256’ )
[#Q& 5 Z>-�0?� _ T$J @,@BACA3,
[#Q&D 5 VE-�$:F?-���	 ‘F’

An aggregation rule is an “if-then” rule. The conclusion of the rule (“then” clause)
defines the value of the generated attribute. The premise of the rule (“if” clause) is based
on a composition of conjonctions or disjonctions of these rule terms:

��	 � 5 �HG [#Q � 
I0?$:FJ. +��<� [#Q&R� � � 
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Example 6b. The following rules define the values of the attribute dim_type_agency
which characterizes the granularity level AGENCY_TYPE:������� �
	�����������
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Example 6c. The following rule defines the value ‘married women’ of the at-
tribute dim_persons_group according to attributes Marital_Status and Gen-
der of CUSTOMER table:�
	�N &PO � �
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Figure 4. Evolving part of the R-DW data warehouse for the NBI analysis.

Thus aggregation rules create or enrich a dimension hierarchy by defining the values
of the generated attribute according to a condition (Example 6b.) or a composition of
conditions (Example 6c.). These rules translate the knowledge provided by users.

4. Case study

To validate our approach, we implemented a prototype of our R-DW model taking into
account knowledge provided by a user. We developed a Web platform (HTML/PHP)
behind Oracle DBMS used to store the fact table and dimension tables. One additional
table contains the aggregation rules. The Web platform allows the user to define and
visualize the rules that generate the analysis axes. It also allows the visualization of the
query results. We applied our model on banking data for the NBI analysis. The fixed
part of the model is represented in the Figure 1. Different dimension hierarchies are
represented by the evolving part of the R-DW model in the Figure 4. Thus, the user will
be able to run NBI analyses, not only by considering dimensions of the first level, but
also by considering new granularity levels like agency type, age class...

In our first prototype, we have implemented the computation of aggregates for the
analysis on the fly. We initially restricted ourselves to a decisionnal query with an ag-
gregation according to one granularity level of a dimension hierarchy. This aggregation
takes the form of a PL/SQL stored procedure of the DBMS. This procedure builds an
aggregates table, by creating the SQL queries needed, according to the algorithm of the
Figure 5. This algorithm can be used to answer the query “What is the NBI average for
the different types of agency?”. The agency type is determined by two rules. Thus, the
aggregates table contains two tuples corresponding to the NBI average for students and
classical agencies. These values are obtained with the following SQL queries:

NBI average for student agencies: NBI average for classical agencies:
SELECT MOY(NBI) FROM TF_NBI, AGENCY SELECT MOY(NBI) FROM TF_NBI, AGENCY

WHERE TF_NBI.Agency_ID=AGENCY.Agency_ID WHERE TF_NBI.Agency_ID=AGENCY.Agency_ID
AND Agency_ID IN (‘01903’,‘01905’,‘02256’); AND Agency_ID NOT IN (‘01903’,‘01905’,‘02256’);

To obtain NBI average for student (resp. classical) agencies, in the WHERE clause
of the query is the premise of the rule which defines a student (resp. classical) agency.

5. Related Work

A schema evolution is needed to take into account new analysis needs. According to
the literature, schema evolution can be performed following two different ways, namely



Algorithm
Notation: The premise of the rule is written

� X !#�(� O�� � � , and its conclu-
sion is written  � & ! � O�� � � .
Input: fact table � , set of aggregation rules � , attribute

�
, mea-

sure ��� N
	 , aggregation operator X ' ,
Output: aggregates table TAgreg
Begin

For each O�� � ���
If

� �  � & ! � O�� � � Then� �� O ���)� R�������� � X '�� ��� N
	#� � ��� N ������� � � � X !#�(� O�� � ��
End if

End for
End

Figure 5. Aggregates computation algorithm.

schema updating and schema versioning. Schema updating consists in transforming data
from an old schema into a new one [2,8]. In this case, only one schema is supported.
On the contrary, schema versioning consists in keeping track of all versions of a schema
[3,10]. In [1], the authors use versions too. They distinguish real version from alternative
version. Alternative versions are used for simulating scenarios. They are derived by the
data warehouse administrator from a previous version. Our R-DW model allows simula-
tions too, but driven by users. Schema updating and versioning constitute a solution to
the dimensions evolution, when the latter is induced by the evolution of the data them-
selves. However, once the data warehouse created, the users can only carry out analysis
provided by the model. Thus they do not provide a solution to take into account new
analysis needs which are driven by the expression of users’ knowledge.

In spite of their disadvantages, these two approaches bring a certain temporal flex-
ibility to the data warehouse model. Other works aimed at bringing flexibility within
the data warehouse use mostly rule-based languages. Firstly, concerning data warehouse
schema definition flexibility, two approaches are possible: using rules either to express
the analysis needs [9] or the knowledge about data warehouse construction [11]. These
different works propose to automatically generate the data warehouse schema from
source schemas using rules but the schema’s evolution is not taken into account. Create
a new data warehouse when an analysis need appears is not a solution, even if this cre-
ation is automated. Secondly, the administrator must define some integrity constraints
to ensure the consistency of not only the data, but also the analysis. In [5,7], the ex-
pressed integrity constraints use the data semantic to manage data inconsistency within
the analysis. However the data semantic is not exploited for the analysis. The proposed
approaches allow consistent analyses but their evolution is not evoked. Thirdly, in order
to make the analysis more flexible, a rule-based language has been developed in [6] to
manage exceptions during the aggregation process. This language allows to intentionally
express redefinitions of aggregation hierarchies. We think that it is possible to treat these
exceptions with the R-DW model.

Rule-based languages allow flexibility within data warehouses in different ways. It
is precisely this flexibility which we seek for the analysis evolution. This evolution is
conditioned by that of dimensions. The data warehouse schema updating or versioning
constitute answers to the problem of dimensions evolution, when this latter is oriented
by the evolution of data themselves. Moreover, the intervention of the administrator is



needed to implement these solutions. With the R-DW model, we bring a solution to take
into account the emergence of new analysis needs directed by the expression of users’
knowledge, without the administrator intervention, thus in a concurrent way.

6. Conclusion

In this paper, we proposed a new data warehouse model based on rules (R-DW), where
rules allow us to introduce users’ knowledge for analysis purposes. Our R-DW model is
composed of two parts: one fixed part, which contains a fact table and first level dimen-
sions and one evolving part, defined with rules, which generate granularity levels of di-
mension hierarchies. Thus the dimension hierarchies are generated according to users’s
knowledge therefore satisfying their analytical needs. The R-DW model presents the ad-
vantage of being able to dynamically create dimension hierarchies, without the adminis-
trator’s intervention, in a concurrent way. We proposed a prototype of our R-DW model
and applied it on the LCL banking data case study.

The perspectives opened by this study are numerous. First, we have to extend the
analysis possibilities of our implementation. Then we intend to measure the performance
of our approach in terms of storage space and response time. Furthermore we plan to
define constraints on rules and a language that allows us to validate these rules. Moreover,
in this paper, we presented an approach that involves the users in the analysis process by
allowing them to integrate their knowledge in the system. We think it would be interesting
to discovery new rules using non supervised learning methods.
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