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Abstract

Data warehouses store aggregated data issued from different sources to
meet users’ analysis needs for decision support. The nature of the work
of users implies that their requirements are often changing and do not
reach a final state. Therefore, a data warehouse cannot be designed in
one step, usually it evolves over the time. In this paper, we propose a
user-driven approach that enables a data warehouse schema update. It
consists in integrating the users’ knowledge in the data warehouse mod-
eling to allow new analysis possibilities. More precisely, we consider the
specific users’ knowledge, which defines new aggregated data, under the
form of “if-then” rules that we call aggregation rules. These rules are used
to dynamically create new granularity levels in dimension hierarchies, fol-

lowing an automatic and concurrent way. Our approach is composed of



four phases: (1) users’ knowledge acquisition, (2) knowledge integration,
(3) data warehouse schema update, and (4) on-line analysis. To support
our approach, we define a Rule-based Data Warehouse (R-DW) model
composed of two parts: one “fixed” part and one “evolving” part. The
fixed part corresponds to the initial data warehouse schema, whose pur-
pose is to provide an answer to global analysis needs. The evolving part is
defined by means of aggregation rules, which allow personalized analyses.
To validate our approach, we developed a prototype called WEDrik (data
Warehouse Evolution Driven by Knowledge), in which the R-DW model
is implemented within the Oracle 10g DBMS. We also present how to
achieve our approach by proposing a model dedicated to the management
of the data warehouse schema evolution and the updates’ algorithms. Fur-
thermore, we applied our approach on banking data of the French bank
LCL-Le Crédit Lyonnais and we illustrate our purpose with the LCL case

study.

1 Introduction

Data warehouses are complex systems which store aggregated data issued from
different sources, to meet users’ analysis needs for decision support. This tech-
nology emerged in companies but quickly became a large research domain [24].
In a data warehouse, data are organized in a multidimensional way. The objec-
tive is to analyse facts through measures, according to dimensions which can be
organized in hierarchies, representing different granularity levels of information.

Due to the role of the data warehouses in the daily business work of an



enterprise, the requirements for the design and the implementation are dynamic
and subjective. Therefore, data warehouse design is a continuous process which
has to reflect the changing environment of a data warehouse, i.e. the data
warehouse schema must evolve in reaction to the enterprise’s evolution.

In the data warehouse schema, changes may happen or be required in many
different situations. Data sources are often autonomous and generally have an
existence and purpose beyond that of supporting the data warehouse itself. An
important consequence of the autonomy of data sources is the fact that those
sources may change without being controlled from the data warehouse admin-
istrator. Therefore, the data warehouse must be adapted to any changes which
occur in the underlying data sources, e.g. changes of the schemata. Beside these
changes on the source level, the analysts (users) often change their requirements.
Indeed, the nature of the work of users implies that their requirements are dy-
namic and subjective, thus they do not reach a final state.

As an example, let us consider the case of the French bank LCL-Le Crédit
Lyonnais'. The LCL data warehouse provides an answer to the global analysis
needs, in other words, the analysis needs common to the whole of the users.
However, since users work in different departments, they may have individual
analysis requirements according to their own objectives, witch emerge and grow
in time.

Therefore, a data warehouse schema cannot be designed in one step, usually

it evolves over the time. We focus here on the evolution induced by emergent
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users’ analysis needs.

Thus, in this paper, we propose a global approach for a data warehouse
schema update, which takes into account users’ own needs. This provides a real
time evolution of the analysis possibilities of the data warehouse to cope with
concurrent and personalized analysis needs. Our key idea consists in generating
new analysis axes based on users’ knowledge by dynamically extending existing
dimension hierarchies or creating new ones. More precisely, we provide here
an original solution to define new granularity levels inside the data warehouse
schema. Note that to create a new hierarchy, we just have to repeat the same
process several times since a hierarchy is a set of linked successive granularity
levels.

Our global approach is composed of four phases: (1) users’ knowledge ac-
quisition, (2) knowledge integration, (3) data warehouse schema update, and
(4) on-line analysis. In our approach, we consider a specific users’ knowledge,
which provides new aggregated data. The acquisition phase of our approach
thus consists in defining this users’ knowledge under the form of “if-then” rules
that we call aggregation rules. We propose an algorithm to check the validity
of these rules, before integrating them in the data warehouse model. To achieve
this integration phase, rules are transformed into mapping tables. Then, the
evolution phase allows to update the underlying data warehouse schema. We
also define algorithms which create a new level in the dimension hierarchy. Fur-
thermore, we propose a model to manage the incremental evolution of the data

warehouse. This model is also exploited to provide users with the updated data



warehouse schema, since the schema evolves continuously. The last phase of our
approach, namely on-line analysis, consists in applying decisionnal queries onto
the updated data warehouse schema.

This approach is supported by our proposed data warehouse model based
on aggregation rules, named R-DW (Rule-based Data Warehouse) [13]. Our
model is composed of a “fixed” part, corresponding to an initial data warehouse
schema that meets the global and known analysis needs; and an “evolving”
part, defined by aggregation rules, which express the new needs and create new
granularity levels in the current data warehouse. Thus the R-DW model allows
users to directly integrate their analysis needs into the data warehouse model,
without the administrator’s intervention. To achieve this objective, we propose
a complete formalization of the R-DW model, which expands our previous for-
malization [13] along two main axes. First, we introduce constraints on rules, to
ensure the consistency of the data warehouse induced by these rules. Second, we
formally define the concurrent aspect, by introducing the concept of granularity
level version.

To validate our approach, we developed a prototype named WEDriK (data
Warehouse Evolution Driven by Knowledge), where the R-DW model is imple-
mented within the Oracle 10g DBMS, and applied our approach on banking
data of the French bank LCL.

LCL is a large company with many employees who need to carry out analyses
for decision support. Since users’ analysis needs depend on their own objectives

and their own experience, these analysis needs sometimes may be concurrent.



The design of integrated concurrent engineering platforms has received much
attention, because competing firms strives for shorter design delays and lower
costs. Concurrent engineering allows for parallel design, thus leads to shorter
design-to-market delays. It however requires advanced coordination and inte-
gration capabilities [9]. Concurrent engineering, also known as simultaneous
engineering, is finally a non-linear product or project design approach during
which all phases operate at the same time. Our approach allows to take into
account the concurrent analysis needs since users are directly involve in the data
warehouse evolution process.

Thus, users are able to carry out personalized analyses, based on their own
knowledge, for the ultimate objective of extracting interesting information. To
achieve this objective, On-Line Analytical Processing (OLAP) technology could
be useful since it provides tools to summarize, consolidate, and view data so
that users are widely able to explore multidimensional data, navigate through
hierarchical levels of dimensions [11]. In addition, data mining could be useful
too, since it provides tools for automatically discovering hidden knowledge from
large data sets, and a data warehouse precisely gathers a large amount of data
[14]. Thus, in the recent years, many studies addressed the issue of coupling
data warehousing and data mining techniques so that they can benefit from
each other’s advances [31]. But this paper do not address this issue, even if it
is quite interesting.

The remainder of this paper is organized as follows. First, we discuss the

state of the art regarding schema evolution in data warehouses in Section 2.



Then, we motivate the need for a user-driven data warehouse schema evolution
through an example in Section 3. We detail our global approach for data ware-
house evolution in Section 4. Section 5 is devoted to the formalization of our
R-DW model, on which is based our approach. We also present implementation
elements in Section 6, detailing the evolution management model and the up-
dating algorithms. In Section 7, we show, through a running example extracted
from the LCL bank case study, how to exploit our approach for analysis pur-
poses. We finally conclude this paper and provide future research directions in

Section 8.

2 Related work

Data sources and analysis needs constitute the two essential input parameters
in the design of a data warehouse schema. Indeed, current data warehouse
development methods can fall within two basic groups: data-driven [20], or
analysis needs-driven [22] approaches.

Data-driven approach ignores the needs of data warehouse users a priori.
More precisely, it consists in taking the data sources as input to obtain the data
warehouse model as output. For example, Golfarelli et al. propose, in [16],
a semi-automated methodology to build a dimensional data warehouse model
from the pre-existing E/R schemes that represent operational databases. The
drawback of this method is to suppose that the generated model meets the

analysis needs. However, it is not always the case.



Analysis needs-driven approach consists in defining the data warehouse schema
according to analysis needs. Thus users are interviewed to gather their analysis
needs before building the data warehouse, this implies user acceptance. How-
ever, this does not guarantee the longevity of the model, since the users involved
in the design process may change. Besides, it is difficult to gather the analysis
needs of the whole of the users in an exhaustive way, and it is more difficult to
envisage the future ones.

A new hybrid approach has emerged combining the two precedent ones. It
consist in mapping the candidate schemata generated from data sources with
the users’ analysis needs [8, 27, 30].

When designing a data warehouse schema, involving users is crucial. What
about the data warehouse schema evolution ? According to the literature,
schema evolution in data warehouses can take the form of schema updating
or temporal modeling.

The first approach consists in transforming the data warehouse schema [4, 5,
18, 19]. These works propose to enrich data warehouses with adapted evolution
operators that allow an evolution of the schema. In [18, 19], authors model
dimensions as an acyclic graph, where nodes represent dimension attributes and
arcs represent hierarchical links between these attributes. Then they propose
evolution operators under the form of algebraic functions, which modify the
graph structure. In [4, 5], the authors proposed elementary operators, which
can be combined to make the schema evolve. In the two cases, only one schema

is supported and the trace of the evolutions is not preserved.



On the contrary, the second approach keeps track of the schema evolution,
by using temporal validity labels. These labels are affixed either on dimension
instances [6], or on aggregation links [25], or on schema versions [1, 7, 26]. Let
us detail these different methods. In [25], the authors propose a temporal multi-
dimensional model and TOLAP, a query language supporting it, accounting for
dimension updates and schema evolution. Dimension elements are timestamped
at the schema or instance level (or both) in order to keep track of the updates
that occur. The regular star schema treats all dimensions, one of them being the
Time dimension, equally and assumes them to be independent. In [6], authors
propose a temporal star schema, where time is not a separate, independent di-
mension table, but is a dimension of all tables and is represented via one or more
time-valued attributes in all tables. Another promising approach to handling
changes in data warehouse structure and content is based on a multiversion
data warehouse [1, 7, 26]. In such a data warehouse, each version describes a
schema and data at certain period of time. In order to appropriately analyze
multiversion data, an extension to a traditional SQL language is required.

Another research direction that focuses on data warehouse schema updates
has emerged. It is founded on the hypothesis that a data warehouse is a set of
materialized views. Then, when a change occurs in a data source, it is necessary
to maintain views by propagating this change [2, 32, 33].

Both of these approaches do not directly involve users in the data ware-
house evolution process, and thus constitute a solution rather for a data sources

evolution than for users’ analysis needs evolution. Indeed, once the data ware-



house is created, the users can only carry out analyses provided by the model.
Thus these solutions make the data warehouse schema evolve, without taking
into account new analysis needs driven by users’ knowledge. To the best of our
knowledge, no work focused before on this problem.

Furthermore, the personalization of the use of a data warehouse becomes
crucial to extend this use to the most of users. It is a research perspective,
which emerges in the data warehouse community. Works in this domain are
particularly focused on the visualization of data, based on users’ preferences
modeling and exploitation with the profile concept [3]. It consists in refining
queries to show a part of data, which meets user’s preferences. Qur approach
does not consider the personalization of analyses through their visualization by
selecting information. On contrary, we add supplement information to person-
alize analyses themselves, and not only their visualization.

To achieve a personalization, whatever it is, the data warehouse should be
more flexible. Works aimed at bringing flexibility within the data warehouse
use mostly rule-based languages. Firstly, to define the data warehouse schema
in a flexible way, two approaches are possible: using rules either to express
the analysis needs [21] or the knowledge about data warehouse construction
[29]. Secondly, the data warehouse administrator could use rules to define some
integrity constraints in order to ensure the consistency of the data and the
analyses as a consequence. In [10, 15], the expressed integrity constraints use
the data semantic to manage data inconsistency within the analysis. Thirdly,

in order to make the analysis more flexible, a rule-based language has been
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developed in [12] to manage exceptions during the aggregation process. This
language allows to intentionally express redefinitions of aggregation hierarchies.

Thus, rule-based languages allow flexibility within data warehouses in dif-
ferent works. We want to introduce such a flexibility in the analysis evolution
process. However, the flexibility of the analysis evolution depends on the flexi-
bility of the schema evolution, in particular dimension hierarchies updates. The
works presented previously constitute answers to the problem of dimensions
evolution, when this latter is oriented by the evolution of data themselves. In
these works, the intervention of the administrator is needed to implement these
solutions. With our approach, we bring a solution to take into account the
emergence of new analysis needs directed by the expression of users’ knowledge,

without the administrator intervention, thus in a concurrent way.

3 Motivating example

To illustrate our approach throughout this paper, we use a case study defined by
the French bank LCL. LCL is a large company, where the data warehouse users
work in different departments, and thus have different points of view. Then,
they need specific analyses, which depend on their own knowledge and their
own objectives.

Let us take the example of the annual Net Banking Income (NBI). The
NBI is the profit obtained from the management of customers account. It is a

measure observed according to several dimensions: CUSTOMER, AGENCY and YEAR
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(Figure 1).

CUSTOMER AGENCY
SEGMEMT CustomerlD AgencylD
Segrnent|D — Segrentil TF-MEI AgencylLabel COMMERCIAL_UNIT
SegmentLabel Gender CustomerfD CormmercialUnitfD F—CommercialunitlD
MaritalStatus Agencilll CommerciallnitLabel
PaostalCode Yearl
Arge
NBI
YEAR
YearD

Figure 1: Data warehouse model for the NBI analysis

Concerning the CUSTOMER dimension, it is possible to aggregate data ac-
cording to the SEGMENT level, as shown in the dimension schema (Figure 2a).
Indeed, it is useful to identify customers according to their profit potential i.e.
their segment, to carry out effective marketing campaigns.

Let us take the case of a data warehouse user, who is specialized on targeting
customers for products. This user needs to obtain the NBI analysis according
to the age of customers. For this end, he needs to separate customers into three
age classes: less than 30 years old, between 30 and 60 years old and more than
60 years old, according to its own purposes. The existing data warehouse could
not provide such an analysis, since this analysis need was not envisaged before.

The solution we propose is to dynamically add a new level in the data ware-
house schema defined by the user, i.e. Age Class level, in the CUSTOMER dimen-
sion hierarchy (Figure 2b), to allow analyses according the age class.

Note that, analysis needs could be concurrent since two users could need

to analyse data according to age classes defined in different way. For example,
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Customer Custorrer
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Figure 2: CUSTOMER dimension schemata: (a) initial, (b) with the new Age
Class level

another user perhaps needs to distinguish minor (less than 18 years old) and

major (more than 18 years old) customers.

4 A user-driven data warehouse schema evolu-

tion approach

In this section, we present a global approach for integrating new analysis needs
into the existing data warehouse, to achieve our user-driven data warehouse
schema evolution (Figure 3). The first phase of our approach is the acquisition
of the users’ knowledge under the form of “if-then” rules. Then, in the second
phase, these rules are integrated within the DBMS (DataBase Management Sys-
tem), which implements the current data warehouse. This integration consists
in transforming “if-then” rules into mapping tables. Then the evolution phase

is realized by creating a new granularity level inside an existing hierarchy or
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defining a new one. Finally, the analysis phase could be carry out on the up-
dated data warehouse model. It is an incremental evolution process, since each
time new analysis needs may. The aim of this section is to focus on the first

three phases.

| 1 ANALVSIS k“ 2-INTEGRATION D
I |

| 1-ACQUISITION D

_— |Knowledge

d

Entiched Data Warehouse Current Deta warehouze

1 3-EV OLUTIOHN B

{“ Analysiz axes crested until step i ~. Analysis axis crested on step i+1

Figure 3: Data warehouse user-driven evolution process

4.1 Users’ knowledge acquisition

In our approach, we consider a specific users’ knowledge, which determines the
new aggregated data to integrate into the underlying data warehouse. More
precisely, our idea consists in involving users in the data warehouse schema
evolution, to create new granularity levels according to their own knowledge.
Thus, for the remainder of the paper, we define the concept of “Aggregation
Data Knowledge” (ADK), which defines how to aggregate data from a given
level to another one to be created.

The ADK is represented in the form of “if-then” rules. These rules have

14



the advantage of being very intelligible for users since they model information
explicitly [17], and are well adapted to define the aggregation link between two
successive granularity levels. The if-clause contains conditions on the attributes
of the lower level. The then-clause contains the definition of a higher level, and
more precisely the values of the attributes, which characterize the new level to
create.

For example, let us consider that one user needs to define the level AGENCY
TYPE from the lower level AGENCY, since he knows that there is three types
of agencies: some agencies host only student accounts, some others deal with
foreigners, and other agencies are said to be classical. The following rules define
the level AGENCY TYPE, by defining the values of the attributes AgencyTypeLabel
and AgencyTypeCode, which characterize this level. The conditions expressed
in the if-clause concerns the attribute Agency_ID of the level AGENCY.

(R1) if AgencyID € {*01903’,°01905°,02256°}

then AgencyTypeCode=‘STU’ and AgencyTypeLabel=‘student’
(R2) if AgencyID = {01929’}

then AgencyTypeCode=FOR’ and AgencyTypeLabel="‘foreigner’
(R3) if AgencyID ¢ {‘01903’,01905°,02256’,°01929°}

then AgencyTypeCode=‘CLA’ and AgencyTypeLabel='classical’

Thus, an “if-then” rule allows to define different attributes for the created
level. In our example, the attributes AgencyTypeCode and AgencyTypeLabel
are defined for the level AGENCY TYPE. However, for the sake of simplicity, we

define just one attribute per level in the remainder of the paper, even if it is
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possible to express other dimension attributes in the “then” clause.

Classically, in a dimension hierarchy, an aggregation link exists between one
instance in the lower level and one instance in the higher level. However, in
the literature, different types of aggregation links can compose the dimension
hierarchies to model real situations [23, 28]. For example, if we carry out an
analysis of the sales according to LCL salesmen who work in agencies, the
dimension hierarchies for the sales analysis present two levels: salesman and
agency. However, it is possible that a salesman works in more than one agency.
It requires then a new strategy to aggregate data. Indeed, in this case, if we
aggregate data according to the agency level, one sale could be counted several
times.

To avoid this problem, in our approach, we deal with “classical” hierarchy,
where an instance in a lower level corresponds to exactly one instance in the
higher level, and where each instance in the lower level is represented in the
higher level. Thus, aggregation rules define a partition of the instances in the
lower level, and each class of this partition is associated to one instance of the
created level (Figure 4). In this case, we have to check the validity of the rules
expressed by users according to this definition of a level, and propose in Section 6

an algorithm to perform this task.

4.2 Knowledge integration

After the acquisition of the ADK under the form of “if-then” rules, these rules

have to be integrated within the DBMS, which implements the current data
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Figure 4: Aggregation rules mechanism

warehouse. This integration consists in transforming “if-then” rules into map-
ping tables and storing them into the DBMS, by means of relational structures.

For a given set of rules which define one new granularity level, we associate
one mapping table, which contains the conditions expressed on attribute(s) of
the lower level, the corresponding value(s) for the attribute(s) in the created
level, and some others useful information.

Let us take the example of the different types of agencies. Let us consider
only the attribute AgencyTypeLabel to characterize the new level, with the
following rules.

(R1) if AgencyID € {‘01903,01905°,'02256’} then AgencyTypeLabel=‘student’
(R2) if AgencyID = {01929’} then AgencyTypeLabel=‘foreigner’
(R3) if AgencyID ¢ {‘01903,01905°,°02256",'01929°} then AgencyTypeLabel='classical’
The clauses of these rules are exploited to build the corresponding mapping

table (Figure 5)
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AGEMCY AgencylD AGEMCYTYPE. AgencyTypelabel
M {01903, D1905", DZ22561 student
= 1929 fareigner
MOT IM {01903", 01805°, 02255, 019231 classical

Figure 5: Mapping table example

4.3 Data warehouse schema evolution

The data warehouse schema evolution consists in updating the current schema
by creating a new granularity level in a dimension hierarchy. The created level
can be added at the end of a hierarchy or inserted between two existing ones,
we thus speak of adding and inserting a level, respectively. In the two cases, the
rules have to determine the aggregation link between the lower and the created
levels. But, in the second case, it is also necessary to determine the aggregation
link between the inserted level and the existing higher level in an automatic
way.

A user makes the choice to insert a level between two existing ones only if it
is possible to semantically aggregate data from the inserted level to the exist-
ing higher level. For instance, let us consider the AGENCY dimension schema
of Figure 6(a). In this case, it is possible to aggregate data according to
Commercial Unit that is a set of agencies, according to their geographical lo-
calization. Let us suppose that we create a new level called Agencies Group,
which is also a set of agencies, according to their geographical localization, but
smaller than a commercial unit. Agencies Group level could be inserted be-

tween the AGENCY and Commercial Unit levels, where a commercial unit can

18



be seen as a set of Agencies Groups (Figure 6(b)). Now, let us suppose that
we add a new level that aggregates data according to the “size” of agencies:
small, medium and large. It is semantically impossible to create an aggregation
link between the Agency Size and the existing level Commercial Unit. In this
case, the user cannot insert the created level between Agency and Commercial

Unit, but he can create it to define a new hierarchy (Figure 6(c)).

All All Al

Commercial Unit Commercial Unit Commercial Unit  Agency Size

.
s,
&

Agencies Group

AgencylD AgencylD AgencyIDJ
2 (k) c)

Figure 6: AGENCY dimension schemata

For each type of evolution, we propose, in Section 6, an algorithm which
creates a new relational table and its necessary link(s) with existing tables.

To achieve these two types of evolution, we propose the two corresponding
algorithms in Section 6 which create new relational tables and their link with
existing tables. We although propose a model to manage the evolution of the
data warehouse, which gathers all the information about the data warehouse
model. Moreover it is exploited to provide users with the updated data ware-

house schema, since the schema evolves continuously. We also detail this aspect
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in Section 6.

5 The R-DW model

In this section, we present our R-DW model, on which is based our global
approach for schema update in data warehouse.

Our proposed R-DW model is composed of two parts: one “fixed” part
and one “evolving” part. The fixed part is composed of a fact table and its
dimensions, whose purpose is to provide an answer to global analysis needs.
The evolving part is defined by aggregation rules, which generate dynamically
new granularity levels in dimension hierarchies. These aggregation rules are

defined by users.

5.1 R-DW formalization

We represent the Rule-based Data Warehouse model R-DW by the following
triplet: R-DW = (F,E,U) where F is the fixed part, £ the evolving part and U

the universe of R-DW.

Definition 1. Universe of the data warehouse. Given R-DW = (F,E,U);
the universe of the data warehouse U is a set of attributes, such as: U = Uy Uls

where Uy = {Bq,1 < a < z} is the set of z predefined attributes (in the
fixed part F) and U = {Cp, 3 > 1} is the set of generated attributes (defined
in the evolving part £).

Example 1. AgencylD € U, ; AgencyTypeLabel € U
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Definition 2.  Fized part of R-DW. Given R-DW = (F,E,U); the fized

part of R-DW is represented by: F =< F,D > where F is a fact table and
D = {D;,1 < s < t} is the set of ¢ first level dimensions directly linked with

the fact table F'. We assume that these dimensions are independent.
Ezample 2. Inthe Figure 1, <T'F_NBI{AGENCY,YEAR, CUSTOMER}>

is the fixed part of the R-DW for the NBI analysis.

Definition 3. Dimension hierarchy and granularity level. Given R-DW =
(< B,D >,E,U); Ds.Hy, k> 1is a hierarchy of the dimension Dy, Dy € D.

The dimension hierarchy D,.Hy, is composed of a set of w ordered granularity
levels noted L;:

Dy H, ={Ly,Lo,...,L;,...,Ly,w>1} with Ly < Lo <--- < L; <--- < Ly,
where < express the total order on the L;.

The granularity level L; of the hierarchy Hj, of the dimension Dj is noted
Dy . Hy.L; or Lfk. The granularity levels could be defined with attributes called
generated attributes.

Ezample 3. According to the schema of the Figure 2(b), we have:
Devstomer Hi={CUSTOMER, SEGMENT} ; Dovsromrr.Ho={CUSTOMER, AGE CLASS}

LYUSTOMER 1_gRGMENT ; L§VSTOMER 2-AGE CLASS

Definition 4. Generated attribute. Given R-DW = (< F,D >,E,U);
given Lk the created granularity level; given Us the set of attributes defined
in the evolving part £ of R-DW; a generated attribute A € Us characterizes the
granularity level Lf¥ and is noted Li*. A.

Ezample 4. In the example of the Section ?? concerning the definition of
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the age classes, we have LSUSTOMER 2 A — AgeClassLabel
Remark: For the sake of simplicity, we suppose that each generated granular-
ity level of dimension hierarchy is represented by only one generated attribute,

even if it is possible to generate more than one attribute per granularity level.

Definition 5. Aggregation rule. An aggregation rule defines the aggrega-
tion link, which exists between two successive granularity levels in a dimension

hierarchy. It is based on a set 7 of n rule terms noted RT;,, such as:

T ={RTmn,1 <m <n}={U op {set|val}}

where U is an attribute of the universe U ; op is a relational operator (=, <, >,
<, >, #, ...), or an ensemblist operator (€, ¢, ...) ; set is a set of values and
val is a given value.

Ezample 5a. RT) : AgencylD € {01903’,01905°,02256’} ; RT» : YearID <
2001 ; RT3 : Gender = ‘F’

An aggregation rule is an “if-then” rule. The conclusion of the rule defines
the value of the generated attribute. The premise of the rule is based on a

composition of conjunctions or disjunctions of these rule terms:

rij + if RTy (and|or) RTs ... (and|or) RT, then L:*. A = val;;

where val;; € Dom .« 4 the definition domain of the attribute L$*.A.
Example 5b. The following rules define the values of the attribute AgeClassLabel,

which characterizes the granularity level AGE CLASS:
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ri11: if Age < 30 then AgeClassLabel = ‘less than 30 years old’
ria: if Age between 30 and 60 then AgeClassLabel = ‘between 30 and 60 years old’

r13 ¢ if Age > 60 then AgeClassLabel = ‘more than 60 years old’

Example 5c.  The following rule defines the value ‘married women’ of
the attribute PersonGroupLabel according to attributes MaritalStatus and
Gender of CUSTOMER table:
if MaritalStatus = ‘Married’ and Gender = ‘F’ then PersonGroupLabel = ‘married women’

Thus aggregation rules create or enrich a dimension hierarchy by defining
the values of the generated attribute according to a condition (Example 6b.) or
a composition of conditions (Example 6c¢.).

Definition 6. FEwvolving part of R-DW. Given R-DW = (F,&,U); the evolv-
ing part of R-DW is represented by & = {(L$*.A,R;.)} where R; = {r;;,1 <
i <w,1 <j < u}isaset of u aggregation rules defining the values of the
generated attribute Lf¥. A, which characterizes the granularity level L; of the
hierarchy Hy, of dimension Dg. Thus, £ represents the set of w granularity levels
of hierarchy Hj, of dimension D and their associated rules.

Example 6. If we consider the creation of AGE CLASS and AGENCY TYPE

levels, we have the following evolving part:

riq: if Age < 30 then AgeClassLabel=less than 30 years old'
L, CHSTOMER 2 o L ryg: if 30 < Age = B0 then AgeClassLabel="between 30 and B0 years old'
ri3 :if Age = B0 then AgeClassLabel='mare than B0 years old’

rzq: if AgencylDe{'01903"'01905",'02226" then AgencyTypelLabel="student’
LAFENEY 2 a0 e if AgencylD="01929" then AgencyTypelabel="fareigner'
fzz0 If AgencylDe{'01303,'019058" '02256" 01929 then AgencyTypelabel="classical’
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5.2 Concurrent concept formalization

We deal about concurrent needs when two users want to create a new granularity
level, based on the same level and attributes with different conditions on these
attributes. To take into account the concurrent aspect, we have to introduce the
concept of version of granularity level. Note that we just consider here versions,
which depend on users. We do not deal with temporal versions.

Definition 7. Version of granularity level.

Let be L¢* the granularity level L; of the hierarchy Hy of the dimension D,
which could present different versions defined by different users. A version of

this level is noted :

Lk (ve), e>1

where ve denotes the version number.
If there is only one version, we keep the first notation Lfk.
Ezample 7.  LSUSTOMER 2 corresponds to the AGE CLASS level of the

dimension CUSTOMER. If two users define this level in two different ways, we have

L2CUSTOMER 2(,01) LQCUSTOMER 2(,02)_

to note and

5.3 Rules’ constraints formalization

When the ADK is integrated into the data warehouse, the induced data ware-
house schema must remain coherent. Aggregation rules must define a partition

of the instances of the lower level, where each class will correspond to an in-
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stance of the created granularity level. We define in the following two properties
that should be satisfied by the defined aggregation rules.

Property 1.

Let be Lk. A the generated attribute that characterizes the granularity level
L; of the hierarchy Hj, of the dimension D;.

Given R;, = {riyj,1 < i < w,1 < j < u} the set of u aggregation rules
defining the values of the generated attribute L*.A.

Let be body(r;;) the if-clause of the rule r;;.

Conditions expressed in the if-clauses of rules that define the values of a

given generated attribute must be mutually disjointed:

Vi,Vp,q such as p < q,p € [1,u —1],q € [2,u],

body(rip) ﬂ body(riq) = O

Property 2.

Let be L#*. A the generated attribute that characterizes the granularity level
L; of the hierarchy H, of the dimension D;.

Given R;. = {riyj,1 < i < w,1 < j < u} the set of u aggregation rules
defining the values of the generated attribute L*.A.

Given val;; the value of Lfk.A defined in the rule r;;.

Given Domys. 4 the definition domain of L¥.A.

The domain DomLfk_A has to be covered by the rules, which define the

attribute L% A:
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u
Vi, U val;; = Domypsk 4

=1

6 Implementation

To validate our approach, we have developed a prototype named WEDriK (data
Warehouse Evolution Driven by Knowledge), which is developed within the
Oracle 10g DBMS. In this section, we give some necessary elements to implement
our approach. First, we focus on the model used to manage the data warehouse
schema update. Then we detail the different algorithms used to achieve the

data warehouse schema evolution.

6.1 Management model for the data warehouse evolution

To manage the schema update of a data warehouse according to our approach,
we propose the UML model presented in Figure 7.

A data warehouse is defined as a set of tables. The ‘DATA WAREHOUSE’ and
‘TABLE’ classes are linked with a composition link. These tables could be dimen-
sion or fact tables. Thus a generalization link connects ‘FACT’ and ‘DIMENSION’
classes to the ‘TABLE’ class.

Each dimension table has a ‘DIMENSION PRIMARY ID’ and various ‘DIMENSION
ATTRIBUTES’. Moreover, fact tables present one or more ‘MEASURES’ and a ‘PRIMARY
ID’, which is a aggregation of foreign keys referencing ‘DIMENSION PRIMARY ID’.

There is an association between ‘LEVEL’ and ‘DIMENSION’ called ‘HIERARCHY’,

to represent the fact that each dimension table corresponds to one or more
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granularity levels that constitute a dimension hierarchy.

Note that each level could be generated by a set of aggregation rules. This
particularity is represented by the ‘AGGREGATION RULE’ class linked to the ‘LEVEL’
class with the label ‘Generation’.

This model is not only exploited to manage the data warehouse schema
evolution. It is also used to provide users with the updated data warehouse
schema. This is very important since the schema evolves continuously. It allows
users to know on what they can base their own needs. We choose to represent
this visualization under the form of an XML (eXtensible Markup Language)
document. Indeed XML allows the users to navigate through the hierarchies of

the model and describes correctly the analysis possibilities.

6.2 Data warehouse schema update algorithms

To achieve the data warehouse schema update, we have to consider different
algorithms, whose sequence is represented in the Figure 8.

The starting point of the algorithms sequence is a set of rules expressed by a
user to create a granularity level. First an algorithm is used to check the validity
of the rules (Algorithm 1). If the rules are not correct, the user, has to modify
them. This process is repeated until the rules are correct. If they are correct,
the addition at the end of a hierarchy or the insertion between two existing
successive levels of a new level is made according to the Algorithm 2 (addition)
or the Algorithm 3 (insertion), by generating the corresponding queries. When

the model of the Section 6.1 is implemented to represent the update of a given
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v

ATTRIBUTE i:

Figure 7: UML management model for the data warehouse evolution

model, the ‘LEVEL’ and ‘AGGREGATION RULE’ classes have to be instanciated.

Next we detail the three algorithms.

Constraints checking algorithm. As regards the constraints due to the
concept of partition, we check the validity of the rules by exploiting data with
queries, according to the Algorithm 1. Let us consider the set of rules R, which

determines a new granularity level L' from the lower granularity level L. This
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Figure 8: Algorithms sequence

set of rules must satisfy two constraints in order to respect the definition of a
partition. First, the conditions expressed in the if-clause of the different rules
have to be mutually disjointed. Second, each instance of the lower level has its
corresponding value in the created level.

For each rule r € R, we write the corresponding query ¢ € (), which contains
in the WHERE clause the if-clause of the rule. Each query provides a set
of instances of the level L. First, we check that the intersection of all sets
considered by pairs is empty. Second, we check that the union of these sets

corresponds to the whole instances of the level L.

Level adding algorithm. To create a new granularity level L', from the
existing level L, we have to implement an algorithm that allows the addition
of a granularity level at the end of a hierarchy, taking into account a set of

aggregation rules (Algorithm 2). It consists in creating the corresponding table
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Algorithm 1 Checking constraints

Require: existing level L, set of rules R = {r;,1 < v}, body(r;) the premise of the rule r;, Tab
an array

Ensure: Intersection_constraint_checked,Union_constraint_checked
{Initialization}
Intersection_constraint_checked=true
Union_constraint_checked=true
{Queries writing}
for j =1 to vdo

Tab[j]="SELECT * FROM L where body(r;)’
end for
{Checking the intersection of sets induced by rules considered by pair is empty}
for j =1 to v-1 do

Q=Tablj] INTERSECT Tab[j+1]

if Q # O then

Intersection_constraint_checked=false

end if
end for
{Checking the union of sets induced by rules corresponds to the level L}
12: Q=Tabl1]
13: for j = 2 to v do
14:  Q=Q UNION Tab]j]
15: end for
16: if Q #SELECT * FROM L then
17: Union_constraint_checked=false
18: end if
19: return Intersection_constraint_checked
20: return Union_constraint_checked

N =

——

L' and inserting values by exploiting the rules, and then in linking the new table

L' with the existing one L.

Algorithm 2 Adding a new granularity level

Require: existing level L, generated attribute A, type(L’'.A) the data type of L'.A , set of rules
R = {r;,1 < v}, body(r;) the premise of the rule r;
Ensure: created level L’
{Creating the new granularity level L' and making the aggregation link between L and L’}
CREATE TABLE L' (L'.A type(L'.A) AS PRIMARY KEY);
ALTER TABLE I ADD (A type(L'.A));
for all (r; € R) do
INSERT INTO L' VALUES (val)
UPDATE L SET A = val WHERE body(r;)
end for

Level inserting algorithm. To insert a new granularity level L' between two
existing ones (L1 and L2), we have to implement the Algorithm 3 that allows the
insertion of a granularity level between two existing ones, taking into account a
set of aggregation rules, which only express the link between the lower level and

the created level. We have to implement the same steps as for an addition. Then
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we have to automatically establish the aggregation link between L' and L2, by
inferring it according to the one that exists between L1 and L2. Once this link
is established, if the link between L1 and L2 does not make sense anymore, we

can delete it.

Algorithm 3 Inserting a new granularity level

Require: existing lower level L1, existing higher level L2, attribute linking L1 with L2 B,
type(L2.B) the data type of L2.B, generated attribute A, type(L’.A) the data type of L'. A ,
set of rules R = {r;,1 < v}, body(r;) the premise of the rule r;
Ensure: inserted level L’
{Creating the new granularity level L' and making the aggregation link between L1 and L'}
CREATE TABLE L' (L'.A type(L'.A) AS PRIMARY KEY);
ALTER TABLE L1 ADD (A type(L'.A));
for all (r; € R) do
INSERT INTO L' VALUES (val)
UPDATE L1 SET A = val WHERE body(r;)
end for
{Linking L' with L2}
ALTER TABLE L' ADD (B type(L2.B));
UPDATE L’ SET B=(SELECT DISTINCT B FROM L1 WHERE Ll.A:L’.A);

7 LCL bank case study: a running example

In this section we provide some examples of analysis needs that have emerged in
the French bank LCL, and how they meet answers through a running example.
We applied our approach on the banking data concerning the NBI. Different
analysis needs have emerge. First, since LCL has been bought by another bank
in 2004, one manager of LCL needs to compare the NBI before and after 2004.
Furthermore, one manager of student accounts needs to obtain analysis accord-
ing to the type of agencies, since some agencies host only student accounts. In
addition, different users need to determine different age classes, to obtain their
own analyses. Lastly, the manager who is specialized on targeting customers

for products needs to obtain the NBI analysis according to group of customers
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on the basis of their gender and marital status.

To obtain these analyses, users expressed the rules (Figure 9) used to make

evolve the data warehouse schema to allow new analyses by considering new

granularity levels such as agency type, age class, period...

if AgencylDe{'01203"'01905",'02256" then AgencyTypelabel="student’
if AgencylD="01929" then AgencyTypelabel="foreigner'
if AgencylDe{'01903",'01905",'02256",'01929% then AgencyTypelabel="classical’

AGENCY TYPE

if ¥earlD = 2004 then PeriodLabel="after 2004

if Age < 18 then AgeClassLabel="minor’
if Age = 18 then AgeClassLabel="major'

if Age < 30 then AgeClassLabel="ess than 30 years old'
if 30 = Age £ 80 then AgeClassLabel="between 30 and 60 years old'
if Age > BO then AgeClassLabel="more than B0 years old'

PERIOD { if YearlD < 2004 then PeriodLabel="before 2004°

AGE CLASS

if Gender="F" and MaritalStatus="M' then PersonsGroupLabel="married wormen'
PERSONS cROUP 4 if Gender="F" and MaritalStatus#h' then PersonsGroupLabel="not married women'

if Gender="H" and MaritalStatus="M"then PersonsGrouplabel="martied men’

if Gender="H" and MaritalStatus#M' then PersonsGroupLabel="not married men’

Figure 9: Aggregation rules expressed by users for the NBI analysis

In order to illustrate the usage of WEDriK, let us focus on the motivating

example of the Section 3 where users need to build age classes starting from

the ages of the table CUSTOMER, in a concurrent way. What we seek to do is

providing an example to show step by step how to achieve these analyses.

Let us consider the samples of the tables CUSTOMER and TF-NBI (Figure 10).

CUSTOMER TF-MBI
CustornerlD Age CustormetlD | AgencylD YearlD NBI (€}
1 29 . 1 01000 2006 2000
2 17 2 01200 2006 1000
3 55 .. 3 01000 2006 4000
4 70 . 4 01300 2006 2000
5 £5 5 01000 2005 3000

Figure 10: Samples of tables
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The following rules have been defined by two users during the acquisition

phase:

User 1:

(R1) if Age < 18 then AgeClassLabel = ‘minor’

(R2) if Age > 18 then AgeClassLabel = ‘major’

User 2:

(R3) if Age < 30 then AgeClassLabel = ‘less than 30 years old’

(R4) if 30 < Age < 60 then AgeClassLabel = ‘between 30 and 60 years old’

(R5) if Age > 60 then AgeClassLabel = ‘more than 60 years old’
The integration phase exploits these rules to generate two mapping tables

(Figure 11).

MAPPING TABLE w1 WMAPPING TABLE w2
LEVEL |CUSTOMER[AGE CLASS LEVEL |CUSTOMER[AGE CLASS
ATTRIBUTE Age AgeClassiD ATTRIBUTE Age AgeClassiD
=18 1 =30 1
MAPPING =18 2 MAPPING 130 ,60] 2
al =60 3

b)

Figure 11: Mapping tables for the AGE CLASS level

Then the evolution phase allows to create two versions of the AGE CLASS
granularity level: AGE CLASS_v1 and AGE CLASS_v2 tables (Figure 12).

The CUSTOMER table is updated to be linked with the two versions of AGE CLASS
level, adding AgeClassvl and AgeClassv2 attributes (Figure 13).

Finally, the analysis phase allows to exploit the model with new analysis

axes. Usually, in an OLAP environment, queries require the computation of
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AGE CLASS v

AGE CLASS 2

AgeClasslD |AgeClassLabel AgeClasslD |AgeClassLabel
1 minar 1 less than 30 years old
2 major 2 between 30 and B0 years old
a) 3 more than B0 years old

b}

Figure 12: Two versions of the AGE CLASS level

CUSTOMER
CustomerlD Age AgeClassv! [AgeClassv?
1 29 2 1
2 17 1 1
3 55 2 2
4 70 2 3
5 G5 2 3

Figure 13: Customer table including links with versions of AGE CLASS level

aggregates over base fact tables. In the presence of dimensions with hierarchies
of levels, queries computing aggregates over various dimension levels are often
required. Indeed, given a data warehouse schema, the analysis process allows to
summarize data by using (1) aggregation operators such as SUM and (2) GROUP
BY clauses. In our case, each user needs its own analysis, more precisely the sum

of NBI according to the age classes he has defined. The corresponding queries

are:

User 1: SELECT AgeClassLabel, SUM(NBI)

FROM TF-NBI, CUSTOMER, AGE CLASS vi

WHERE TF-NBI.CustomerID=CUSTOMER.CustomerID

AND CUSTOMER.AgeClassv1=AGECLASSv1.AgeClassID ;

GROUP BY AgeClassLabel ;
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User 2: SELECT AgeClassLabel, SUM(NBI)
FROM TF-NBI, CUSTOMER, AGE CLASS v2
WHERE TF-NBI.CustomerID=CUSTOMER.CustomerID
AND CUSTOMER.AgeClassv2=AGECLASSv2.AgeClassID ;
GROUP BY AgeClassLabel ;

The results are provided in Figure 14.

User1 Lser2
AgeClassi abel | Sum of NBI (€) | |AgeClassl abel Sum of NBI (€)
Minor 1000} [Less than 30 years old 3000
Majar 11000) |Eetween 30 and B0 years old 4000
Wlore than B0 vears old 5000

Figure 14: Analysis results for NBI according age classes

8 Conclusion and future work

We aimed in this paper at involving users in the data warehouse evolution pro-
cess to provide an answer to their own analysis needs with a global approach.
This approach is based on three key ideas. First, a data warehouse allows to
meet global analysis needs. Second, users’ own knowledge induce new analysis
needs. Three, integrating users’ analysis needs and knowledge is necessary to
make the data warehouse schema evolve. For this end, we defined the ADK
concept, which represents the specific users’ knowledge, which aggregates data
from one granularity level to another. The ADK is represented in the form of

“if-then” rules and is used to dynamically create new granularity levels. Thus,
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we enrich data warehouse with new analysis possibilities by integrating individ-
ual users’ ADK into the data warehouse. It increases the interaction between
the users and the decision support system. This approach is composed of four
phases: (1) users’ knowledge acquisition, (2) knowledge integration, (3) data
warehouse schema update, and (4) on-line analysis. Our approach is supported
by a data warehouse model based on “if-then” rules (R-DW), where rules al-
low us to introduce users’ knowledge into the data warehouse for new analysis
purposes. The R-DW model presents the advantage of evolving incrementally
according to the user’s knowledge, answering to emergent individual analysis
needs, without administrator’s intervention, in a concurrent way. We proposed
a formalization of the R-DW model to address the question of how to involve
users in the data warehouse schema update. Moreover, we developed an imple-
mentation that follows our proposals to validate our approach. Our prototype
is implemented within the Oracle 10g DBMS and we validated our approach
through the LCL case study.

To the best of our knowledge, the idea of user-defined evolution of dimen-
sions (based on analysis needs) is novel; there are still many practical aspects
to be explored, since our paper provides a formal foundation and a working
implementation to be used as a basis for future work. Thus, the perspectives
opened by this study are numerous. First of all, we have to finalize our pro-
totype to insert a level and apply the necessary propagation according to the
proposed algorithm. Moreover, we have to consider other evolution operations

such as the deletion of a level. When the deletion concerns a level which is be-
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tween two others, we have to study the necessary updates to maintain the data
warehouse coherent. Concerning the rules’ expression, we precise that rules are
used for determining the aggregation link between instances. We think that it
would be interesting to define meta-rules that define this link in a structural
way. Moreover, we intend to study the performance of our approach in terms of
storage space, response time and algorithms complexity. Then, we would like
to use non supervised learning methods on dimension data to determine the
classes of the partition to build higher granularity levels. Besides, some future
work consist in studying how individual users’ needs evolve in time, and thus we
have to consider different strategies of rules updating and temporal versioning.
Furthermore, we have to consider that an analysis need could necessitate the
definition of a new dimension, which would modify the fact table. It could also
imply an evolution of measures, such as the definition of derived measures based
on existing ones. Finally, we would like to extend our approach on a conceptual
level. The key idea is to be able to define a data warehouse schema by taking
into account both data sources and analysis needs. And then, the objective is
(1) to define a way to express a change in data sources or in analysis needs, (2)
to evaluate the impact of this change and (3) to carry out the required evolu-
tions in the data warehouse. Thus the approach presented in this paper would

be a part of a more global evolution approach.
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