
DIMENSION HIERARCHIES UPDATES IN DATA WAREHOUSES
A User-driven Approach

Cécile Favre, Fadila Bentayeb, Omar Boussaid
ERIC Laboratory, University of Lyon, 5 av. Pierre Mendès-France, 69676 Bron Cedex, France

cecile.favre@univ-lyon2.fr, bentayeb@eric.univ-lyon2.fr, omar.boussaid@univ-lyon2.fr

Keywords: Data warehouse model evolution, dimension hierarchies updates, users’ knowledge, aggregation rules.

Abstract: We designed a data warehouse for the French bank LCL meeting users’ needs regarding marketing operations
decision. However, the nature of the work of users implies that their requirements are often changing. In
this paper, we propose an original and global approach to achieve a user-driven model evolution that provides
answers to personalized analysis needs. We developed a prototype called WEDrik (data Warehouse Evolution
Driven by Knowledge) within the Oracle 10g DBMS and applied our approach on banking data of LCL.

1 INTRODUCTION

In the context of a collaboration with the French bank
LCL-Le Crédit Lyonnais (LCL), the objective was to
develop the decision support system for marketing op-
erations. To achieve this objective, data of interests
coming from heterogeneous sources have been ex-
tracted, filtered, merged, and stored in an integrating
database, called data warehouse. Due to the role of
the data warehouse in the daily business work of an
enterprise like LCL, the requirements for the design
and the implementation are dynamic and subjective.
Therefore, data warehouse model design is a contin-
uous process which has to reflect the changing envi-
ronment, i.e. the data warehouse model must evolve
over the time in reaction to the enterprise’s changes.

Indeed, data sources are often autonomous and
generally have an existence and purpose beyond that
of supporting the data warehouse itself. An impor-
tant consequence of the autonomy of data sources is
the fact that those sources may change without be-
ing controlled from the data warehouse administrator.
Therefore, the data warehouse must be adapted to any
change which occurs in the underlying data sources,
e.g. changes of the schemas. Beside these changes on
the source level, the users often change their require-
ments. Indeed, the nature of their work implies that
their requirements are personal and usually evolve,
thus they do not reach a final state. Moreover these

requirements can depend on their own knowledge.
Our key idea consists then in considering a spe-

cific users’ knowledge, which can provide new aggre-
gated data. We represent this users’ knowledge un-
der the form of aggregation rules. In a previous work
(Favre et al., 2006), we proposed a data warehouse
formal model based on these aggregation rules to al-
low a schema evolution. In this paper, we extend our
previous work and propose an original and complete
data warehouse model evolution approach driven by
emergent users’ analysis needs to deal not only with
the schema evolution but also with the required evo-
lution for the data.

To perform this model evolution, we define algo-
rithms to update dimension hierarchies by creating
new granularity levels and to load the required data
exploiting users’ knowledge. Hence, our approach
provides a real time evolution of the analysis possibil-
ities of the data warehouse to cope with personalized
analysis needs. To validate our approach, we devel-
oped a prototype named WEDriK (data Warehouse
Evolution Driven by Knowledge), within the Oracle
10g Database Management System (DBMS), and ap-
plied our approach on data of the French bank LCL.

The remainder of this paper is organized as fol-
lows. First, we detail our global evolution approach
in Section 2. We present implementation elements
in Section 3, detailing the necessary algorithms. In
Section 4, we show, through a running example ex-



tracted from the LCL bank case study, how to use
our approach for analysis purposes. Then, we dis-
cuss the state of the art regarding model evolution in
data warehouses in Section 5. We finally conclude
and provide future research directions in Section 6.

2 A USER-DRIVEN APPROACH

In this section, we present our user-driven global ap-
proach for updating dimension hierarchies to inte-
grate new analysis possibilities into an existing data
warehouse (Figure 1). The first phase of our approach
is the acquisition of the users’ knowledge under the
form of rules. Then, in the integration phase, these
rules are transformed into a mapping table within the
DBMS. Then the evolution phase allows to create a
new granularity level. Finally, the analysis phase
could be carried out on the updated data warehouse
model. It is an incremental evolution process, since
each time new analysis needs may appear and find an
answer. We detail in this section the first three phases.

Figure 1: Data warehouse user-driven evolution process.

2.1 Acquisition phase

In our approach, we consider a specific users’ knowl-
edge, which determines the new aggregated data to in-
tegrate into the underlying data warehouse. More pre-
cisely, this knowledge defines how to aggregate data
from a given level to another one to be created. It is
represented in the form of “if-then” rules.

To achieve the knowledge acquisition phase, our
key idea is to define an aggregation meta-rule to rep-
resent the structure of the aggregation link. The meta-
rule allows the user to define: the granularity level
which will be created, the attributes characterizing
this new level, the granularity level on which is based
the level to be created and finally the attributes of the
existing level used to build the aggregation link.

Let EL be the existing level,
�
EAi, i=1..m � be the

set of m existing attributes of EL on which conditions
are expressed, GL be the generated level and

�
GA j,

j=1..n � be the set of n generated attributes of GL. The
meta-rule is as follows:

if ConditionOn(EL,
�
EAi � ) then GenerateValue(GL,

�
GA j � )

Thus, the if -clause contains conditions on the at-
tributes of the existing level. The then-clause contains
the definition of the values of the generated attributes,
which characterize the new level to be created. The
user instanciates the above meta-rule to define the in-
stances of the new aggregated level and the aggrega-
tion link with the instances of the existing level.

In the literature, different types of aggregation
links can compose the dimension hierarchies to model
real situations (Pedersen et al., 2001). In this paper
we deal with classical links: an instance in a lower
level corresponds to exactly one instance in the higher
level, and each instance in the lower level is repre-
sented in the higher level. Thus, aggregation rules
define a partition of the instances in the lower level,
and each class of this partition is associated to one
instance of the created level. To check that the aggre-
gation rules satisfy this definition, we deal with the
relational representation of aggregation rules which
is a mapping table. The transformation is achieved
during the integration phase.

2.2 Integration phase

The integration phase consists in transforming “if-
then” rules into mapping tables and storing them into
the DBMS, by means of relational structures.

For a given set of rules which defines a new gran-
ularity level, we associate one mapping table. To
achieve this mapping process, we exploit firstly the
aggregation meta-rule for building the structure of the
mapping table, and secondly we use the aggregation
rules to insert the required values in the created map-
ping table. Since we are in a relational context, each
granularity level corresponds to one relational table.

Let ET (resp. GT ) be the existing (resp. gener-
ated) table, corresponding to EL (resp. GL) in a logi-
cal context. Let

�
EAi, i=1..m � be the set of m attributes

of ET on which conditions are expressed and
�
GA j,

j=1..n � be the set of n generated attributes of GT . The
mapping table MT GT built with the meta-rule corre-
sponds to the following relation:
MT GT (EA1, ..., EAi, ..., EAm, GA1, ..., GA j , ...GAn)
The aggregation rules allow to insert in this mapping
table the conditions on the attributes EAi, and the val-
ues of the generated attributes GA j.

In parallel, we define a mapping meta-table to
gather information on the different mapping tables.
This meta-table includes the following attributes:
Mapping Table ID and Mapping Table Name correspond
respectively to the identifier and the name of the map-
ping table; Attribute Name and Table Name denote the
attribute implied in the evolution process and its ta-



ble; Attribute Type provides the role of this attribute.
More precisely, this last attribute has two modalities:
‘conditioned’ if it appears in the if -clause and ‘gen-
erated’ if it is in the then-clause. Note that even if
an attribute is a “generated” attribute, it can be used
as a “conditioned” one for the construction of another
level.

2.3 Evolution phase

The data warehouse model evolution consists in up-
dating dimension hierarchies of the current data ware-
house model by creating new granularity levels. The
created level can be added at the end of a hierarchy or
inserted between two existing ones, we thus speak of
adding and inserting a level, respectively. In the two
cases, the rules have to determine the aggregation link
between the lower and the created levels. In the sec-
ond case, it is also necessary to determine the aggre-
gation link between the inserted level and the existing
higher level in an automatic way. The user can insert
a level between two existing ones only if it is possible
to semantically aggregate data from the inserted level
to the existing higher level. For each type of dimen-
sion hierarchy updates, we propose, in the following
section, an algorithm which creates a new relational
table and its necessary link(s) with existing tables.

3 IMPLEMENTATION

To achieve the data warehouse model updating, we
developed a prototype named WEDriK (data Ware-
house Evolution Driven by Knowledge) within the
Oracle 10g DBMS. It exploits different algorithms
whose sequence is represented in the Figure 2.

Figure 2: Algorithms sequence.

The starting point of the algorithms sequence is a
set of rules expressed by a user to create a granularity
level. These rules are transformed under the form of
a mapping table (Algorithm 1). Then we check the
validity of the rules by testing the content of the map-
ping table (Algorithm 2). If the rules are not valid, the

user has to modify them. This process is repeated un-
til the rules become valid. If they are valid, the model
evolution is carried out (Algorithm 3).

Transformation algorithm. For one meta-rule MR
and its associated set of aggregation rules R, we build
one mapping table MT GT . The structure of the map-
ping table is designed with the help of the meta-
rule, and the content of the mapping table is de-
fined with the set of aggregation rules. Moreover, the
necessary information are inserted in the meta-table
MAPPING META TABLE (Algorithm 1).

Algorithm 1 Pseudo-code for transforming aggrega-
tion rules into a mapping table
Require: (1) the meta-rule MR: if ConditionOn(EL,

�
EAi � ) then

GenerateValue(GL,
�
GA j � ) where EL is the existing level,

�
EAi,

i � 1 � � m � is the set of m attributes of EL, GL is the level to be

created, and
�
GA j, j � 1 � � n � is the set of n generated attributes of

GL; (2) the set of aggregation rules R; (3) the mapping meta-table

MAPPING META TABLE

Ensure: the mapping table MT GT�
Creation of the MT GT ’s structure �

1: CREATE TABLE MT GT (
�
EAi � ,

�
GA j � )�

Values insertion in MT GT �
2: for all rule of R do
3: INSERT INTO MT GT VALUES (ConditionOn(EL,

�
EAi � )

,GenerateValue(GL,
�
GA j � ))

4: end for�
Values insertion in MAPPING META TABLE �

5: for all EAi of
�
EAi � do

6: INSERT INTO MAPPING META TABLE VALUES(MT GT ,

EL, EAi, ‘conditioned’)

7: end for
8: for all GA j of

�
GA j � do

9: INSERT INTO MAPPING META TABLE VALUES(MT GT ,

GL, GAi, ‘generated’)

10: end for
11: return MT GT

Constraints checking algorithm. For each tuple of
MT GT , we write the corresponding query to build a
view which contains a set of instances of the table ET .
First, we check that the intersection of all views con-
sidered by pairs is empty. Second, we check that the
union of the instances of the whole of views corre-
sponds to the whole of instances of the table ET (Al-
gorithm 2).

Model evolution algorithm. The model evolution
consists in the creation of the table GT and the defini-
tion of the required links, according to the evolution
type (Algorithm 3). For an addition or an insertion,
it thus consists in creating the table GT and inserting
values by exploiting the mapping table MT GT , and



Algorithm 2 Pseudo-code for checking constraints
Require: existing table ET , mapping table MT GT

Ensure: Intersection constraint checked and Union constraint checked

two booleans�
Views creating �

1: for all tuple t of MT GT do
2: CREATE VIEW v t AS SELECT * FROM ET where

Conjunction(t
� �

EA ��� )
3: end for�

Checking the intersection of views considered by pair is empty �
4: for x = 1 to tmax do
5: I=SELECT * FROM v x INTERSECT SELECT * FROM v x+1

6: if I �� Ø then
7: Intersection constraint checked=false

8: end if
9: end for�

Checking the union of views corresponds to the table ET �
10: U=SELECT * FROM v 1

11: for x = 2 to tmax do
12: U=U UNION SELECT * FROM v x

13: end for
14: if U �� SELECT * FROM ET then
15: Union constraint checked=false

16: end if
17: return Intersection constraint checked

18: return Union constraint checked

then in linking the new table GT with the existing one
ET . For the insertion, we just use the mapping ta-
ble MT GT , which only contains the link between the
lower table ET and the generated table GT . Then we
have to automatically establish the aggregation link
between GT and ET2, by inferring it according to the
one that exists between ET and ET2.

Algorithm 3 Pseudo-code for hierarchy dimension
updating
Require: evol type the type of evolution (inserting or adding a level) , exist-

ing lower table ET , existing higher table ET2, mapping table MT GT ,�
EAi, i=1..m � the set of m attributes of MT GT which contain the con-

ditions on attributes ,
�
GA j, j=1..n � the set of n generated attributes of

MT GT which contain the values of the generated attributes, the key

attribute GAkey of GT , the attribute B linking ET with ET 2

Ensure: generated table GT�
Creating the new table GT and making the aggregation link between

ET and GT �
1: CREATE TABLE GT (GAkey ,

�
GA j � );

2: ALTER TABLE ET ADD (GAkey );

3: for all (tuple t of MT GT ) do
4: INSERT INTO GT VALUES (GAkey ,

�
GA j � )

5: UPDATE ET SET GAkey WHERE
�
EAi �

6: end for�
If it is a level insertion: linking GT with ET 2 �

7: if evol type=“inserting” then
8: ALTER TABLE GT ADD (B);

9: UPDATE GT SET B=(SELECT DISTINCT B FROM ET WHERE

ET � GAkey=GT � GAkey);

10: end if
11: return GT

4 A RUNNING EXAMPLE

To illustrate our approach, we use a case study defined
by the French bank LCL. LCL is a large company,
where the data warehouse users have different points
of view. Thus, they need specific analyses, which de-
pend on their own knowledge and their own objec-
tives. We applied our approach on data about the an-
nual Net Banking Income (NBI). The NBI is the profit
obtained from the management of customers account.
It is a measure observed according to several dimen-
sions: CUSTOMER, AGENCY and YEAR (Figure 3).

Figure 3: Data warehouse model for the NBI analysis.

To illustrate the usage of WEDriK, let us focus on
a simplified running example. Let us take the case of
the person in charge of student products. He knows
that there is three types of agencies: “student” for
agencies which gather only student accounts, “for-
eigner” for agencies whose customers do not leave in
France, and “classical” for agencies without any par-
ticularity. He needs to obtain NBI analysis according
to the agency type. The existing data warehouse could
not provide such an analysis. What we seek to do is
showing step by step how to achieve this analysis with
our approach.

Let us consider the samples of the tables AGENCY
and TF-NBI (Figure 4).

Figure 4: Samples of tables.

1-Acquisition phase. The acquisition phase allows
the user to define the following aggregation meta-rule
in order to specify the structure of the aggregation
link for the agency type:
if ConditionOn(AGENCY,

�
AgencyID � )

then GenerateValue(AGENCY TYPE,
�
AgencyTypeLabel � )

He instances the meta-rule to define the different
agency types:
(R1) if AgencyID �

�
‘01903’,‘01905’,‘02256’ � then Agency-

TypeLabel=‘student’



(R2) if AgencyID=‘01929’then AgencyTypeLabel=‘foreigner’
(R3) if AgencyID � �

‘01903’,‘01905’,‘02256’,‘01929’ � then Agen-
cyTypeLabel=‘classical’

2-Integration phase. The integration phase ex-
ploits the meta-rule and the different aggregation rules
to generate the mapping table MT AGENCY TYPE (Fig-
ure 5). The information concerning the mapping table
is inserted in MAPPING META TABLE (Figure 6).

Figure 5: Mapping table for the AGENCY TYPE level.

Figure 6: Mapping meta-table.

3-Evolution phase. Then the evolution phase al-
lows to create the AGENCY TYPE table and to update
the AGENCY table (Figure 7). More precisely, the
MAPPING META TABLE allows to create the structure
of the AGENCY TYPE table and a primary key is au-
tomatically added. The MT AGENCY TYPE mapping
table allows to insert the required values. Further-
more, the AGENCY table is updated to be linked with
the AGENCY TYPE table, with the addition of the Agen-
cyTypeID attribute.

Figure 7: Created AGENCY TYPE table and updated
AGENCY table.

4-Analysis phase. Finally, the analysis phase al-
lows to exploit the model with new analysis axes.
Usually, in an OLAP environment, queries require
the computation of aggregates over various dimension
levels. Indeed, given a data warehouse model, the
analysis process allows to summarize data by using
(1) aggregation operators such as SUM and (2) GROUP
BY clauses. In our case, the user wants to know the
sum of NBI according to the agency types he has de-
fined. The corresponding query and the results are
provided in Figure 8.

Figure 8: Query and results for NBI analysis.

5 RELATED WORK

When designing a data warehouse model, involving
users is crucial (Kimball, 1996). What about the data
warehouse model evolution ? According to the litera-
ture, model evolution in data warehouses can take the
form of model updating or temporal modeling.

Concerning model updating, only one model is
supported and the trace of the evolutions is not pre-
served. In this case, the data historization can be
corrupted and analysis could be erroneous. We dis-
tinguish three types of approach. The first approach
consists in providing evolution operators that allow an
evolution of the model (Hurtado et al., 1999; Blaschka
et al., 1999). The second approach consists in updat-
ing the model, focusing on enriching dimension hier-
archies. For instance, some authors propose to enrich
dimension hierarchies with new granularity levels by
exploiting semantic relations provided by WordNet1

(Mazón and Trujillo, 2006). The third approach is
based on the hypothesis that a data warehouse is a set
of materialized views. Then, when a change occurs
in a data source, it is necessary to maintain views by
propagating this change (Bellahsene, 2002).

Contrary to model updating, temporal modeling
makes it possible to keep track of the evolutions, by
using temporal validity labels. These labels are asso-
ciated with either dimension instances (Bliujute et al.,
1998), or aggregation links (Mendelzon and Vaisman,
2000), or versions (Eder and Koncilia, 2001; Body
et al., 2002). Versioning is the subject today of many
work. Versions are also used to provide an answer
to “what-if analysis” by creating versions to simulate
a situation (Bébel et al., 2004). Different work are
then interested in analyzing data throughout versions,
in order to achieve the first objective of data ware-
housing: analyzing data in the course of time (Morzy
and Wrembel, 2004; Golfarelli et al., 2006). In these
works, an extension to a traditional SQL language is
required to take into account the particularities of the
approaches for analysis or data loading.

Both of these approaches do not directly involve
users in the data warehouse evolution process, and

1http://wordnet.princeton.edu/



thus constitute solutions rather for a data sources
evolution than for users’ analysis needs evolution.
Thus these solutions make the data warehouse model
evolve, without taking into account new analysis
needs driven by users’ knowledge, and thus without
providing an answer to personalized analysis needs.
However, the personalization of the use of a data
warehouse becomes crucial. Works in this domain
are particularly focused on the selection of data to be
visualized, based on users’ preferences (Bellatreche
et al., 2005). In opposition of this approach, we add
supplement data to extend and personalize the analy-
sis possibilities of the data warehouse. Moreover our
approach updates the data warehouse model without
inducing erroneous analyses; and it does not require
extensions for analysis.

6 CONCLUSION AND FUTURE
WORK

We aimed in this paper at providing an original user-
driven approach for the data warehouse model evolu-
tion. Our key idea is to involve users in the dimension
hierarchies updating to provide an answer to their per-
sonalized analysis needs based on their own knowl-
edge. To achieve this process, we propose a method
to acquire users’ knowledge and the required algo-
rithms. We developed a prototype named WEDriK
within the Oracle 10g DBMS and we applied our ap-
proach on the LCL case study.

To the best of our knowledge, the idea of user-
defined evolution of dimensions (based on analysis
needs) is novel; there are still many aspects to be
explored. First of all, we intend to study the perfor-
mance of our approach in terms of storage space, re-
sponse time and algorithms complexity. Moreover,
we have to study how individual users’ needs evolve
in time, and thus we have to consider different strate-
gies of rules and mapping tables updating. Finally, we
are also interested in investigating the joint evolution
of the data sources and the analysis needs.

REFERENCES

Bébel, B., Eder, J., Koncilia, C., Morzy, T., and Wrem-
bel, R. (2004). Creation and Management of Ver-
sions in Multiversion Data Warehouse. In XIXth ACM
Symposium on Applied Computing (SAC 04), Nicosia,
Cyprus, pages 717–723.

Bellahsene, Z. (2002). Schema Evolution in Data
Warehouses. Knowledge and Information Systems,
4(3):283–304.

Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H.,
and Laurent, D. (2005). A Personalization Frame-
work for OLAP Queries. In VIIIth ACM International
Workshop on Data Warehousing and OLAP (DOLAP
05), Bremen, Germany, pages 9–18.

Blaschka, M., Sapia, C., and Höfling, G. (1999). On
Schema Evolution in Multidimensional Databases. In
Ist International Conference on Data Warehousing
and Knowledge Discovery (DaWaK 99), Florence,
Italy.

Bliujute, R., Saltenis, S., Slivinskas, G., and Jensen, C.
(1998). Systematic Change Management in Dimen-
sional Data Warehousing. In IIIrd International Baltic
Workshop on Databases and Information Systems,
Riga, Latvia, pages 27–41.

Body, M., Miquel, M., Bédard, Y., and Tchounikine, A.
(2002). A Multidimensional and Multiversion Struc-
ture for OLAP Applications. In Vth ACM Interna-
tional Workshop on Data Warehousing and OLAP
(DOLAP 02), McLean, Virginia, USA, pages 1–6.

Eder, J. and Koncilia, C. (2001). Changes of Dimension
Data in Temporal Data Warehouses. In IIIrd Interna-
tional Conference on Data Warehousing and Knowl-
edge Discovery (DaWaK 01), pages 284–293.

Favre, C., Bentayeb, F., and Boussaid, O. (2006). A
Knowledge-driven Data Warehouse Model for Anal-
ysis Evolution. In XIIIth International Conference on
Concurrent Engineering: Research and Applications
(CE 06), Antibes, France.

Golfarelli, M., Lechtenborger, J., Rizzi, S., and Vossen, G.
(2006). Schema Versioning in Data Warehouses: En-
abling Cross-Version Querying via Schema Augmen-
tation. Data and Knowledge Engineering, 59(2):435–
459.

Hurtado, C. A., Mendelzon, A. O., and Vaisman, A. A.
(1999). Maintaining Data Cubes under Dimension
Updates. In XVth International Conference on Data
Engineering (ICDE 99), Sydney, Australia, pages
346–355.

Kimball, R. (1996). The Data Warehouse Toolkit. John
Wiley & Sons.

Mazón, J.-N. and Trujillo, J. (2006). Enriching Data Ware-
house Dimension Hierarchies by Using Semantic Re-
lations. In XXIIIrd British National Conference on
Databases (BNCOD 2006), Belfast, Northern Ireland,
volume 4042 of LNCS.

Mendelzon, A. O. and Vaisman, A. A. (2000). Temporal
Queries in OLAP. In XXVIth International Confer-
ence on Very Large Data Bases (VLDB 00), Cairo,
Egypt, pages 242–253.

Morzy, T. and Wrembel, R. (2004). On Querying Versions
of Multiversion Data Warehouse. In VIIth ACM Inter-
national Workshop on Data Warehousing and OLAP
(DOLAP 04), Washington, Columbia, USA, pages 92–
101.

Pedersen, T. B., Jensen, C. S., and Dyreson, C. E. (2001).
A Foundation for Capturing and Querying Com-
plex Multidimensional Data. Information Systems,
26(5):383–423.


