Dr. Thanh Binh Nguyen International Institute for Applied Systems Analysis



Cloud Business Intelligent Services to explore the synergies and interactions among climate change, air quality objectives

#### **Outline**

# **S**

**S** 

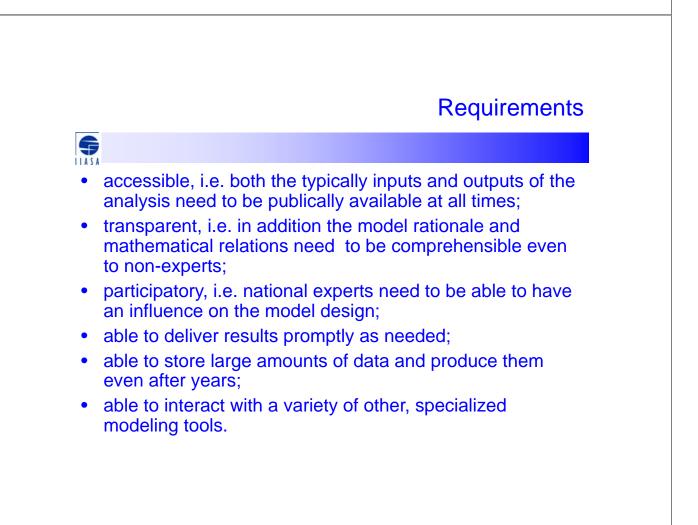
- GAINS concepts and modeling
  - Concepts and requirements
  - Modeling and Interaction with other models
- Gains cloud based multi dimensional data model
  - Cloud based Multi Dimensional Data Model
  - Dimensions and Variables (facts)
  - Application Services
- Cloud-based gains data warehousing application framework
  - Multi Dimensional Modeling Services
  - Application Services
- Conclusions and Future Works



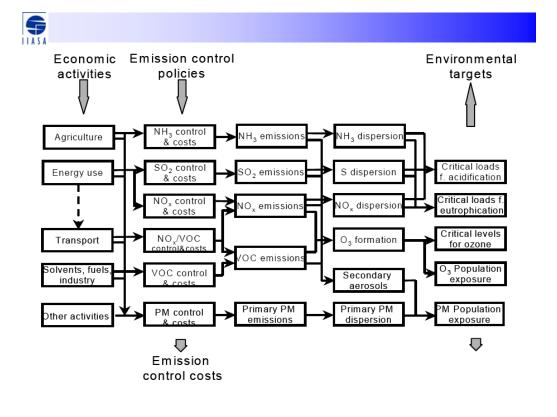
5

# GAINS CONCEPTUAL MODEL

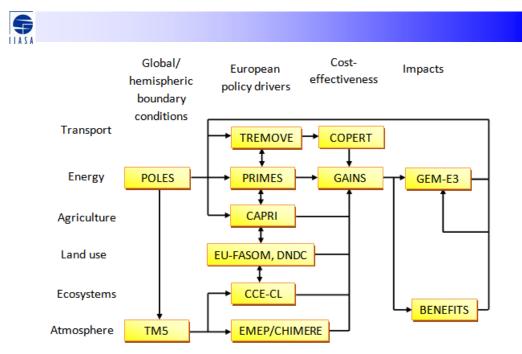
#### **GAINS Concepts**


- To identify portfolios of measures that improve air quality and reduce greenhouse gas emissions at least cost.
- To bring together scientific knowledge and qualitycontrolled data on future socio-economic driving forces of emissions:
  - on the technical and economic features of the available emission control options,
  - on the chemical transformation and dispersion of pollutants in the atmosphere, and the resulting impacts on human health and the environment.

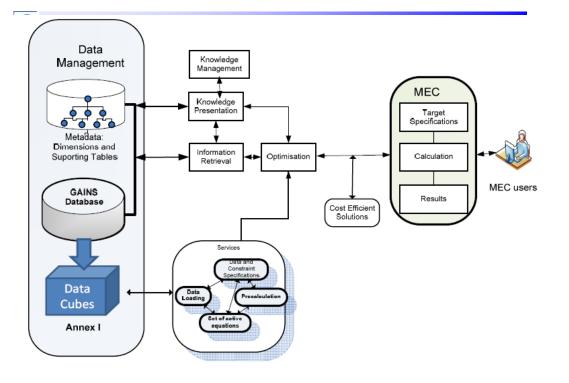
# The multi-pollutant/multi-effect approach


# 

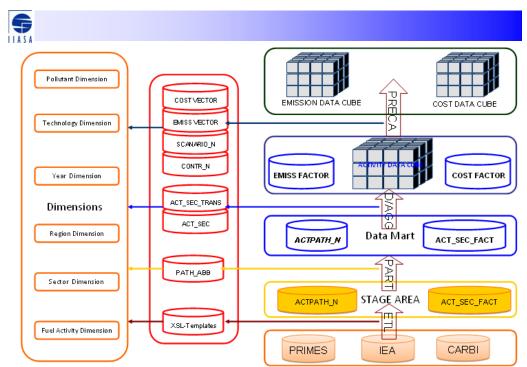
#### addresses impacts of air pollution on:


| <ul><li>human health,</li><li>vegetation and</li></ul> |                                      | PM           | SO <sub>2</sub> | NO <sub>x</sub> | VOC          | NH <sub>3</sub> | CO <sub>2</sub> | $CH_4$       | N <sub>2</sub> O | HFCs<br>PFCs<br>SF <sub>6</sub> |
|--------------------------------------------------------|--------------------------------------|--------------|-----------------|-----------------|--------------|-----------------|-----------------|--------------|------------------|---------------------------------|
| - aquatic ecosystems                                   | Health impacts:<br>PM                | $\checkmark$ | $\checkmark$    | $\checkmark$    | $\checkmark$ | $\checkmark$    |                 |              |                  |                                 |
|                                                        | 0 <sub>3</sub>                       |              |                 | $\checkmark$    | $\checkmark$ |                 |                 | $\checkmark$ |                  |                                 |
|                                                        | Vegetation damage:<br>O <sub>3</sub> |              |                 | $\checkmark$    | $\checkmark$ |                 |                 | $\checkmark$ |                  |                                 |
|                                                        | Acidification                        |              | $\checkmark$    | $\checkmark$    |              | $\checkmark$    |                 |              |                  |                                 |
|                                                        | Eutrophication                       |              |                 | $\checkmark$    |              | $\checkmark$    |                 |              |                  |                                 |
|                                                        | Radiative forcing:<br>- direct       |              |                 |                 |              |                 | $\checkmark$    | $\checkmark$ | $\checkmark$     | $\checkmark$                    |
|                                                        | - via aerosols                       | $\checkmark$ | $\checkmark$    | $\checkmark$    | $\checkmark$ | $\checkmark$    |                 |              |                  |                                 |
|                                                        | - via OH                             |              |                 | $\checkmark$    | $\checkmark$ |                 |                 | $\checkmark$ |                  |                                 |
|                                                        |                                      |              |                 |                 |              |                 |                 |              |                  |                                 |




## Information Flow




# Interaction with other models



## **GAINS System Architecture**



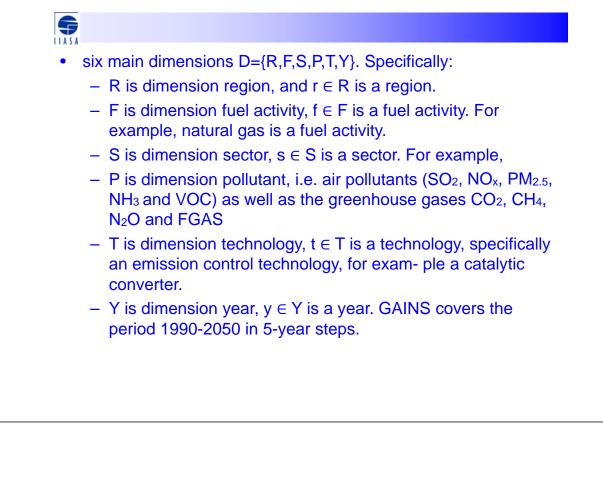
# GAINS DWH system architecture



# GAINS CLOUD BASED MULTIDIMENSIONAL DATA MODEL






- D = {R,F,S,P,T,Y} is a set of dimensions.
- V is a set of variables or facts.

S

**S** 

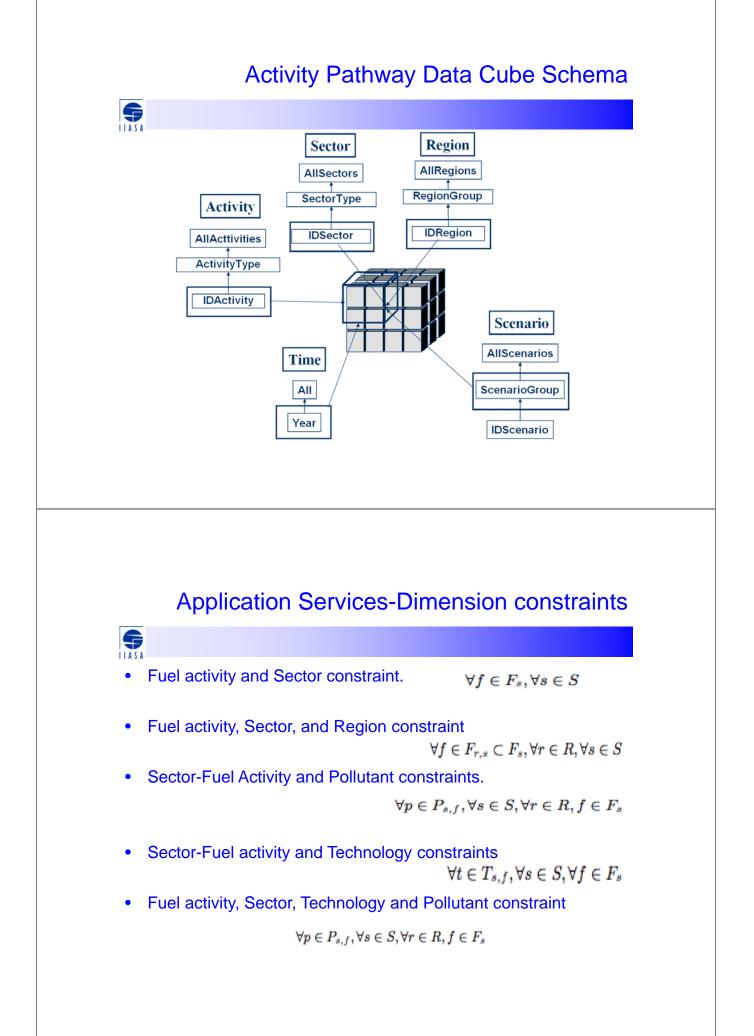
• A is a set of application services in the context of GAINS cloud intelligent framework and used to build, manage as well as analysis data in GAINS data ware- house.

#### **Dimensions**



#### Variables or Facts

• Activity data specified by a combination of a fuel activity f with a sector s ,in a region r,of a year y.


$$0 \le a_{r,s,f,y}, \quad \forall r \in R, \forall s \in S, \forall y \in Y, \forall f \in F_{r,s}$$

 Technology-specific Activity data describes the extent to which a certain control technology t is applied in a given sector s and region r to a given fuel activity f.

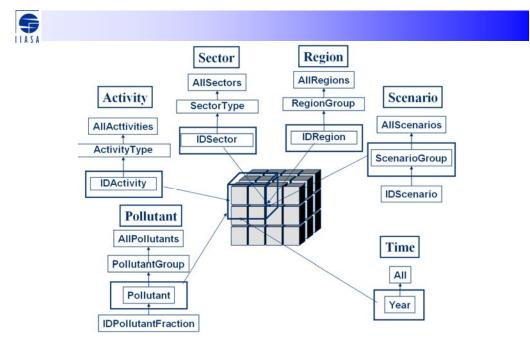
$$a_{r,s,f,y} \equiv a_{r,s,f,y,p} = \sum_{t \in T_{s,f,p}} a_{r,s,f,y,t}$$

• Application rates/Control strategies  $q_{r,s,f,y,t} = \frac{a_{r,s,f,y,t}}{a_{r,s,f,y}},$  $\forall r \in R, \forall s \in S, \forall y \in Y, \forall f \in F_{r,s}, \forall t \in T_{s,f,p} \text{ so that}$  $0\% \leq q_{r,s,f,t} \leq 100\%$ 

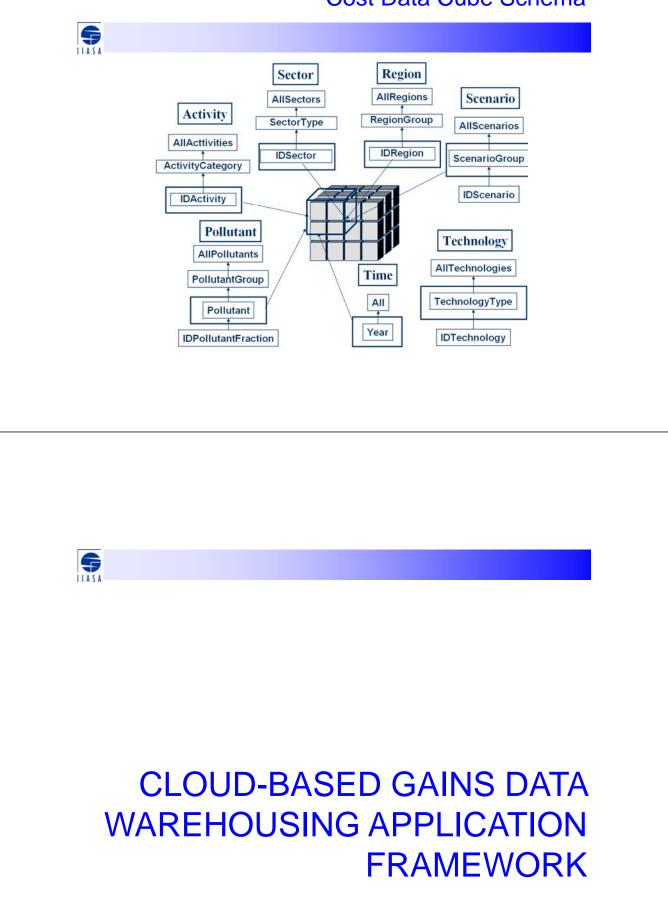
5

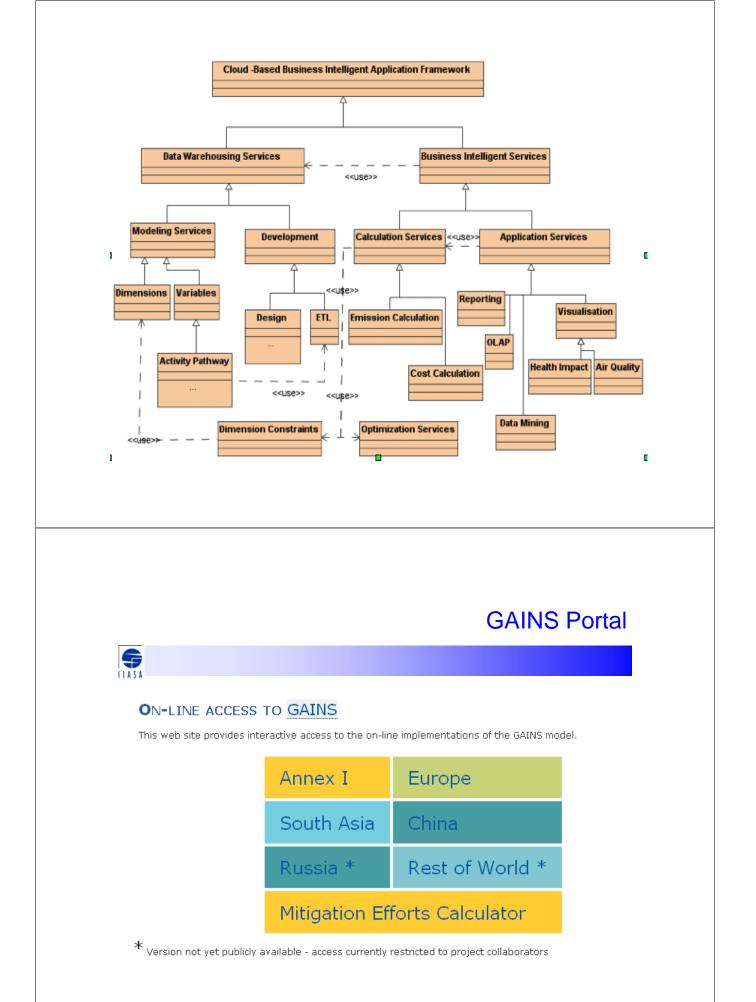


# **Emission and Cost Calculations**


• Emissions Calculation

$$E_{r,p,y} = \left(\sum_{s \in S} \sum_{f \in F_{r,s}} \sum_{t \in T_{s,f,p}} a_{r,s,f,y,t} \cdot q_{r,s,f,y,t} \cdot ef_{r,s,f,t,p}\right)$$


Cost Calculation


$$C_{r,p,y,t} = \left(\sum_{s \in S} \sum_{f \in F_{r,s}} \sum_{t \in T_{s,f,p}} a_{r,s,f,y,t} \cdot q_{r,s,f,y,t} \cdot cf_{r,s,f,t}\right)$$

# **Emission Data Cube Schema**



### Cost Data Cube Schema



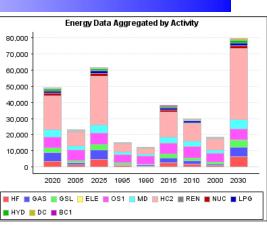


### **Current Models and Applications**

GAINS DWH: developed by collecting data from available data sources and used to build regional data warehouse(s) as required.

**S** 

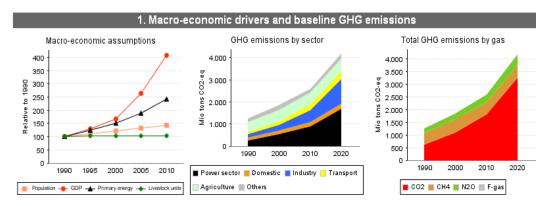
5


A S R U MEC: developed under United Nations Framework Convention on Climate Change (UNFCCC), interactive tool to compare the relative climate change mitigation efforts of all industrialized (Annex I) countries.

GAINS\_EUROPE: used extensively by EU Member States and the Commission to develop cost-effective strategies to reduce the environmental impact of air pollutions

GAINS\_China and South Asia, including India: used to explore sustainable development pathways for the future.

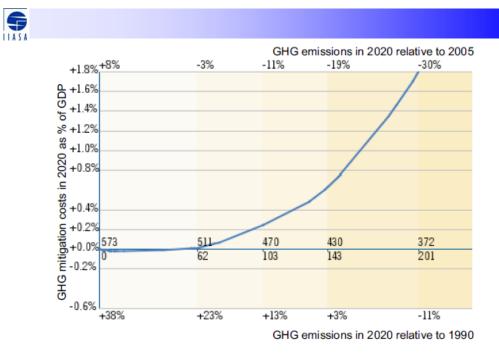
#### An example of using Activity Data Cube to generate Energy Data aggregated by Activity


| Activity                                                            | abbr. | 2005    | 2020    | 2030    |
|---------------------------------------------------------------------|-------|---------|---------|---------|
| Brown coal/lignite, grade 1                                         | BC1   | 10.92   | 0.40    | 0.1     |
|                                                                     |       |         |         |         |
| Hard coal, grade 1                                                  | HC1   | 67.31   | 66.59   | 45.5    |
| Derived coal (coke, briquettes)                                     | DC    | 48.69   | 24.59   | 22.13   |
| Biomass fuels                                                       | 051   | 144.70  | 244.27  | 358.46  |
| Other biomass and waste fuels                                       | 052   | 2.57    | 10.73   | 13.83   |
| Heavy fuel oil                                                      | HF    | 108.44  | 71.42   | 45.56   |
| Medium distillates (diesel, light<br>fuel oil)                      | MD    | 354.83  | 292.36  | 267.54  |
| Gasoline and other light<br>fractions of oil (includes<br>kerosene) | GSL   | 124.18  | 116.53  | 112.93  |
| Liquefied petroleum gas                                             | LPG   | 25.62   | 15.43   | 15.5    |
| Natural gas (incl. other gases)                                     | GAS   | 376.86  | 367.56  | 334.09  |
| Hydrogen                                                            | H2    | 0.00    | 0.00    | 0.00    |
| Renewable energy other than<br>biomass                              | REN   | 9.65    | 38.77   | 80.46   |
| Hydro                                                               | HYD   | 127.81  | 164.21  | 184.79  |
| Electricity                                                         | ELE   | 8.23    | -23.06  | -15.83  |
| Heat (steam, hot water)                                             | HT    | 0.00    | 0.00    |         |
| Sum                                                                 |       | 1409.81 | 1389.79 | 1465.29 |



| Austria |                    |                   | Energy        | Agriculture  | VOC sources | Process   | Mobile    |  |  |  |
|---------|--------------------|-------------------|---------------|--------------|-------------|-----------|-----------|--|--|--|
| Country | Emission<br>Vector | Control Strategy  | ENE           | AGR          | VOCP        | PROC      | мов       |  |  |  |
| Austria | Jun08              | EUVI_NEC_austV5ip | WEO09_450_CCS | NEC_NATV1_M8 | NEC_NATV2   | WEO09_450 | WEO09_450 |  |  |  |

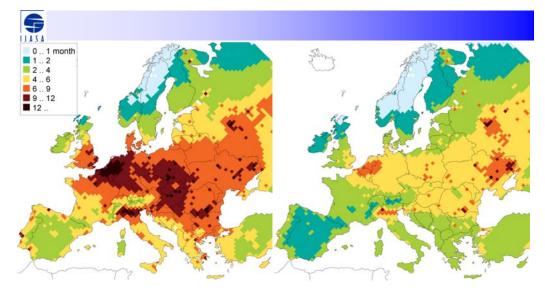
# **Emission Calculation**






# Marginal Cost Curve



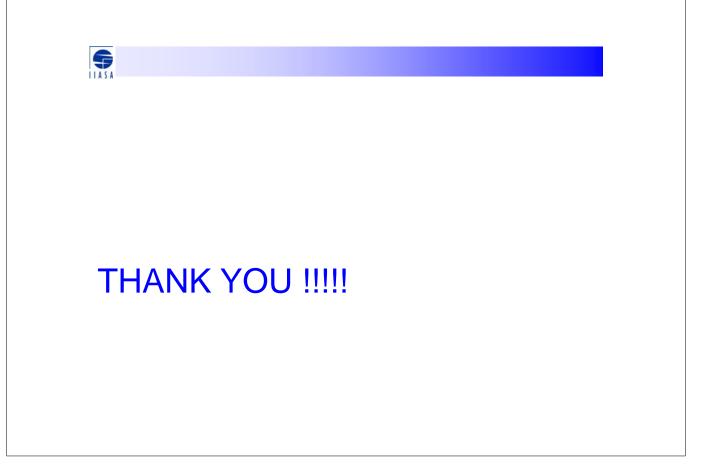

# Total Cost of GHG Emission



# MEC Calculator- Demo

| GAINS                          | <b>)</b> • | MITIG      | ATION                                          | EFFOR        | ts cai         | CULA     | FOR        |                 |             | pollution Inter<br>Institute for App |              |          |
|--------------------------------|------------|------------|------------------------------------------------|--------------|----------------|----------|------------|-----------------|-------------|--------------------------------------|--------------|----------|
| Version 2.0                    |            | Scenario 🛛 | EA 2009 💌                                      | Year 2020    | •              |          |            | Co-be           | nefit Refn  | esh Graph                            | Export       | Logout   |
| No Annes                       | k I tı     | ading-no C | DM 🔽 🕚                                         | Vith Annex J | trading-no     | CDM 🗖    | No Annex I | trading-with    | CDM 🗖       | With Annex                           | I trading-wi | th CDM 🛛 |
|                                |            | LULUCF     | CF Base year Emission range in Emission target |              |                |          | м          | Carbor<br>price |             |                                      |              |          |
|                                |            | excl. 💌    | 1990 💌                                         | Baseline     | max.<br>mitig. | Total    | Change to  | Per capita      | total costs | % of GDP                             | Per capita   |          |
|                                |            |            | Mt CO2eq                                       | Mt CO2eq     | Mt CO2eq       | Mt CO2eq | 1990 💌     | tCO2eq/cap      | bin €/yr    | 9/0                                  | €/cap/yr     | €/t CO2  |
| Target for<br>each Party       |            |            |                                                |              |                |          | -10 %      |                 |             | <b>~</b> %                           |              |          |
| Australia                      | J          | excl. 💌    | 416                                            | 573          | 342            | 375      | -10.0 %    | 15.9            | 11.87       | 1.64 %                               | 503.0        | 180.     |
| Canada                         | A          | excl. 💌    | 592                                            | 766          | 490            | 533      | -10.0 %    | 14.5            | 1.82        | 0.15 %                               | 49.8         | 68.      |
| EU 27 <sup>1)</sup>            | J          | excl. 💌    | 5564                                           | 4671         | 3036           | 4671     | -16.1 %    | 9.4             | 0.00        | 0.00 %                               | 0.0          | -100     |
| Japan                          | T          | excl. 💌    | 1272                                           | 1199         | 946            | 1145     | -10.0 %    | 9.2             | -0.73       | -0.02 %                              | -5.9         | -7       |
| New Zealand                    | A          | excl. 💌    | 62                                             | 82           | 57             | 57       | -7.7 %     | 12.2            | 2.93        | 2.77 %                               | 624.9        | 20000    |
| Norway                         | A          | excl. 💌    | 50                                             | 63           | 48             | 48       | -3.8 %     | 9.7             | 1.83        | 0.95 %                               | 370.7        | 20000.   |
| Russian<br>Federation          | J          | excl. 💌    | 3326                                           | 2481         | 1639           | 2481     | -25.4 %    | 18.9            | 0.00        | 0.00 %                               | 0.0          | -100     |
| Switzerland                    | T          | excl. 💌    | 53                                             | 48           | 37             | 48       | -10.0 %    | 6.3             | -0.01       | -0.00 %                              | -1.2         | -14      |
| Ukraine                        | A          | excl. 💌    | 922                                            | 422          | 286            | 422      | -54.2 %    | 9.8             | 0.00        | 0.00 %                               | 0.0          | -100     |
| United<br>States of<br>America | J          | excl. 💌    | 6135                                           | 6969         | 4400           | 5522     | -10.0 %    | 16.1            | 5.11        | 0.04 %                               | 14.9         | 28.      |
| Total for<br>Annex I           |            |            | 18393                                          | 17274        | 11281          | 15301    | -16.8 %    | 12.6            | 22.82       | 0.06 %                               | 18.8         |          |

## Modeling Air quality




## CONCLUSION AND FUTURE WORK

 conceptual data model to design and build a Cloud-based Data warehousing Framework.

5

- Cloud based data warehouse and semantic technologies such as representation of data combination and constraints - to enhance the efficiency and agility of the GAINS/MEC system.
- continue to improve the transparency of strategic decision making in the international context on the basis of scientific analysis with multiple levels of information requirements.

