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Association Rules
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Minconf = 80%
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Mining association rules between sets of items in large databases
R Agrawal, T Imielinski, A Swami - ACM SIGMOD Record, 1993 - dl.acm.org

Cited by 11735




What We Promised

use




Popularity of the Topic

Association rules
gainingpopularity a1l | I I

""""

Literally hundreds of algorithms:

AlS, Apriori, AprioriTID, AprioriHybrid,
FPGrowth, FPGrowth*, Eclat, dEclat, Pincer-
search, ABS, DCI, kDCI, LCM, AIM, PIE,
ARMOR, AFOPT, COFI, Patricia, MAXMINER,
MAFIA, ...



Pattern Explosion Problem
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Minimum Support

Over 50 000 patterns Over 10 000 000 patterns



What We Actually Did

Qatte s




Redundancy Problem

Frequent itemset / Association rule mining
= find all itemsets [ ARs satisfying thresholds

Many are redundant
smoker = lung cancer
smoker, bald = lung cancer
pregnant > woman
pregnant, smoker > woman, lung cancer



Outline

Frequent Itemset Mining
Pattern Explosion Problem

Condensed Representations
Closed itemsets
Non-Derivable Itemsets

Recent Approaches Towards Non-Redundant
Pattern Mining

Relations Between the Approaches



Condensed Representations
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Number of frequent itemsets = 21
Need a compact representation

Discovering freqguent closed itemsets for association rules
N Pasquier, Y Bastide, R Taouil, L Lakhal - Database Theory—ICDT'99, 1999

Cited by 1088



Condensed Representations

Condensed Representation:

"Compressed” version of the collection of all
frequent itemsets (usually a subset) that allows
for lossless regeneration of the complete
collection.

Closed Itemsets (Pasquier et al, ICDT 1999)
ree ltemsets (Boulicaut et al, PKDD 2000)

Disjunction-Free itemsets (Bykowski and Rigotti,
PODS 2001)




Condensed Representations:

Reasoning with Probabilities

How do supports interact?

What information about unknown supports
can we derive from known supports?

Concise representation: only store relevant part of
the supports



Redundancies

Agrawal et al. (Monotonicity)
Supp(AX) < Supp(A)

Lakhal et al. (Closed sets)

Boulicaut et al. (Free sets)

If Supp(A) = Supp(AB)
Then Supp(AX) = Supp(AXB)



Redundancies

Bayardo (MAXMINER)
Supp(ABX) > Supp(AX) - (Supp(X)-Supp(BX))
\
drop (X, B)

Bykowski, Rigotti (Disjunction-free sets)
if Supp(ABC) = Supp(AB) + Supp(AC) — Supp(A)

then
Supp(ABCX) = Supp(ABX) + Supp(ACX) — Supp(AX)



Tight Bounds on Support

General problem:

Given some supports, what can be derived for the
supports of other itemsets?

Example:
supp(AB) = 0.7
supp(BC) = 0.5

supp(ABC) e [ 7, ?]



Tight Bounds on Support

General problem:

Given some supports, what can be derived for the
supports of other itemsets?

Example:
supp(AB) =0.7
supp(BC) = 0.5

supp(ABC) € [ 0.2, 0.5 ]




Tight Bounds on Support

The problem of finding tight bounds
is hard to solve in general

Theorem
The following problem is NP-complete:
Given itemsets I1, ..., In, and supports s1, ..., sn,
Does there exist a database D such that:

forj=1...n, supp(l) = s,



Tight Bounds on Support

Can be translated into a linear program

Introduce variable X, for every itemset J
X,=fraction of transactions with items =J

TID
1 A

2 C

3 C

4 AB

5 A,B,C

6 A,B,C



Tight Bounds on Support

Can be translated into a linear program

Introduce variable X, for every itemset J
X,=fraction of transactions with items =J

TID Item X = 0
&2 e

X, = 0
X,g = 1/6

Xac = 0

Xge = 0
Xooo = 2/6



Tight Bounds on Support

Give bounds on ABC

For a database D

In which
supp(AB)=0.7
supp(BC) = 0.5

Minimize/maximize X, g

s.t.

X+t Xp+ X+ X+ X pg+ X
+Xgc+tXpgc =1

X 1 XpXgi Xy o1 Xpagc 20

XagtXppc=0.7
XgctXapc = 0.5



Derivable Itemsets

Given: Supp(l) forall 1 < J
Give tight [l,u] for J
Can be computed efficiently

Without counting : Supp(J) € [l,u]
Jis a derivable itemset (DI) iff | =u

We know Supp(J) exactly without counting!



Summary — Condensed Rep'’s

Considerably smaller than all frequent
itemsets

Many redundancies removed
There exist efficient algorithms for mining them

Yet, still way too many patterns generated
supp(A) = 90%, supp(B)=20%
supp(AB) € [10%,20%]
yet, supp(AB) = 18% not interesting
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Statistical Approaches

We have background knowledge
Supports of some itemsets
Column/row marginals

Influences our “expectation” of the database
Not every database equally likely

Surprisingness:
How does real support correspond to expectation?



Statistical Approaches

Update Statistical model
-One database
-Distribution over
databases

Report

statistic -
prediction



Different Variants

Types of background knowledge

Supports, marginals, densities of regions

Mapping background knowledge to statistical
model

Distribution over databases; one distributions
representing a database

Way of computing surprisingness



Types of Background Knowledge

Row and column marginals

0 0 o —> O
0
0 1 1 — 2 &
0 1 1%2E
3
1 1 0%25
S
1 0 o — 1 D
)
1 1 1 - 3
3 3 3

Column marginals



Types of Background Knowledge

Row and column marginals
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Column marginals



Types of Background Knowledge

Density of tiles




Types of Background Knowledge

Density of tiles




Statistical Model - Uniform

Consider all databases that satisfy the
constraints

Uniform distribution over these databases
Gionis et al: row and column marginals
Hanhijarvi et al: extension to supports

A. Gionis, H. Mannila, T. Mielikéainen, P. Tsaparas: Assessing data mining results
via swap randomization. TKDD 1(3): (2007)

S. Hanhijarvi, M. Ojala, N. Vuokko, K. Puolamaki, N. Tatti, H. Mannila: Tell

Me Something | Don’t Know: Randomization Strategies for Iterative Data
Mining. ACM SIGKDD (2009)



Statistical Model - Uniform

111—>3

111—>3
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s this support surprising given the marginals?
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supp(BC) = 60%
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Statistical Model - Uniform

111
111
011
100
010

supp(BC) = 60%

supp(BC) = 40%



Statistical Model - Uniform

111
111

011 =)  supp(BC) = 60%
100
010

s this support surprising given the marginals?
No!

p-value = P(supp(BC) > 60% | marginals) = 60%
E[supp(BC)] = 60% x 60% + 40% x 40% = 52%



Statistical Model - Uniform

Estimation of p-value via simulation (MC)
Uniform sampling from databases with same
marginals is non-trivial

MCMC
111 111
111 111
011 === 101
100 010

010 010



Statistical Model - Uniform
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Summary: Method | No explicit model

created

/\ \ Update Statistical model
Em———==) -Uniform over all
( ) satisfying databases

\/\/\/ Report

statistic

u Any statistic

prediction

yes

Simulation;
MCMC

<é>



Statistical Model Il - MaxEnt

Database = probability distribution
n(t=X) = [{teD | t=X}|/|D|
Pick the one with maximal entropy

H(p) = -2, p(t=X) log(p(t=X))

Example:
supp(A) = 90%
supp(B) = 20%

[ [ o @)




Why MaxEntropy?

H(p) = -2, p(t=X) log(p(t=X))

-log(p(t=X))

denotes space required to encode X, given an
optimal Shannon encoding for the distribution p;
characterizes the information content of X

p(t=X) denotes the probability that event t=X
OCCurs

H(p) = expected number of bits needed to encode
transactions



Why MaxEntropy?

principle of maximum entropy

if nothing is known about a distribution except
that it belongs to a certain class, pick distribution
with the largest entropy. Maximizing entropy
minimizes the amount of prior information built
into the distribution.



Statistical Model Il - MaxEnt

How to compute the MaxEnt distribution?

Recall: linear programming formulation

Xg 10g(Xp) - Xag 10g(Xpp))



Statistical Model Il - MaxEnt

THEOREM 2 (THEOREM 3.1 IN [4]). Given a collection of
itemsets C = {X,; }7_, with frequencies fr(X;), let us define P =
{p| p(X; =1) = fr(X,)}. If there is a distribution in ‘P that has
only non-zero entries, then the maximum entropy distribution p*
can be written as

p (A=1t)=uo H uiX(t) ,
Xec

where ux € R, and uo is a normalization factor.

Get u,, and uy for all X = iterative scaling
Works with any constraint that can be
expressed as lin. ineq. of transaction variables



Statistical Model Il - MaxEnt

Score a collection of itemsets:
Build MaxEnt distribution for these itemsets

Compare to empirical distribution
E.g., Kullback-Leibler divergence, BIC, ...

itemsets
> / + suppor
[-j |
distance

= empirical p < — Maxentp®




lterative scaling

Summary — Model Il

—> expensive

Update Statistical model

IS MaxEnt distribution

| Report
Which itemset statistic

decreases
d(Pemp/P*) Most?

VERY expensive _ = TN
eXpensive @ Querying the
MaxEnt model

Support, _
Margmajs 9 eXpenSIVe

prediction

Michael Mampaey, Nikolaj Tatti, Jilles Vreeken: Tell me what i need to know:
succinctly summarizing data with itemsets. KDD 2011: 573-581



Statistical Model Il - MaxEnt

Original databaseisnxm
Consider all 0-1 databases of size n xm

Every database has a probability
=>» distribution over databases

E(supp(J)) = ZD pP(D) supp(J,D)
Select distribution p that maximizes entropy
and satisfies the constraints in expectation

Tijl De Bie: Maximum entropy models and subjective interestingness: an
application to tiles in binary databases. DMKD Vol. 23(3): 407-446 (2011)



Statistical Model Il - MaxEnt

Depending on the type of constraints finding
MaxEnt distribution is easy; e.q.,

density of a given tile
row and column marginals

Anything expressible as a linear constraint in the
variables D[i,j]

Does not work for frequency constraints!
supp(ab) = 5 =»D[1,a]*D[1,b] + D[2,a]*D[2,b] + ... =
5



Summary - Statistical Methods

Depending on background knowledge -
expectation underlying database changes

Different ways to model
Uniform over all consistent databases
MaxEnt consistent database

Satisfy constraints in expectation; MaxEnt
distribution over all databases



Summary - Statistical Methods

All models have pro and cons

Uniform is hard to extend to new types of
constraints

MaxEnt approaches easier to extend, as long as
constraints can be expressed linearly

All approaches are extremely computationally
demanding
MaxEnt Il seems most realistic
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Minimal Description Length

A good model helps us to compress the data and
IS compact

Let L(M) be the description length of the mode],

Let L(D|M) be the size of the data when compressed
by the model

Find a model M that minimizes:
L(M) + L(D|M)
Explicit trade-off; increasing model complexity:
Increases L(M),
Decreases L(D|M)



Minimal Description Length

We can use patterns to code a database

1

1 A B 2 * *

2 C 3 2 3

3 C AB 4 3 3

4 A,B A 4 4

5 A,B,C 5 34

6 A,B,C < 314
L(M) L(D|M)

Find set of patterns that minimizes L(M)+L(D|M)



Minimal Description Length

Rank itemsets according to how well they can be
used to compress the dataset

Property of a set of patterns

The “Krimp"” algorithm was the first to use this
paradigm in itemset mining
Assumes a seed set of patterns

A subset of these patterns is selected to form the
“code book”

The best codebook is the one that gives the best
compression

Krimp: mining itemsets that compress

J Vreeken, M van | eeuwen, A Siebes - Data Mining and Knowledge ..., 2011




Minimal Description Length

Database

KRrimp select pattern

accept / add to
reject code table
-
R
MDL — =

—
e
S I Code table
v

compress database

Many many patterns

Fig. 4 KRIMP in action

Figure of Vreeken et al.



Summary MDL-Based Methods

Select set of patterns that best compresses
the dataset as the result

Model of the dataset; the main “building blocks”

Patterns will have little overlap = transaction
partially covered by AB benefits little from ABC

Returned patterns are useful to describe the data




Summary MDL-Based Methods

MDL method is NOT parameter-free!

Way of encoding has a great influence on the
result

Encoding exploits patterns one expects to see
E.g., Encode errors explicitly?

In most cases:

Finding best set of patterns is intractable and
does not allow for approximation
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Relations Between the Approaches

Actually, the three approaches are tightly
connected

Maximum likelihood principle:
Prior distribution over models P(M)

Posterior distribution:
P(M|D) = P(D|M).P(M)/P(D)
oc P(D|M).P(M)

Pick model that maximizes P(M|D)
= model maximizing log(P(D|M)) + log(P(M))




Relations Between the Approaches

Let Q(D|M) = 2-L(®M)

If code is optimal Q(D|M) is a probability
Otherwise: normalize

W(M) := X, 2-®M
P(D[M) :=Q(D|M) /| W(M)

Prior distribution over models:
P(M) := 2 LM W(M) | W
W =X, 270 W(M')



Relations Between the Approaches

P(D|M) := 2-L®M J\W(M)

P(M) := 2-LOIM\W(M) /W

Maximum likelihood principle:

Pick M that maximizes log(P(D|M) P(M))
= log(2-®CM JW(M) 2.tMW(M) [ W)
= —L(D|M) = L(M) —log(W)

Select model minimizing
L(D|M) + L(M)



Relations Between the Approaches

Hence, encoding the model and the data
given the model are “just” fancy ways of
expressing distributions

Higher L(D|M) = lower P(D|M)

W(M) expresses how useful M is to encode
databases

Higher W(M) = higher P(M)
Higher L(M) = lower P(M)



Relations Between the Approaches

MaxEnt Model |

Patterns = model
Model = distribution p,, maximizing
H(p) = -Zy« p(t=X) log(p(t=X))

Scoring the model: compare p,, to the empirical
distribution

E.g., KL-divergence



Relations Between the Approaches

Other way of looking at it:
Let’'s compress the database using M

We make an optimal code; code length for an
itemset X equals -log(p,,(X))

L(D|M) =2, _; -log(py(1))
= -2y PempX) 10g(pp(X))
KL(Permpll PM) = ZyPempX) 109(Permp(X) [ pp(X))
= L(DIM) - H(Pepny)
Minimizing KL-divergence = minimizing L(D|M)



Summary: Relations

Both statistical approach and minimal
description length approach can be seen as
instances of Bayesian learning
MDL
L(M) = model prior
L(D|M) = likelihood
Statistical approach
Probability = optimal code = encoding length



Conclusion

Original pattern mining definition suffers
from the pattern explosion problem
Frequency # interestingness
Redundancy among patterns

First approach: Condensed representations

Removing redundancies based on support
Interaction

Does not account for “expectation”



Conclusion

Recent approaches based on statistical
models

Background knowledge = information about
underlying database

Influences what is surprising

Different ways to interpret constraints
Uniform vs Maximal entropy
One database vs distribution over databases



Conclusion

MDL-based methods

Use patterns to encode dataset

Optimize encoding length patterns + encoding
length of the data given the patterns

Essentially all methods similar in spiritin a
mathematical sense

Different ways to encode prior distributions
Yet, at a practical level quite different



Future?

Make these approaches more practical
Currently do not scale well

Look at compression algorithms
Non-redundant patterns directly from data

Give up on exactness, but with guarantees

Exploit data size instead of fighting it
—> Converge to solution

Extend to other pattern domains
Sequences, graphs, dynamic graphs






