Recent Developments in Pattern Mining

Toon Calders

Outline

- Frequent Itemset Mining
 - Pattern Explosion Problem
 - Condensed Representations
 - Closed itemsets
 - Non-Derivable Itemsets
- Recent Approaches Towards Non-Redundant Pattern Mining
- Relations Between the Approaches

Association Rules

TID	ltem
1	A,B,C,D
2	B,C,D
3	A,C,D
4	B,C,D
5	В,С

set	support
	2
В	4
C	5
D	4

Mining association rules between sets of items in large databases R Agrawal, T Imieliński, A Swami - ACM SIGMOD Record, 1993 - dl.acm.org Cited by 11735

What We Promised

Popularity of the Topic

Association rules gaining popularity

Literally hundreds of algorithms: AIS, Apriori, AprioriTID, AprioriHybrid, FPGrowth, FPGrowth*, Eclat, dEclat, Pincersearch, ABS, DCI, kDCI, LCM, AIM, PIE, ARMOR, AFOPT, COFI, Patricia, MAXMINER, MAFIA, ...

Pattern Explosion Problem

Mushroom has 8124 transactions, and a transaction length of 23

Over 50 000 patterns

Over 10 000 000 patterns

What We Actually Did

patterns

Redundancy Problem

- Frequent itemset / Association rule mining
 = find all itemsets / ARs satisfying thresholds
- Many are redundant
 smoker → lung cancer
 smoker, bald → lung cancer
 pregnant → woman
 pregnant, smoker → woman, lung cancer

Outline

- Frequent Itemset Mining
 - Pattern Explosion Problem
 - Condensed Representations
 - Closed itemsets
 - Non-Derivable Itemsets
- Recent Approaches Towards Non-Redundant Pattern Mining
- Relations Between the Approaches

Condensed Representations

Aı	A2	A 3	B1	B2	В3	C1	C ₂	C ₃
1	1	1	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	1	1	1

- Number of frequent itemsets = 21
- Need a compact representation

<u>Discovering frequent closed itemsets for association rules</u>

N **Pasquier**, Y Bastide, R Taouil, L Lakhal - Database Theory—ICDT'99, 1999

Cited by 1089

Condensed Representations

- Condensed Representation:
 "Compressed" version of the collection of all
 frequent itemsets (usually a subset) that allows
 for lossless regeneration of the complete
 collection.
 - Closed Itemsets (Pasquier et al, ICDT 1999)
 - Free Itemsets (Boulicaut et al, PKDD 2000)
 - Disjunction-Free itemsets (Bykowski and Rigotti, PODS 2001)

Condensed Representations: Reasoning with Probabilities

- How do supports interact?
- What information about unknown supports can we derive from known supports?
 - Concise representation: only store relevant part of the supports

Redundancies

- Agrawal et al.
 - $Supp(AX) \leq Supp(A)$
- Lakhal et al.
 Boulicaut et al.
 - If Supp(A) = Supp(AB)Then Supp(AX) = Supp(AXB)

(Monotonicity)

(Closed sets)

(Free sets)

Redundancies

Bayardo

- (MAXMINER)
- Supp(ABX) ≥ Supp(AX) (Supp(X)-Supp(BX))
 \f\
 drop (X, B)
- Bykowski, Rigotti (Disjunction-free sets)
 if Supp(ABC) = Supp(AB) + Supp(AC) Supp(A)
 then
 Supp(ABCX) = Supp(ABX) + Supp(ACX) Supp(AX)

- General problem:
 - Given some supports, what can be derived for the supports of other itemsets?

Example:

```
supp(AB) = 0.7
supp(BC) = 0.5
```

$$supp(ABC) \in [?,?]$$

- General problem:
 - Given some supports, what can be derived for the supports of other itemsets?

Example:

$$supp(AB) = 0.7$$

 $supp(BC) = 0.5$

$$supp(ABC) \in [0.2, 0.5]$$

 The problem of finding tight bounds is hard to solve in general

Theorem

The following problem is NP-complete:

Given itemsets I1, ..., In, and supports s1, ..., sn, **Does there exist** a database D such that:

$$for j=1...n$$
, $supp(I_j) = s_j$

- Can be translated into a linear program
 - Introduce variable X_J for every itemset J
 X_J ≡ fraction of transactions with items = J

TID	Items
1	А
2	C
3	С
4	A,B
5	A,B,C
6	A,B,C

- Can be translated into a linear program
 - Introduce variable X_J for every itemset J
 X_J ≡ fraction of transactions with items = J

TID	Items
1	А
2	С
3	С
4	A,B
5	A,B,C
6	A,B,C

$$X_{\{\}}$$
 = 0
 X_{A} = 1/6
 X_{B} = 0
 X_{C} = 2/6
 X_{AB} = 1/6
 X_{AC} = 0
 X_{BC} = 0
 X_{ABC} = 2/6

Give bounds on ABC

Minimize/maximize X_{ABC}

For a database D

In which supp(AB) = 0.7 supp(BC) = 0.5

s.t.

$$X_{\{\}} + X_A + X_B + X_C + X_{AB} + X_{AC}$$

 $+ X_{BC} + X_{ABC} = 1$
 $X_{\{\}} , X_{A}, X_{B}, X_{C}, ..., X_{ABC} \ge 0$

$$X_{AB}+X_{ABC}=0.7$$

 $X_{BC}+X_{ABC}=0.5$

Derivable Itemsets

- Given: Supp(I) for all I ⊂ J
 Give tight [I,u] for J
 Can be computed efficiently
- Without counting : Supp(J) ∈ [l, u]
- J is a *derivable itemset* (DI) iff I = υ
 - We know Supp(J) exactly without counting!

Summary – Condensed Rep's

- Considerably smaller than all frequent itemsets
 - Many redundancies removed
 - There exist efficient algorithms for mining them
- Yet, still way too many patterns generated
 - supp(A) = 90%, supp(B)=20%
 supp(AB) ∈ [10%,20%]
 yet, supp(AB) = 18% not interesting

Outline

- Frequent Itemset Mining
- Recent Approaches Towards Non-Redundant Pattern Mining
 - Statistically based
 - Compression based
- Relations Between the Approaches

Statistical Approaches

- We have background knowledge
 - Supports of some itemsets
 - Column/row marginals
- Influences our "expectation" of the database
 - Not every database equally likely
- Surprisingness:
 - How does real support correspond to expectation?

Statistical Approaches

Different Variants

- Types of background knowledge
 - Supports, marginals, densities of regions
- Mapping background knowledge to statistical model
 - Distribution over databases; one distributions representing a database
- Way of computing surprisingness

Row and column marginals

Row and column marginals

Α	В	С	
?	?	?	→ 0
?	?	?	→ 2 ਨੂੰ
?	?	?	\rightarrow 2 $\stackrel{\gtrless}{\exists}$
?	?	?	ightarrow 2 Row marginals $ ightarrow$ 1
?	?	?	\rightarrow 1 $\frac{1}{2}$
?	?	?	→ 3
\bigvee		\bigvee	
3	3	3	
Colu	ımn marg	inals	

Density of tiles

Α	В	С
0	0	0
0	1	1
0	1	1
1	1	0
1	O	0
1	1	1

Density of tiles

- Consider all databases that satisfy the constraints
- Uniform distribution over these databases
 - Gionis et al: row and column marginals
 - Hanhijärvi et al: extension to supports

- A. Gionis, H. Mannila, T. Mielikäinen, P. Tsaparas: Assessing data mining results via swap randomization. TKDD 1(3): (2007)
- S. Hanhijärvi, M. Ojala, N. Vuokko, K. Puolamäki, N. Tatti, H. Mannila: Tell Me Something I Don't Know: Randomization Strategies for Iterative Data Mining. ACM SIGKDD (2009)

```
1 1 1 \rightarrow 3

1 1 1 \rightarrow 3

0 1 1 \rightarrow 2

1 0 0 \rightarrow 1

0 1 0 \rightarrow 1

\downarrow \downarrow \downarrow \downarrow

3 4 3
```

Is this support surprising given the marginals?

```
111
                     111
                                      111
    111
                     111
                                      1 1 1
    0 1 1
                     110
                                      0 1 1
    100
                     0 1 0
                                      100
    0 1 0
                      0 0 1
                                      0 1 0
supp(BC) = 60\% supp(BC) = 40\% supp(BC) = 60\%
```

```
111 111 111 111 011 011 010 010 010 010 supp(BC) = 60% supp(BC) = 40%
```

- Is this support surprising given the marginals?
 No!
 - p-value = P(supp(BC) ≥ 60% | marginals) = 60%
 - $E[supp(BC)] = 60\% \times 60\% + 40\% \times 40\% = 52\%$

- Estimation of p-value via simulation (MC)
- Uniform sampling from databases with same marginals is non-trivial
 - MCMC

Summary: Method I

No explicit model created

- Database = probability distribution
- $p(t=X) = |{t∈D | t=X}|/|D|$
- Pick the one with maximal entropy
 - $H(p) = -\Sigma_X p(t=X) \log(p(t=X))$

Example:

$$supp(A) = 90\%$$

 $supp(B) = 20\%$

Α	В	prob		
0	0	10%		
0	1	0%		
1	0	70%		
1	1	20%		

$$H = 1.157$$
 $H = 0.992$

Α	В	Prob
0	0	0%
0	1	10%
1	0	80%
1	1	10%

$$H = 0.992$$

Α	A B prob					
0	0	8%				
0	1	2%				
1	0	72%				
1	1	18%				
H = 1.19						

Why MaxEntropy?

- $H(p) = -\Sigma_X p(t=X) \log(p(t=X))$
 - -log(p(t=X))
 denotes space required to encode X, given an
 optimal Shannon encoding for the distribution p;
 characterizes the information content of X
 - p(t=X) denotes the probability that event t=X occurs
 - H(p) = expected number of bits needed to encode transactions

Why MaxEntropy?

principle of maximum entropy

 if nothing is known about a distribution except that it belongs to a certain class, pick distribution with the largest entropy. Maximizing entropy minimizes the amount of prior information built into the distribution.

- How to compute the MaxEnt distribution?
 - Recall: linear programming formulation

$$\begin{aligned} \text{MAX}(-X_{\{\}} \log(X_{\{\}}) - X_{A} \log(X_{A}) \\ X_{B} \log(X_{B}) - X_{AB} \log(X_{AB})) \end{aligned}$$

$$X_{\{\}} + X_A + X_B + X_{AB} = 1$$

 $X_{\{\}}, X_A, X_B, X_{AB} \ge 0$

$$X_A + X_{AB} = 0.9$$

 $X_B + X_{AB} = 0.2$

THEOREM 2 (THEOREM 3.1 IN [4]). Given a collection of itemsets $C = \{X_i\}_{i=1}^k$ with frequencies $fr(X_i)$, let us define $P = \{p \mid p(X_i = 1) = fr(X_i)\}$. If there is a distribution in P that has only non-zero entries, then the maximum entropy distribution p^* can be written as

$$p^*(A=t) = u_0 \prod_{X \in \mathcal{C}} u_X^{S_X(t)},$$

where $u_X \in \mathbb{R}$, and u_0 is a normalization factor.

- Get u_o , and u_X for all $X \rightarrow iterative scaling$
- Works with any constraint that can be expressed as lin. ineq. of transaction variables

- Score a collection of itemsets:
 - Build MaxEnt distribution for these itemsets
 - Compare to empirical distribution
 - E.g., Kullback-Leibler divergence, BIC, ...

Iterative scaling Summary – Model II → expensive Statistical model **Update** Anything expressible as MaxEnt distribution linear inequality of transaction variables Report prediction Which itemset statistic decreases yes d(p_{emp}, p*) most? **VERY** expensive Surprising? Querying the MaxEnt model database Support, → expensive Marginals, ...

Michael Mampaey, Nikolaj Tatti, Jilles Vreeken: Tell me what i need to know: succinctly summarizing data with itemsets. KDD 2011: 573-581

- Original database is n x m
 - Consider all o-1 databases of size n x m
 - Every database has a probability
 - distribution over databases
- $E(supp(J)) = \sum_{D} p(D) supp(J,D)$
- Select distribution p that maximizes entropy and satisfies the constraints in expectation

Tijl De Bie: Maximum entropy models and subjective interestingness: an application to tiles in binary databases. DMKD Vol. 23(3): 407-446 (2011)

- Depending on the type of constraints finding MaxEnt distribution is easy; e.g.,
 - density of a given tile
 - row and column marginals
 - Anything expressible as a linear constraint in the variables D[i,j]
- Does not work for frequency constraints!
 - supp(ab) = $5 \rightarrow D[1,a]*D[1,b] + D[2,a]*D[2,b] + ... = 5$

Summary – Statistical Methods

- Depending on background knowledge >
 expectation underlying database changes
- Different ways to model
 - Uniform over all consistent databases
 - MaxEnt consistent database
 - Satisfy constraints in expectation; MaxEnt distribution over all databases

Summary – Statistical Methods

- All models have pro and cons
 - Uniform is hard to extend to new types of constraints
 - MaxEnt approaches easier to extend, as long as constraints can be expressed linearly
 - All approaches are extremely computationally demanding
 - MaxEnt II seems most realistic

Outline

- Frequent Itemset Mining
- Recent Approaches Towards Non-Redundant Pattern Mining
 - Statistically based
 - Compression based
- Relations Between the Approaches

- A good model helps us to compress the data and is compact
 - Let L(M) be the description length of the model,
 - Let L(D|M) be the size of the data when compressed by the model
- Find a model M that minimizes:L(M) + L(D|M)
- Explicit trade-off; increasing model complexity:
 - Increases L(M),
 - Decreases L(D|M)

We can use patterns to code a database

			pattern	code			
TID	Items		Α	1		TID	Items
1	A		В	2		1	1
2	С		C	3		2	3
3	С		AB	4		3	3
4	A,B	↑ ↑			4	4	
5	A,B,C	τ				5	3,4
6	A,B,C					6	3,4
L(M)				L(D M)			

Find set of patterns that minimizes L(M)+L(D|M)

- Rank itemsets according to how well they can be used to compress the dataset
 - Property of a set of patterns
- The "Krimp" algorithm was the first to use this paradigm in itemset mining
 - Assumes a seed set of patterns
 - A subset of these patterns is selected to form the "code book"
 - The best codebook is the one that gives the best compression

Krimp: mining itemsets that compress

Fig. 4 KRIMP in action

Figure of Vreeken et al.

Summary MDL-Based Methods

- Select set of patterns that best compresses the dataset as the result
 - Model of the dataset; the main "building blocks"
 - Patterns will have little overlap → transaction partially covered by AB benefits little from ABC
 - Returned patterns are useful to describe the data

Summary MDL-Based Methods

- MDL method is NOT parameter-free!
 - Way of encoding has a great influence on the result
 - Encoding exploits patterns one expects to see
 - E.g., Encode errors explicitly?
- In most cases:
 - Finding best set of patterns is intractable and does not allow for approximation

Outline

- Frequent Itemset Mining
- Recent Approaches Towards Non-Redundant Pattern Mining
- Relations Between the Approaches

- Actually, the three approaches are tightly connected
- Maximum likelihood principle:
 - Prior distribution over models P(M)
 - Posterior distribution:

```
P(M|D) = P(D|M).P(M) / P(D)
\propto P(D|M).P(M)
```

- Pick model that maximizes P(M|D)
 - = model maximizing log(P(D|M)) + log(P(M))

- Let $Q(D|M) = 2^{-L(D|M)}$
 - If code is optimal Q(D|M) is a probability
- Otherwise: normalize
 - $W(M) := \sum_{D'} 2^{-L(D'|M)}$
- P(D|M) := Q(D|M) / W(M)
- Prior distribution over models:
 - P(M) := 2^{-L(M)} W(M) / W
 - $W = \sum_{M'} 2^{-L(M')} W(M')$

- $P(D|M) := 2^{-L(D|M)} / W(M)$ $P(M) := 2^{-L(D|M)} W(M) / W$
- Maximum likelihood principle:
 Pick M that maximizes log(P(D|M) P(M))
 = log(2^{-L(D|M)} / W(M) 2^{-L(M)} W(M) / W)
 = -L(D|M) L(M) log(W)
- Select model minimizing
 L(D|M) + L(M)

- Hence, encoding the model and the data given the model are "just" fancy ways of expressing distributions
 - Higher L(D|M) = lower P(D|M)
 - W(M) expresses how useful M is to encode databases
 - Higher W(M) = higher P(M)
 - Higher L(M) = lower P(M)

- MaxEnt Model I
 - Patterns = model
 - Model \rightarrow distribution p_M maximizing $H(p) = -\Sigma_X p(t=X) \log(p(t=X))$
 - Scoring the model: compare p_M to the empirical distribution
 - E.g., KL-divergence

- Other way of looking at it:
 - Let's compress the database using M
 - We make an optimal code; code length for an itemset X equals -log(p_M(X))

$$\begin{split} & L(D|M) = \Sigma_{t \in D} \text{-log}(p_M(t)) \\ & = -\Sigma_X p_{emp}(X) \log(p_M(X)) \\ & KL(p_{emp} || p_M) = \Sigma_X p_{emp}(X) \log(p_{emp}(X) / p_M(X)) \\ & = L(D|M) - H(p_{emp}) \end{split}$$

Minimizing KL-divergence = minimizing L(D|M)

Summary: Relations

- Both statistical approach and minimal description length approach can be seen as instances of Bayesian learning
 - MDL
 - L(M) → model prior
 - L(D|M) → likelihood
 - Statistical approach
 - Probability → optimal code → encoding length

Conclusion

- Original pattern mining definition suffers from the pattern explosion problem
 - Frequency ≠ interestingness
 - Redundancy among patterns
- First approach: Condensed representations
 - Removing redundancies based on support interaction
 - Does not account for "expectation"

Conclusion

- Recent approaches based on statistical models
 - Background knowledge information about underlying database
 - Influences what is surprising
- Different ways to interpret constraints
 - Uniform vs Maximal entropy
 - One database vs distribution over databases

Conclusion

- MDL-based methods
 - Use patterns to encode dataset
 - Optimize encoding length patterns + encoding length of the data given the patterns
- Essentially all methods similar in spirit in a mathematical sense
 - Different ways to encode prior distributions
 - Yet, at a practical level quite different

Future?

- Make these approaches more practical
 - Currently do not scale well
 - Look at compression algorithms
- Non-redundant patterns directly from data
 - Give up on exactness, but with guarantees
 - <u>Exploit</u> data size instead of fighting it
 - → Converge to solution
- Extend to other pattern domains
 - Sequences, graphs, dynamic graphs

Thank you!

