
Declarative Modeling for
Machine Learning and Data Mining

 Lab for Declarative Languages and Artificial Intelligence

Joint work with especially
Tias Guns and Siegfried Nijssen

WARNING!
CLAIMS MADE
ABOUT FCA

MAY BE NAIVE

Text

(c) Luc De Raedt

Is VERY HARD

1. Formalize learning / mining task

2. Design algorithm / technique to use

3. Implement the algorithm

4. Use the software

Developing software that
relies on ML and DM

Specialized
AlgorithmInput OutputTASK

Specialized
Algorithm 3Input 3 Output 3TASK 3

Specialized
Algorithm 2Input 2 Output 2TASK 2

Specialized
Algorithm 1Input 1 Output 1TASK 1

Developing software that
relies on ML and DM

state HOW to solve problem
waste of resources

Developing software that
relies on ML and DM

Is VERY HARD

• it requires a deep understanding of the underlying algorithms
and procedures (i.e., be a ML/DM expert)

• existing algorithms/code are very specific and limited

• are hard to extend or generalize ML/DM

• there is only little re-use of existing code

Might be true for FCA as well ?

Can we design programming languages containing machine
learning primitives?

Can a new generation of computer programming languages
directly support writing programs that learn?

Why not design a new computer programming language that
supports writing programs in which some subroutines are hand-
coded while others are specified as “to be learned.” Such a
programming language could allow the programmer to declare the
inputs and outputs of each “to be learned” subroutine, then select a
learning algorithm from the primitives provided by the programming
language.

Long standing open questions

Tom Mitchell, The Discipline of Machine Learning, 2006

Questions remain open

Though some relevant work on

• probabilistic & adaptive programming languages

• inductive query languages for data mining [Imielinski and Mannila, 95;
EU cInQ and IQ projects]

• inductive logic programming and statistical relational learning

• Learning based Java [Roth et al. 10]

• kLog [Frasconi et al.]

We are still far away from programming languages that support machine
learning or data mining

Our Vision

Declarative Modeling is KEY to answer the question

• Specify WHAT the problem IS

• Often as a constraint satisfaction or optimization problem

Instead of Procedural approaches

• Specify HOW the problem should be SOLVED

• Specify programs

Why declarative
modeling ?

DECLARATIVE

• few lines of code

• easy to understand, maintain,
change

• one theory for multiple tasks

• can be used with multiple
“solvers”, e.g., exact and approximate

• formal verification possible

PROCEDURAL

• 1000s of lines of code

• hard to understand, maintain or
change

• one program for each task

• solver is built in the program

Plan for this talk
Declarative Modeling has never been systematically applied to ML/DM.

• Yet all the necessary ingredients are available to do this.

• So we are starting to develop this.

I will introduce some useful principles

• declarative languages and their connection to constraint
programming / solver technology

Illustrations on

• constraint-based item set mining

• probabilistic modeling (very fast)

Might apply to FCA as well ? Might apply to FCA as well ?

Three observations

Observation 1

Machine learning and data mining are essentially
constraint satisfaction and optimization
problems

Data Mining

Given

• a database containing instances or transactions D

the set of instances

• a hypothesis space or pattern language L

• a selection predicate, query or set of constraints Q

Find Th(Q,L,D) = { h ∈ L | Q(h,D) = true }

Local Patterns

Itemset mining

Given

• a set of items I

• a transaction t ⊆ I. So, X = 2I

• D is a set of transactions.

• L = X = 2I

• a frequency threshold c, with freq(h,D) = |{ d | d ∈ D, h ⊆ d }|

 Find Th(Q,L,D) = { h ∈ L | freq(h,D) > c }

Machine learning

Given

• an unknown target function f: X → Y

• a hypothesis space L containing functions X → Y

• a dataset of examples E = { (x, f(x)) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

supervised

Bayesian Networks

0.9 0.1
e

b

e
0.2 0.8

0.01 0.99
0.9 0.1

be
b
b

e

BE P(A | B,E)
Earthquake

JohnCalls

Alarm

MaryCalls

Burglary

A graphical model encodes conditional independencies

P(E,B,A,J,M) = P(E).P(B).P(A|E,B).P(J|A).P(M|A)
P(e,not b, a, j, not m) =

P(e). P(not b). P(a|e, not b).P(j|a).P(not m|a)
Using the Joint Prob. Distribution,

any query P(Q |evidence) can be answered

Possible Dataset

B E A J M

true true ? true false

? true ? ? false

...

true false ? false true

Learning Probabilistic
Models

Given

• an unknown target function P: X → Y Y=[0,1]

• a hypothesis space L containing functions X → Y
(graphical models)

• a dataset of examples E = { (x, _) | x ∈ X }

• a loss function loss(h,E) → ℝ

Find h ∈ L that minimizes loss(h,E)

generative

maximize likelihood

�

e�E

P (e|h)

generative

Observation 2
There has been an enormous progress in solver
technology for basic constraint satisfaction and
optimization problems

• SAT, ASP, CSP, Constraint programming,
maxSAT, weighted model counting, ...

• Many problems are reduced to these basic
problems ... and solved efficiently

What about ML/ DM ?

What about FCA ?

Constraint Satisfaction
Given

• a set of variables V

• the domain D(x) of all variables x in V

• a set of constraints C on values these
variables can take

Find an assignment of values to variables in V
that satisfies all constraints in C

Constraint Satisfaction
Variables:

P1,P2,P3,P4
with
domain {1 , 2 }

Constraints:

P1 != P2

P3 != P4

P1 != 1

P1

P2

P3

P4

Person Office

Solutions:

 1

 2

2 1 2 1

Constraint
Programming

Two key ideas

• propagation of constraints, e.g., from

D(P1) = {1} and D(P2) = {1,2,3} and P1 != P2 infer
that 1 ∉ D(P2) and simplify D(P2) = {2,3}

propagator: if D(x) = {d} and x!=y then delete d from D(y)

• if you cannot propagate, instantiate (or divide) and
recurse, e.g.,

 call with D(P2)={2} and with D(P2)={3}

 P2=2 P2=3

Search

D(P1) = {1,2}
D(P2) = {1,2}
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

Search

D(P1) = {1,2}
D(P2) = {1,2}
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

Search

D(P1) = { 2}
D(P2) = {1,2}
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

Search

D(P1) = { 2}
D(P2) = {1,2}
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

choose P3 = 1

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = {1 }
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = {1 }
D(P4) = { 2}

P1 != P2

P3 != P4

P1 != 1

& backtrack

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = {1,2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

choose P3 = 2

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = { 2}
D(P4) = {1,2}

P1 != P2

P3 != P4

P1 != 1

Search

D(P1) = { 2}
D(P2) = {1 }
D(P3) = { 2}
D(P4) = {1 }

P1 != P2

P3 != P4

P1 != 1

Constraint
Programming

There is a lot more to say

• about propagators -- how to modify domains

• about choosing the next variable to instantiate

• about types of constraints and domains used

• about implementations ...

• about modeling languages ...

Observation 3
Solver technology facilitates the development of high-level
declarative modeling languages

• specify the WHAT -- not the HOW

• systems processing constraints should find a solution
satisfying the model

Examples include

• ZINC, Essence, constraint programming, ...

Very flexible approach ... not just in constraint
programming ... convex optimisation

Main Claim

We can obtain programming languages for ML / DM
by applying the same principles as constraint
programming

Essentially three languages

• Modeling -- specify the problem -- the what

• Solver -- translation of the problem -- the how

• Programming -- in which everything is embedded

Translation is essential step !

TASK 3

Output 2THEORies

DATA 1

TASKs

Input

 SOLVERs OUTPUT

Inputs

Output

Data = Input

How does it work

 Only state WHAT the problem is

model

Pattern mining

Another example

Assume

• analysing a dataset

• e.g. molecules

• looking for patterns of interest

• patterns are subgraphs

Itemset Mining
Many interesting problems ... data mining as constraint satisfaction

• which patterns are frequent ?

• which patterns are frequent in the active and infrequent in
the inactive compounds ? and do not contain any halogens ?
or benzene rings ?

• which patterns are significant w.r.t. classes ?

• all patterns ? k-best patterns ?

• which pattern set is the best concept-description for the
actives ? for the inactives ?

correlated pattern mining

pattern set mining

frequent pattern mining

still no general system that can do all of this

Pattern mining

• Traditional pattern mining:
Th(L, Q,D) = {p ⇤ L|Q(p,D) = true}

• Correlated pattern mining with function �(p,D), (⇥2),
Th(L, Q,D) = argp�Lmaxk �(p,D)

• Pattern set mining
Th(L,Q,D) = {P ⇥ L|Q(P,D) = true}

Queries/Predicates Q employ constraints
such as frequency, generality, closedness, ...

Constraint-Based Mining

Numerous constraints have been used

Numerous systems have been developed

And yet,

• new constraints often require new
implementations

• very hard to combine different constraints

There is not yet a modeling language for CBM

Again an analogy with FCA ?

Constraint Programming
Exists since about 20 ? years

A general and generic methodology for dealing with constraints across
different domains

Efficient, extendable general-purpose systems exist, and key principles
have been identified

Surprisingly CP has not been used for data mining ?

CP systems often more elegant, more flexible and more efficient than
special purpose systems

I will argue that this is also true for Data Mining !

Yields a programming/modeling language for CBM

Results in Itemset mining
Use Constraint Programming for

1) Local Pattern Mining (using itemsets)

2) Correlated Pattern Mining (top-k)

3) Mining Patterns Sets (submitted)

[KDD 08, KDD 09, ECML/PKDD 10, AAAI 10, AIJ 11, IEEE TKDE 11]

Results by Guns, Nijssen and De Raedt

Provides evidence for main claims !

Itemset mining

Let’s try to apply CP for item-set mining,

the simplest form of data mining

Th(L, Q,D) = {p � L|Q(p,D) = true}

• L = 2I , i.e., itemsets

• D ⇤ L, i.e., transactions

• Q(p,D) = true if freq(p,D) ⇥ t

Data Set

Owns_real_estate Has_savings Has_loans

Items

T
ra
n
sa
ct
io
n
s

frequency =2

Dti= 0 or 1

Frequent Item Set
Mining in MiningZinc

Math-like notation

User defined constraints

Efficient solving

Specifying the WHAT -- how to translate ?

Possible to efficiently translate this using the techniques to
follow for a wide range of constraints

int: NrI; int: NrT; int: Freq;
array[1..NrT] of set of int: D;

var set of 1..NrI: Itemset;
var set of 1..NrT: Trans;

constraint card(Trans) >= Freq;

constraint forall (t in ub(Trans)) (
 t in Trans ↔ Itemset subset D[t])‏

solve satisfy;

Closed Freq. Itemset Mining

 Closure constraints:
function var set of int: cover(Itemset, D) = let {
 var set of int: Trans,
 constraint forall (t in ub(Trans)) (
 t in Trans ↔ Itemset subset D[t])‏
} in Trans;

function var set of int: cover_inv(Trans, D) = let {
 var set of int: Itemset,
 constraint forall (i in ub(Itemset)) (
 i in Itemset ↔ Trans subset D[i])‏
} in Itemset;

int: NrI; int: NrT; int: Freq;
array[1..NrT] of set of int: D;

var set of 1..NrI: Itemset;
var set of 1..NrT: Trans;

constraint card(Trans) >= Freq;

constraint Trans = cover(Itemset, D);
constraint Itemset = cover_inv(Trans, D);

solve satisfy;

MiningZinc

 Math-like notation
 User-defined constraints
 Efficient solving

 Solver independent: CP, SAT, MIP, spec. solvers, ...

function var set of int: frequency(Itemset, D) = …
function var set of int: cover(Itemset, D) = …

model.mngzn
(MiningZinc)‏

lib_itemsetmining.mngzn
(MiningZinc)‏

mngzn
2mzn

model.mzn
(MiniZinc)‏

mzn
2fzn

model.fzn
(FlatZinc)‏ fzn solver

globals.mzn
(MiniZinc)‏

standard MiniZinc distribution

int: NrI; int: NrT; int: Freq;
array[1..NrT] of set of int: D;

var set of 1..NrI: Itemset;
var set of 1..NrT: Trans;

constraint card(Trans) >= Freq;

constraint forall (t in ub(Trans)) (
 t in Trans ↔ Itemset subset
D[t])‏

solve satisfy;

The Model in Essence’

�

t

Tt � minsup

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0

⇤i : Ii = 1⇥
�

t

TtDti � minsupiff

We use Gecode !

Solver language
Translated model

Encoding a Data Set

Vectors as itemsets Ii = 0 or 1

and transactionsets Tt = 0 or 1

Goal find all itemsets (I,T) such that

• I is frequent & I covers exactly T’s transactions

• frequency(I,D) > Freq AND T = covers(Itemset,D)

 0 1 1

 0 0 0 1 1

Encoding a Data Set

0

1

0

1

0

1

0
1

�

t

Tt � minsup

Tt = 1⇥
�

i

Ii(1�Dti) = 0 reified constraint

frequent

exact coverage=
T is extension of I

where Dti=1 if transaction t contains item i

for all i : Ii = 0 or (Ii = 1 and (1�Dti) = 0)
for all i : Ii = 0 or (Ii = 1 and Dti = 1)

Reified Frequency

IF i1=1 THEN t1+t2 ≥ freq

⇤i : Ii = 1⇥
�

t

TtDti � minsup

Exact Coverage

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0

IF t1=1 THEN i2=0

One Propagator
Reified constraints of the form C ⌅ x.

• decompose into C ⇤ x and C ⇥ x

• for C ⇤ x do:

– IF 0 ⇧ D(x) and C THEN delete 0 from D(x)
– IF D(x) = 0 THEN apply propagators for ¬C

• for C ⇥ x do:

– IF 1 ⇧ D(x) and ¬C THEN delete 1 from D(x)
– IF D(x) = 1 THEN apply propagators for C

Another Propagator

Summation constraint:
�

x⇥V wxx � �
with variables V and real-valued weights wx

Define xmax = maxd⇥D(x) d and xmin = mind⇥D(x) d
V + = {x ⇥ V |wx � 0} and V � = {x ⇥ V |wx < 0}.

Then�
x⇥V � wxxmin +

�
x⇥V + wxxmax � �

must be satisfied

Another Propagator
IF

�
x⇥V � wxxmin +

�
x⇥V + wxxmax � �

IF
�

x⇥V � wxxmin +
�

x⇥V +\{x⇥} wxxmax < �
THEN D(x�) = {1}
ENDIF

ELSE D(x�) = ⇥
ENDIF

x1 + x2 + x3 � 2,
D(x1) = {1}, D(x2) = {0, 1}, D(x3) = {0, 1};

One of x2 and x3 must have the value 1, but if

x1 + x2 + x3 � 3,
D(x1) = {1}, D(x2) = {0, 1}, D(x3) = {0, 1};

the propagator determines that D(x2) = D(x3) = {1}.

Exact Coverage

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0

IF t1=1 THEN i2=0

Reified Frequency

IF i1=1 THEN t1+t2 ≥ freq

⇤i : Ii = 1⇥
�

t

TtDti � minsup

Example

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0

⇤i : Ii = 1⇥
�

t

TtDti � minsup

propagate i2 freq

Example

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0

⇤i : Ii = 1⇥
�

t

TtDti � minsup

propagate t1
coverage

Example

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0

⇤i : Ii = 1⇥
�

t

TtDti � minsup

branch i1 =1

Example

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0

⇤i : Ii = 1⇥
�

t

TtDti � minsup

propagate t3
coverage

Example

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0

⇤i : Ii = 1⇥
�

t

TtDti � minsup

propagate i3 freq

Example

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0

⇤i : Ii = 1⇥
�

t

TtDti � minsup

propagate t2
coverage

Example

⇤t : Tt = 1⇥
�

i

Ii(1�Dti) = 0

⇤i : Ii = 1⇥
�

t

TtDti � minsup

propagate i4 freq

Search Tree

Further Constraints

monotonic and anti-monotonic

emerging patterns (use two datasets)

(delta)-closed sets and (delta)-free sets

correlated patterns (e.g. significant patters)

maximal sets

convertible constraints (e.g. min average cost item)

as well as numerous combinations possible

Tt = 1⇥
�

i

Ii(1�Dti) = 0

Ii = 1⇥
�

t Tt(1�Dti) = 0

Ii = 1⇤
�

t Tt(1� � �Dti) ⇥ 0

Frequent Itemsets

Ii = 1⇥
�

t

DtiTt � minsup

Maximal Itemsets (supersets are not frequent)

Ii = 1⇥
�

t

DtiTt � minsup

Exact Coverage (always needed)

Closed Itemsets (supersets have strictly lower frequency)

delta Closed Itemsets
+ Frequency

+ Frequency

Easy to change !

Other Systems

most flexible system today CP 4 IM - downloadable

Experiments

Compared to
LCM
Mafia

Patternist

Experiments

For highly constrained problems, already competitive

CP for Itemset Mining
CP already competitive when having strong constraints

CP can easily handle new constraints and new
combinations of constraints

General purpose.

Proof of principle as how to translate high-level model
into solver language

Challenges
In Constraint Programming, different solvers
optimized for different domains (reals, discrete
domains, ...)

In Data Mining, different pattern types and data

• graphs, trees, sequences with CP ?

Large numbers of reified constraints unusual
for CP

CP for Correlated
Pattern Mining

Top-k Correlated
Pattern Mining

• D now consists of two datasets, say P and N

• a correlation function �(p,D), e.g., ⇥2

• Th(L, Q,D) = argp�Lmaxk �(p,D)

Correlated Itemset Mining

Owns_real_estate Has_savings Has_loans Good_customer

cov 3 0 3
not 1 3 4

4 3

Correlated/Discriminative Itemset Mining

Alternative opt. functions, for example:

with:

Function should not be decomposed;
 automatically derive a bound?

int: NrI; int: NrT; int: Freq;
array[1..NrT] of set of int: D;
set of int: pos; set of int: neg;

var set of 1..NrI: Itemset;
var set of 1..NrT: Trans;

constraint Trans = cover(Itemset, D);
constraint Itemset = cover_inv(Trans, D);

solve maximize
 card(Trans intersect pos) – card(Trans intersect neg);

solve maximize chi2(Trans, pos, neg);

function float: chi2(Trans, pos, neg) = ...

accuracy

Specifying the WHAT -- how to translate ?

Correlation function

Projection on PN-space
Nijssen KDID

1-support bound

Text
Han et al.

08

2-support bound

Morishita &
Sese 98

4-support bound

Nijssen et
al. KDD 09

AIJ 11

Illustration

Experiments

900s
timeout

Constraint
Programming

It works (extremely well)

• written another propagator

• whenever a pattern satisfying the constraint
is found update the threshold

Pattern Set Mining

Pattern Sets
Most data miners are not directly interested in
all solutions or the top-k solutions to a pattern
mining task, but typically post-process

Patterns are then used as features in classifiers
or clusterers

So, why not apply constraint based mining to
pattern sets directly ? [Zimmermann PhD.
2009] [Guns et al, IEEE TKDE]

Pattern Sets

Consider a set of itemsets

Can be interpreted as DNF expression

Useful for concept-learning and clustering

{{a, b, c}, {b, d, e}, {c, e, f}}

(a � b � c) ⇥ (b � d � e) ⇥ (c � e � f)

from local to global pattern mining

Can we apply Constraint-Based Mining to
Pattern Set Mining ?

What are meaningful constraints ?

Th(L,Q,D) = {P � L|Q(P,D) = true}

• local constraints on I ⌅ P such as freq(I,D) ⇤ minsup

• constraints on all pairs of patterns I1, I2 ⌅ P , e.g.
|covers(I1,D) ⌃ covers(I2,D)| ⇥ t

• global constraints freq(P,D) ⇤ t�

• correlation, top-k, ...

Pattern Sets

Properties
Many properties of local pattern mining carry
over, though sometimes in a subtle way, e.g.

(a � b � c) ⇥ (b � d � e)
is more specific than

(a � b � c) ⇥ (b � d � e) ⇥ (c � e � f)

freq((a ⇥ b ⇥ c) ⇤ (b ⇥ d ⇥ e)) �
freq((a ⇥ b ⇥ c) ⇤ (b ⇥ d ⇥ e) ⇤ (c ⇥ e ⇥ f))

Thus

Thus, anti-monotonicity reversed

One Step
 Pattern Set Mining

Th(L,Q,D) = {P � L|Q(P,D) = true}

Recent work : mine directly for

using CP
clustering,

concept-learning
redescription mining

tiling

where |P| =k => k-pattern set mining

k-Pattern Sets

Key idea:

• fix the number of considered patterns in
the set to k

• replace (T,I) by (T,11, ..., Ik) and specify
constraints as before, ensure also that one
does not obtain permutations of patterns ...

• add optimization criterion ... to find best k-
pattern set

Pattern Set Mining
int: NrI; int: NrT; int K;
array[1..NrT] of set of int: TDB;
set of int: pos; set of int: neg;

% pattern set
array[1..K] of var set of 1..NrI: Items;
constraint lexleq(Items); % remove symmetries

% every pattern is closed 'on the positives'
constraint let { TDBp = [TDB[t] | t in pos] } in
 forall (d in 1..K) (
 Items[d] = cover_inv(cover(Items[d], TDBp), TDBp));

% accuracy of pattern set
solve maximize
 let { Trans = union(d in 1..K) (cover(Items[d], TDB)) } in
 card(Trans intersect pos) - card(Trans intersect neg);

Generality

Can model instantiations of:

• Concept learning (k-term DNF learning)

• Conceptual clustering

• k-Tiling

• Redescription mining

• ...

k-Pattern Set Mining

Key points:

• A general modeling language for such tasks

• One-step exhaustive mining using CP

• Lessons about the interaction between
 local and global constraints

Conclusions Pattern
Mining

Constraint programming --

• largely unexplored in data mining/machine learning
though directly applicable

• using constraint programming principles results in a
declarative modeling language for ML/DM

• using constraint programming solvers results in
good performance

• several interesting open questions and new
perspective

http://dtai.cs.kuleuven.be/CP4IM

Several open questions
What range of tasks can we model ?

Which modeling primitives do we need?

Do we need to adapt the solvers ? approximate
solvers ?

Which translations to use ?

How to incorporate optimization ?

Zinc is only one framework ? What about others ?

Constraint satisfaction + Constrained Optimization

Other forms of ML/DM

Same principles should apply to

• probabilistic models and statistical
relational learning

• other forms of machine learning

• power of kernel and SVM methods
comes from convex optimization (but at
solver level)

Bayesian network
learning

type state=record(boolean:A,E,B);
int NrEx;
array[1..NrEx] of state: Data;

var probdistribution for state: p;

constraint p(A,E,B) = p(E) * p(B) * p(A | E,B);
	

 .	

 	

 .	

 	

 .	

solve maximize likelihood(p,Data);

function var probability: likelihood(p,Data)= let {
 ...
} ;

E B

A

Probabilistic
Programming

Integrate probabilistic models into programming languages

Strongly tied to Statistical Relational Learning

Several such languages exist ... the alphabet soup

• Church, Prism, IBAL, Blog, ProbLog, kLog, CLP(BN),
Figaro, ...

• integrated in programming languages such as Scheme,
Prolog, Ocaml, Scala

Alarms
0.01:: earthquake.

0.02:: burglary.

alarm :- burglary.

alarm :- earthquake.

calls(X) :-

 neighbor(X), alarm, pcall(X).

0.7::pcall(X).

neighbor(john). neighbor(mary). neighbor(an).

Random variables
earthquake.
burglary.
pcall(john).
pcall(an).
pcall(mary).

ProbLog IJCAI 07, TPLP 11a, TPLPb

Alarms
0.01:: earthquake.

0.02:: burglary.

alarm :- burglary.

alarm :- earthquake.

calls(X) :-

 neighbor(X), alarm, pcall(X)..

0.7::pcall(X).

neighbor(john). neighbor(mary). neighbor(an).

Random variables
earthquake.
burglary.
pcall(john).
pcall(an).
pcall(mary).

Assume
earthquake.
pcall(john).

 implies

calls(john).

http://www.cs.kuleuven.be/~dtai/problog/

Distribution over
possible Worlds

...

a eb c d pa.pb.pc.pd.pe

a ec pa.(1� pb).pc.(1� pd).pe

c d (1� pa).(1� pb).pc.pd.(1� pe)

d (1� pa).(1� pb).(1� pc).pd.(1� pe)

Semantics
Prob(Q) and Pr(Q|E)

...

positive :-
a,b,c

positive :-
b,c,d

positive :-
b,d,e.

?-P(positive).
?-P(positive|e).

a eb c d

a ec

c d

d

true

false

false

false

Ps(q|T) =
�

L�LT ,BK⇥L|=q�

P (L|T)

Learning

As in Graphical Models

Learn parameters from partial datacases

• true : alarm, calls(john), earthquake

• false : burglary

• unknown: pcall(), calls(mary), calls(an).

Probabilistic
Programming

Various inference strategies exist to answer queries

• exact, approximate, ...

• some can be tied in to graphical model
“solvers” (packages by e.g. Darwiche)

Various learning strategies

• similar situation

• few solvers that deal with learning ...

The programming part

In an integrated programming language, learning is just
constraint satisfaction and optimization

• in ProbLog and kLog -- just a query

• in CP -- just a call to a solver

Results / output can be used afterwards ...

Inputs / can also be “programmed”

Compositionality principle -- outputs of learning / mining can
be used further on, also as inputs for further learning tasks.

Conclusions

Declarative modeling languages for ML / DM can
provide an answer to Mitchell’s question.

We can realize this by applying the principles of
constraint programming and knowledge representation

Essentially three components

• Modeling -- specify the problem -- the what

• Solver -- translation of the problem -- the how

• Programming -- in which everything is embedded

• with Translations -- an essential step !

Conclusions
All the necessary ingredients are available to realize declarative
modeling languages for ML/DM

• machine learning & data mining

• declarative modeling, constraint programming and
knowledge representation

• programming language technology

So we are going to do it

What about FCA ?

Questions ?

