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Developing software that
relies on ML and DM

Is VERY HARD

|. Formalize learning / mining task

2. Design algorithm / technique to use

3. Implement the algorithm

4. Use the software

Specialized
TASK Algorithm




Developing software that
relies on ML and DM

Specialized
Algorithm 1

Specialized
Algorithm 2

Specialized
Algorithm 3 Output 3

state HOW to solve problem
waste of resources




Developing software that
relies on ML and DM

IsVERY HARD

it requires a deep understanding of the underlying algorithms
and procedures (i.e., be a ML/DM expert)

existing algorithms/code are very specific and limited
are hard to extend or generalize ML/DM

there is only little re-use of existing code

Might be true for FCA as well ?




Long standing open questions

Can we design programming languages containing machine
learning primitives?

Can a new generation of computer programming languages
directly support writing programs that learn!?

Why not design a new computer programming language that
supports writing programs in which some subroutines are hand-
coded while others are specified as “to be learned.” Such a
programming language could allow the programmer to declare the
inputs and outputs of each “to be learned” subroutine, then select a
learning algorithm from the primitives provided by the programming
language.

Tom Mitchell, The Discipline of Machine Learning, 2006




Questions remain open

Though some relevant work on
probabilistic & adaptive programming languages

inductive query languages for data mining [Imielinski and Mannila, 95;
EU cInQ and IQ projects]

inductive logic programming and statistical relational learning
Learning based Java [Roth et al. |0]
kLog [Frasconi et al.]

We are still far away from programming languages that support machine
learning or data mining




Our Vision

Declarative Modeling is KEY to answer the question
® Specify WWHAT the problem IS
® Often as a constraint satisfaction or optimization problem

Instead of Procedural approaches

® Specify HOW the problem should be SOLVED

® Specify programs




Why declarative
modeling !

DECLARATIVE
® few lines of code

® easy to understand, maintain,
change

® one theory for multiple tasks

® can be used with multiple
“solvers”, e.g., exact and approximate

® formal verification possible

PROCEDURAL
® |000s of lines of code

® hard to understand, maintain or
change

® one program for each task

® solver is built in the program




Plan for this talk

Declarative Modeling has never been systematically applied to ML/DM.
® Yet all the necessary ingredients are available to do this.

® So we are starting to develop this.

| will introduce some useful principles

® declarative languages and their connection to constraint
programming / solver technology

lllustrations on Might apply to FCA as well ?

® constraint-based item set mining

® probabilistic modeling (very fast)




Three observations




Observation |

Machine learning and data mining are essentially
constraint satisfaction and optimization
problems




Data Mining

Given
® 2 database containing instances or transactions D
the set of instances
® a hypothesis space or pattern language L

® a selection predicate, query or set of constraints Q

Find Th(QLD)={h e L|Q(h,D) = true }
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ltemset mining

Given
® aset of items |
a transactiont C .  So, X =2
D is a set of transactions.
L= X=2
a frequency threshold ¢, with freq(h,D) =|{d|d e D,h C d }|
Find Th(Q,LLD)={h e L| freqthD) > c}




Machine learning

Given
® an unknown target function f: X =Y

® a hypothesis space L containing functions X =Y

® a dataset of examples E = { (x,f(x)) | x € X }

® a loss function loss(h,E) = R \
Find h € L that minimizes loss(h,E)

supervised




Bayesian Networks

A graphical model encodes conditional independencies

P(E,B,A,,M) = P(E).P(B).P(A|E,B).P(J|A).P(M|A)
P(e,not b, a, j,not m) =
P(e). P(not b). P(ale, not b).P(j|la).P(not m|a)
Using the Joint Prob. Distribution,
any query P(Q |evidence) can be answered




Possible Dataset




Learning Probabilistic
Models

Given
® an unknown target function P: X =Y Y=[0,]

® a hypothesis space L containing functions X =Y
(graphical models)

® 3 dataset of examples E={(x, )| x e X} generative
® a |oss function loss(h,E) = R

Find h € L that minimizes loss(h,E) T .
maximize likelihood




Observation 2

There has been an enormous progress in solver

technology for basic constraint satisfaction and
optimization problems

e SAT, ASP, CSP Constraint programming,
maxSAT, weighted model counting, ...

® Many problems are reduced to these basic
problems ... and solved efficiently

What about ML/ DM ?
What about FCA ?




Constraint Satisfaction

Given
® 3 set of variablesV

® the domain D(x) of all variables x inV

® 3 set of constraints C on values these
variables can take

Find an assignment of values to variables inV
that satisfies all constraints in C
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Constraint
Programming

Two key ideas

® propagation of constraints, e.g., from

D(Pl) ={l} and D(P2) = {1,2,3} and Pl != P2 infer
that | ¢ D(P2) and simplify D(P2) = {2,3}

propagator: if D(x) = {d} and x!=y then delete d from D(y)

if you cannot propagate, instantiate (or divide) and
recurse, e.g.,

call with D(P2)={2} and  with D(P2)={3}
P2=2 P2=3




Search

Algorithm 1 Constraint-Search(D)

1

2:
3:
4:
5:
6:
7

. D :=propagate(D)

if D 1s a false domain then
return

end if
if 3z € V:|D(z)| > 1 then
T = argmingey p)>1 f ()
for all d € D(z) do
Constraint-Search(D U {z — {d}})
end for

. else

Output solution

2: end 1f
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Constraint
Programming

There is a lot more to say

d

d

bout propagators -- how to modify domains

bout choosing the next variable to instantiate

® about types of constraints and domains used

® about implementations ...

® about modeling languages ...




Observation 3

Solver technology facilitates the development of high-level
declarative modeling languages

® specify the WHAT -- not the HOW

® systems processing constraints should find a solution
satisfying the model

Examples include
® /INC, Essence, constraint programming, ...

Very flexible approach ... not just in constraint
programming ... convex optimisation




Main Claim

We can obtain programming languages for ML / DM

by applying the same principles as constraint
programming

Essentially three languages
® Modeling -- specify the problem -- the what
® Solver -- translation of the problem -- the how
® Programming -- in which everything is embedded

Translation is essential step !




How does it work

model

TASKs

Data = Input

Only state WHAT the problem is




Pattern mining




Another example

Assume
® analysing a dataset
® c.g. molecules
® |ooking for patterns of interest

® patterns are subgraphs




ltemset Mining

Many interesting problems ... data mining as constraint satisfaction

which patterns are frequent ? .
frequent pattern mining

which patterns are frequent in the active and infrequent in
the inactive compounds ? and do not contain any halogens ?
or benzene rings ?

which patterns are significant w.r.t. classes !

correlated pattern mining
all patterns ? k-best patterns ?

which pattern set is the best concept-description for the

actives ! for the inactives ? o
pattern set mining

still no general system that can do all of this



Pattern mining

e Iraditional pattern mining:

Th(L,Q,D) =1{p € L|Q(p, D) = true}

e Correlated pattern mining with function ¢(p, D), (x?),
Th(£7 Q? D) — a’rgpeﬁ maxg ¢(p7 D)

e Pattern set mining

Th(L,Q,D)={PCL|O(P,D)=true}

Queries/Predicates Q employ constraints
such as frequency, generality, closedness, ...




Constraint-Based Mining

Numerous constraints have been used
Numerous systems have been developed
And yet,

® new constraints often require new
implementations

® very hard to combine different constraints

There is not yet a modeling language for CBM
Again an analogy with FCA ?




Constraint Programming

Exists since about 20 ? years

A general and generic methodology for dealing with constraints across
different domains

Efficient, extendable general-purpose systems exist, and key principles
have been identified

Surprisingly CP has not been used for data mining ?

CP systems often more elegant, more flexible and more efficient than
special purpose systems

| will argue that this is also true for Data Mining !

Yields a programming/modeling language for CBM




Results in Itemset mining

Use Constraint Programming for

|) Local Pattern Mining (using itemsets)

2) Correlated Pattern Mining (top-k)

3) Mining Patterns Sets (submitted)

[KDD 08, KDD 09, ECML/PKDD 10,AAAI 10,Al] 11,IEEETKDE [1]
Results by Guns, Nijssen and De Raedt

Provides evidence for main claims !




ltemset mining

Let’s try to apply CP for item-set mining,

the simplest form of data mining

Th(£,Q,D) = {p € LIQ(p, D) = true}
o L =27 ie. itemsets

e D C L, ie., transactions

o QQ(p,D) =trueif freq(p,D) >t
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Frequent Item Set
Mining in MiningZinc

int: Nrl; int: NrT; int: Freq;
array[1..NrT] of set of int: D;

var set of 1..Nrl: ltemset; Math-like notation
var set of 1..NrT: Trans;

constraint card(Trans) >= Freg; User defined constraint
constraint forall (t in ub(Trans)) (

tin Trans <> ltemset subset D[t] ) Efficient solving
solve satisfy;

Possible to efficiently translate this using the techniques to
follow for a wide range of constraints

Specifying the WHAT -- how to translate !




Closed Freq. Iltemset Mining

int: Nrl; int: NrT; int: Freq;
array[1..NrT] of set of int: D;

var set of 1..Nrl: ltemset;
var set of 1..NrT: Trans;

constraint card(Trans) >= Freq;

constraint Trans = cover(ltemset, D);
constraint ltemset = cover_inv(Trans, D);

solve satisfy;

function var set of int: cover(ltemset, D) = let {
var set of int: Trans,
constraint forall (t in ub(Trans)) (

® ClOSU re COnStral ntS tin Trans <= Iltemset subset D[t] )

}in Trans;

function var set of int: cover_inv(Trans, D) = let {
var set of int: ltemset,
constraint forall (i in ub(ltemset)) (

i in Itemset <= Trans subset DJ[i] )
}in ltemset;




int: Nrl; int: NrT, int: Freq;
array[1..NrT] of set of int: D;
var set of 1..Nrl: [temset;

M i n i n gZi n C var set of 1..NrT: Trans;

constraint card(Trans) >= Freq;

constraint forall (t in ub(Trans)) (
tin Trans <> Itemset subset

DI[t] )
. Math'“ke nOtatiOn solve satisfy;

function var set of int: frequency(ltemset, D) = ...

¢ Use r'd eﬂ ned ConStra| ntS function var set of int: cover(ltemset, D) = ...

» Efficient solving

lib_itemsetmining.mngzn
(MiningZinc)

globals.mzn
(MiniZinc)

model.mngzn model.mzn model.fzn
(MiningZinc) (MiniZinc) (FlatZinc) fzn solver

standard MiniZinc distribution




The Model in Essence’

Algorithm 1 The basic fim_cp model in Essence’
: given Nr'T', Nrl : int
2: given TDB : matrix indexed by [int(1..NrT),int(1..NrI)] of bool
3: given Freq : int

: find [fems : matrix indexed by [int(1..NrI)| of bool

5: find Trans : matrix indexed by [int(1..NrT)| of bool Sclver Ianguage
ek that Translated model

. 8 encode TDB: every Trans its complement has no supported Items
s: forall t: int(1..NrT).
Trans|t] <=> ((sum i: int(1..NrI). ITDB[t,i]«Items[i]) <=0),

: 8 frequency: every Item is supported by sufficently many Trans
: forall i: int(1..Nrl).
Items|i] => ((sum t: int(1..NrT). TDB|t,i|*Trans(t]) >= Freq)

ZTt >minsup iff Vi:l,=1= ZTtth’ > MINsSup
l

t
We use Gecode!




Encoding a Data Set

Vectors as itemsets [i= 0 or |

and transactionsets ;= 0 or |
Goal find all itemsets (I,T) such that

® |is frequent & | covers exactly T's transactions

e frequency(I,LD) > Freq AND T = covers(Itemset,D)




Encoding a Data Set

frequent
Z 1y > minsup
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forallz.[,;-()or (I; =1 and (1 — Dy;) = 0)
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where D;;—q if transaction ¢ contains item ¢




Reified Frequency

0/1(0/1({0/1[0/1
von[10]1]1,
1]1/0]1
sonfofol1 1

Vi:l, =1= ZTtDti > MInsup
¢

IFil=1 THEN tl+t2 = freq



Exact Coverage

0/1(0/1({0/1[0/1
von[10]1]1,
1]1/0]1
sonfofol1 1

Vtthlﬁzlz(l_th):O

IFtI=1 THEN i2=0



One Propagator

Reified constraints of the form C < .
e decompose into C' = x and ' < «x
e for C' = x do:

— IF 0 € D(x) and C' THEN delete 0 from D(x)
— IF D(x) = 0 THEN apply propagators for =C

o for ' « z do:

— IF 1 € D(x) and -C THEN delete 1 from D(x)
— IF D(x) =1 THEN apply propagators for C




Another Propagator

Summation constraint: )y wzx > 6
with variables V' and real-valued weights w,

Define ™" = maxgep(z) d and TN = MiNge p(y) d

Vt={zxeV]w, >0} and V- ={z € V]w, < 0}.

Then

D pev— Wal ™+ 30y waa™ T > 0
must be satisfied




Another Propagator

IF > - wex™™ + Y vy wex™ >0
IF ) cy- wed™™ + 3 ey oy Wa™ < 0
THEN D(z') = {1}
ENDIF

ELSE D(z') =0

ENDIF

r1+ T2 +x3 = 2,
D($1) — {1}7D($2) — {07 1}7D($3) — {Ov 1};
One of x5 and x3 must have the value 1, but if

Ty + T2+ 13 2 3,
D(z1) = {1}, D(z2) = {0, 1}, D(z3) = {0, 1};

the propagator determines that D(x3) = D(x3) = {1}.




Exact Coverage

0/1(0/1({0/1[0/1
von[10]1]1,
1]1/0]1
sonfofol1 1

Vtthlﬁzlz(l_th):O

IFtI=1 THEN i2=0



Reified Frequency

0/1(0/1({0/1[0/1
von[10]1]1,
1]1/0]1
sonfofol1 1

Vi:l, =1= ZTtDti > MInsup
¢

IFil=1 THEN tl+t2 = freq



Example

propagate i2 freq

3 EII!\II

Vt - Tt_1<:>ZI — Dy) =0

Vi:l,=1= iTtth’ > mansup




Example

propagate tl

coverage 2o 1101
sonfo[0]1 (1

Vtthlﬁzlz(l_th):O

Vi:l,=1= iTtth’ > mansup
¢



Example

i2 i3, i4

1| 0 |o/1]o/1

1 1|1f0[1]1]

2on[1[ 101

branch il =1 3010011

Vt - Tt_1<:>ZI — Dy) =0

Vi:l,=1= iTtth’ > mansup




Example

2o 1101
propagate t3 nn

coverage

Vtthlﬁzlz(l_th):O

Vi:l,=1= iTtth’ > mansup
¢



propagate i3 freq

Vt - Tt_1<:>ZI — Dy) =0

Vi:l,=1= iTtth’ > mansup




Example

11,1213 14

1[0]0]0/1

t1f1jol1f1

propagate t2 n

Vtthlﬁzlz(l_th):O

Vi:l,=1= iTtth’ > mansup
¢



propagate i4 freq

Vi:l,=1= iTtth’ > mansup




Search Tree
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Further Constraints

monotonic and anti-monotonic

emerging patterns (use two datasets)
(delta)-closed sets and (delta)-free sets
correlated patterns (e.g. significant patters)
maximal sets

convertible constraints (e.g. min average cost item)

as well as humerous combinations possible




Exact Coverage (always needed)
Ti=1s Z L;(1—Dy) =0

Frequent ltemsets Easy to change !
I, =1= ZD“Tt > minsup

t
Maximal [temsets (supersets are not frequent)

I, =1 ZDtiTt > MInsup
Closed Itemsets (ts.upersets have strictly lower frequenc
;=1 ,Ti(1-Dy) =0 + Frequency

delta Closed ltemsets
I =1< >, Ti(1 8- Dy;)E0 + Frequency




Other Systems

Constraints on data
Minimum frequency
Maximum frequency
Emerging patterns

Condensed Representations
Maximal
Closed
d—Closed

Constraints on syntax
Max /Min total cost
Minimum average cost
Max /Min size

S skl sk aks

Kaka

Table 1: Comparison of Itemset Miners

most flexible system today CP 4 IM - downloadable
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Experiments
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Figure 4: Runtimes of itemset miners on Segment
data under constraints

For highly constrained problems, already competitive




CP for ltemset Mining

CP already competitive when having strong constraints

CP can easily handle new constraints and new
combinations of constraints

General purpose.

Proof of principle as how to translate high-level model
into solver language




Challenges

In Constraint Programming, different solvers
optimized for different domains (reals, discrete

domains, ...)
In Data Mining, different pattern types and data
® graphs, trees, sequences with CP !

Large numbers of reified constraints unusual
for CP




CP for Correlated

Pattern Mining




Top-k Correlated
Pattern Mining

e D now consists of two datasets, say P and IV

e a correlation function ¢(p, D), e.g., x°

e Th(L,Q,D) = arg,. , maxy ¢(p, D)
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Correlated/Discriminative ltemset Mining

int: Nrl; int: NrT; int: Freq;
array[1..NrT] of set of int: D;
set of int: pos; set of int: neg;

var set of 1..Nrl: ltemset;
var set of 1..NrT: Trans;

constraint Trans = cover(ltemset, D);
constraint ltemset = cover_inv(Trans, D);

solve maximize

accuracy card(Trans intersect pos) — card(Trans intersect neg);
—

Alternative opt. functions, for example:

solve maximize chi2(Trans, pos, neg);

function float: chi2(Trans, pos, neg) = ...
Function should not be decomposed;
automatically derive a bound?

Specifying the WHAT -- how to translate !




Correlation function

Figure 1: A plot of the y? scoring function, and a
threshold on 2.
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Figure 2: The 1-support
bound in PN-space.
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Figure 3: The 2-support
bound in PN-space.
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Figure 4: The 4-support
bound in PN-space.
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Constraint
Programming

It works (extremely well)
® written another propagator

® whenever a pattern satisfying the constraint
is found update the threshold




Pattern Set Mining




Pattern Sets

Most data miners are not directly interested in
all solutions or the top-k solutions to a pattern
mining task, but typically post-process

Patterns are then used as features in classifiers
or clusterers

So, why not apply constraint based mining to
pattern sets directly ! [Zimmermann PhD.

2009] [Guns et al, IEEE TKDE]




Pattern Sets

Consider a set of itemsets

Wa, b e, {b,d, e, {¢,e, f1}

Can be interpreted as DNF expression

(aAbAc)V(bAdNe)V (cAeA f)

Useful for concept-learning and clustering

from local to global pattern mining




Pattern Sets

Can we apply Constraint-Based Mining to
Pattern Set Mining ? Th(L, Q,D) = {P C L|Q(P,D) = true}

What are meaningful constraints !

e local constraints on I € P such as freq(I,D) > minsup

e constraints on all pairs of patterns I, Iy € P, e.g.
lcovers(I1, D) Ncovers(lz, D) <t

e global constraints freq(P,D) >t

e correlation, top-k, ...




Properties

Many properties of local pattern mining carry
over, though sometimes in a subtle way, e.g.

(aANbAc)V (BN Ne)
is more specific than
(aNbANC)V(BAdANe)V (cANeA f)

Thus

fregq((aNbAc)V (bDAdANe)) <
freq((aNbAc)V (bAdNe)V (cNeA f))

Thus, anti-monotonicity reversed




One Step
Pattern Set Mining

Recent work : mine directly for

Th(L,Q,D)={P C L|Q(P,D) = true}

where |P| =k => k-pattern set mining

using CP
clustering,
concept-learning
redescription mining
tiling




k-Pattern Sets

Key idea:

® fix the number of considered patterns in
the set to k

® replace (T,I) by (T,14, ..., Ik) and specify
constraints as before, ensure also that one
does not obtain permutations of patterns ...

® add optimization criterion ... to find best k-
pattern set




Pattern Set Mining

int: Nrl; int: NrT; int K;
array[1..NrT] of set of int: TDB;
set of int: pos; set of int: neg;

% pattern set

array[1..K] of var set of 1..Nrl: ltems;
constraint Iexleq(ltems); % remove symmetries

% every pattern is closed ‘on the positives'’

constraint let { TDBp = [TDBJt] | tin pos] } in
forall (d in 1..K) (
Items[d] = cover_inv(cover(ltems[d], TDBp), TDBp

% accuracy of pattern set

solve maximize
let { Trans = union(d in 1..K) (cover(ltems[d], TDB)) } in
card(Trans intersect pos) - card(Trans intersect neg);




Generality

Can model instantiations of:

® Concept learning (k-term DNF learning)
® Conceptual clustering

® k-Tiling

® Redescription mining




k-Pattern Set Mining

Key points:
® A general modeling language for such tasks
® One-step exhaustive mining using CP

® | essons about the interaction between
local and global constraints




Conclusions Pattern
Mining
Constraint programming --

® |argely unexplored in data mining/machine learning
though directly applicable

using constraint programming principles results in a
declarative modeling language for ML/DM

using constraint programming solvers results in
good performance

several interesting open questions and new
perspective
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Several open questions

What range of tasks can we model !
Which modeling primitives do we need!?

Do we need to adapt the solvers ? approximate
solvers !

Which translations to use ?
How to incorporate optimization !
Zinc is only one framework ? What about others ?

Constraint satisfaction + Constrained Optimization




Other forms of ML/DM

Same principles should apply to

® probabilistic models and statistical
relational learning

® other forms of machine learning

® power of kernel and SVM methods
comes from convex optimization (but at
solver level)




Bayesian network
learning

type state=record(boolean:A,E,B);

int NrEx;

array[1..NrEx] of state: Data;

var probdistribution for state: p;
constraint p(A,E,B) = p(E) * p(B) * p(A | E,B);

solve maximize likelihood(p,Data);

function var probability: likelihood(p,Data)= let {
Y




Probabilistic
Programming

Integrate probabilistic models into programming languages

Strongly tied to Statistical Relational Learning

Several such languages exist ... the alphabet soup

® Church, Prism, IBAL, Blog, ProbLog, kLog, CLP(BN),
Figaro, ...

integrated in programming languages such as Scheme,
Prolog, Ocaml, Scala




ANET S

0.01:: earthquake. Random variables

earthquake.
burglary.
alarm :- burglary. pcall(john).
pcall(an).
pcall(mary).

0.02:: burglary.

alarm :- earthquake.
calls(X) :-

neighbor(X), alarm, pcall(X).
0.7::pcall(X).

neighbor(john). neighbor(mary). neighbor(an).

ProbLog IJCAI O/, TPLP I1a, TPLPb




ANET S

Random variables
0.01:: earthquake. earthquake.
burglary.
0.02:: burglary. pcall(john).
pcall(an).
alarm :- burglary. pcall(mary).

alarm :- earthquake.
calls(X) :- Assume
earthquake.

neighbor(X), alarm, pcall(X).. pcall(john).

0.7::pcall(X). implies

neighbor(john). neighbor(mary). neighbor(an). )
calls(john).
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Distribution over
possible Worlds

2 IBEERE | oo popepape
d B B P p)pe(l—pa)p

. (1 = pa)-(1 —pp).pe-pd-(1 — pe)
(1 =pa)-(1 —pp)-(1 = pe).pa-(1 — pe)




Semantics
Prob(Q) and Pr(Q|E)

 HEEE posicve -

a,b,c

a . . positive :-
b,c,d

L " ode,

?-P(positive).

. -P(positivele).

PT) = S P

LCLy,BKULE=q0




Learning

As in Graphical Models

Learn parameters from partial datacases
® true :alarm, calls(john), earthquake
® false :burglary

® unknown: pcall(), calls(mary), calls(an).




Probabilistic
Programming

Various inference strategies exist to answer queries

® exact, approximate, ...

® some can be tied in to graphical model
“solvers” (packages by e.g. Darwiche)

Various learning strategies
® similar situation

® few solvers that deal with learning ...




The programming part

In an integrated programming language, learning is just
constraint satisfaction and optimization

® in ProbLog and kLog -- just a query

® in CP -- just a call to a solver
Results / output can be used afterwards ...
Inputs / can also be “programmed”

Compositionality principle -- outputs of learning / mining can
be used further on, also as inputs for further learning tasks.




Conclusions

Declarative modeling languages for ML / DM can
provide an answer to Mitchell’s question.

We can realize this by applying the principles of
constraint programming and knowledge representation

Essentially three components
® Modeling -- specify the problem -- the what
® Solver -- translation of the problem -- the how
® Programming -- in which everything is embedded

® with Translations -- an essential step !




Conclusions

All the necessary ingredients are available to realize declarative
modeling languages for ML/DM

® machine learning & data mining

® declarative modeling, constraint programming and

knowledge representation
® programming language technology

So we are going to do it

What about FCA ?




Questions !




