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•   Asymptotic approach to model selection 

- Idea of using some penalized empirical 
criterion goes back to the seminal works of 
Akaike (’70). 
- Akaike celebrated criterion (AIC) suggests to 
penalize the log-likelihood by the number of 
parameters of the parametric model. 
- This criterion is based on some asymptotic 
approximation that essentially relies on Wilks’ 
Theorem 



Wilks’ Theorem: under some proper regularity 
conditions the log-likelihood           based on n 
i.i.d. observations  with distribution belonging to 
a parametric model with D parameters obeys to 
the following weak convergence result 

   
2 Ln θ( ) − Ln θ0( )( )→ χ 2 D( )

 
Ln θ( )

where    denotes  the MLE and      is 
the true value of the parameter.      

 θ0



•  Non asymptotic Theory 
    In many situations, it is usefull to make 

the size of the models tend to infinity or 
make the list of models depend on n. In 
these situations, classical asymptotic 
analysis breaks down and one needs to 
introduce an alternative approach that we 
call non asymptotic. 

               We still like  

    But the size of the models as well the size 
of the list of models should be authorized 
to be large too.  

Large values of n ! 



Functional estimation  
•  The basic problem 
Construct estimators of some function s, using  
as few prior information on s as possible. Some  
typical frameworks are the following. 
•  Density estimation 
              i.i.d. sample with unknown density s 

with respect to some given measure     . 
•  Regression framework 
One observes                   
With 
The explanatory variables      are fixed or i.i.d. 
The errors      are i.i.d. with 

  
X1,..., Xn( )



•  Binary classification 
We consider an i.i.d. regression framework  
where the response variable Y is a « label » :0  
or 1. A basic problem in statistical learning  
is to estimate the best classifier                , where    

denotes the regression function 

•  Gaussian white noise  
Let s be a numerical function on      . One  
observes the process      on         defined by 

Where B is a Brownian motion. The level of  
noise is written as         by allow an easy comparison. 

η

 
0,1⎡⎣ ⎤⎦

 
0,1⎡⎣ ⎤⎦

  
dY n( ) x( ) = s x( )dx + 1

n
dB x( ),Y n( ) 0( ) = 0



Empirical Risk Minimization (ERM) 
A classical strategy to estimate s consists  
of taking a set of functions S (a « model ») and  
consider some empirical criterion (based on the data)       

such that  

achieves a minimum at point          . The ERM 
estimator     of   minimizes     over S. One can hope  
that    is close to   , if the target   belongs to model S  
(or at least is not far from S). This approach is  
most popular in the parametric case (i.e. when S is  
defined by a finite number of parameters and one  
assumes that         ). 

  ŝ
  ŝ



•  Maximum likelihood estimation (MLE) 

Context:density estimation (i.i.d. setting to be  
simple)               i.i.d. sample with distribution   

with 

Kullback Leibler information 

  
X1,..., Xn( )



•  Least squares 
Regression 

with 

White noise 

with   

Density 

with   



    Exact calculations in the linear case 
In the white noise or the density frameworks,  
when S is a finite dimensional subspace of           
(where    denotes the Lebesgue measure in the  
white noise case), the LSE can be explicitly  
computed. Let            be some orthonormal  
basis of S, then 

                                      or 
  
ŝ = β̂λ

λ∈Λ
∑ φλ

  
β̂λ = φλ x( )dY n( ) x( )∫

  
β̂λ =

1
n

φλ Xi( )
i=1

n

∑

White noise Density 



•  The model choice paradigm  
•  If a model S is defined by a « small » number of 

parameters (as compared to n), then the target s 
can happen to be far from the model. 

•  If the number of parameters is taken too large then        
       will be a poor estimator of s even if s truly 

belongs to S. 
    Illustration (white noise) 
    One takes S as a linear space with dimension D, 

the expected quadratic risk of the LSE can be 
easily computed 

    Of course, since we do not know             the 
quadratic risk cannot be used as a model choice 
criterion but just as a benchmark.              

  
E ŝ − s

2
= d 2 s,S( ) + D

n

  ŝ



•  First Conclusions 
•  It is safer to play with several possible models 

rather than with a single one given in advance.  
•  The notion of expected risk allows to compare the 

candidates and can serve as a benchmark. 
•  According to the risk minimization criterion, S is a 

« good » model does not mean that the target s 
belongs to S. 

•  Since the minimization of the risk cannot be used 
as a selection criterion, one needs to introduce 
some empirical version of it. 



Model selection via penalization 

Consider some empirical criterion      . 
•  Framework: Consider some (at most countable) 

collection of models              . Represent each 
model        by the ERM       on     . 

•  Purpose: select the « best » estimator among 
the collection          .             

•  Procedure: Given some penalty function 
                       , we take     minimizing                              

   over        and define       

   
ŝm( )m∈M

  m̂

  
γ n ŝm( ) + pen m( )

   s = ŝm̂.

  ŝm



    Origin: Akaike (log-likelihood), Mallows (least 
squares) 

           The penalty function is proportional to the 
number of parameters     of the model     . 

                  Akaike : 
                  Mallows’     :           ,           
   where the variance of the errors of the regression 

framework is assumed to be equal to 1 by the 
sake of simplicity.  

           The heuristics (Akaike (‘73)) leading to the 
choice of the penalty function         relies on the 
assumption: the dimensions and the number of 
the models are bounded w.r.t. n and n tends to 
infinity. 

1 

 Sm

  Dm
/ n

  2D
m

/ n

2 

•   The classical asymptotic approach 

  Dm
/ n



BIC (log-likelihood) criterion Schwartz (‘78) : 

-  aims at selecting a « true » model rather than 
mimicking an oracle 

-  also asymptotic, with a penalty which is 
proportional to the number of parameters: 

  
ln n( )Dm

/ n

•   The non asymptotic approach 
Barron,Cover (’91) for discrete models, Birgé, 
Massart (‘97) and   Barron, Birgé, Massart (’99)) 
for general models. Differs from the asymptotic 
approach on the following points 



•  The number as well as the dimensions of the 
models may depend on n. 

•  One can choose a list of models because of its 
approximation properties: 

         wavelet expansions, trigonometric or 
         piecewise polynomials, artificial neural  
         networks etc  
    It may perfectly happen that many models of the 

list have the same dimension and in our view, the 
« complexity » of the list of models is typically 
taken into account. Shape of the penalty 

    with                   .  
  
C1

Dm

n
+ C2

xm

n

  
e− xm

m∈M

∑ ≤ Σ



Data driven penalization 

1.  Compute the ERM    on the union of models 
with  D parameters  

2.  Use theory to guess the shape of the 
penalty pen(D), typically pen(D)=aD (but 
aD(2+ln(n/D)) is another possibility) 

3.  Estimate a from the data by multiplying by 
2 the smallest value for which the 
penalized criterion explodes. 

  ŝD

« Recipe »  

Implemented first by Lebarbier (‘05) for 
multiple change points detection 

Practical implementation requires some data-
driven calibration of the penalty. 



Celeux, Martin, Maugis ‘07 

Adjustment of the slope Comparison  

•  Gene expression data: 1020 genes and 20 experiments 

•  Mixture models   

•  Choice of K ?  Slope heuristics: K=17    BIC: K=17    ICL: K=15 



Akaike’s heuristics revisited 
   The main issue is to remove the asymptotic 

approximation argument in Akaike’s heuristics  

   minimizing                             , is equivalent to 
minimizing 

  
γ

n
ŝ

D( ) = γ
n

s
D( ) − γ

n
s

D( ) − γ
n

ŝ
D( )⎡⎣ ⎤⎦

  
γ

n
ŝ

D( ) + pen D( )
 variance term 

  
γ

n
s

D( ) − γ
n

s( ) − v̂
D
+ pen D( )

Fair estimate of     (s,s
D
)



Ideally:  
In order to (approximately) minimize 

The key : Evaluate the excess risks 

   
pen

id
D( ) = v̂

D
+  s

D
, ŝ

D( )

   
(s, ŝ

D
) = (s,s

D
) +  s

D
, ŝ

D( )

This the very point where the various 
approaches diverge. Akaike’s criterion relies 
on the asymptotic approximation    

   
(s

D
, ŝ

D
) ≈ v̂

D
≈

D
2n

   
 s

D
, ŝ

D( )
  
v̂

D
= γ

n
s

D( ) − γ
n

ŝ
D( )



   The method initiated in Birgé, Massart (’97) relies on 
upper bounds for the sum of the excess risks which 
can be written as 

   
v̂

D
+  s

D
, ŝ

D( ) = γ
n

s
D( ) − γ

n
ŝ

D( )⎡⎣ ⎤⎦
where     denotes the empirical process      

 
γ n t( ) = γ n t( ) − E γ n t( )⎡⎣ ⎤⎦

 γ n

These bounds derive from concentration inequalities 
for the supremum of the appropriately weighted 
empirical process 

 The prototype being Talagrand’s inequality (’96) for 
empirical processes.  

  

γ n t( ) − γ n u( )
ω t,u( ) ,t ∈SD



This approach has been fruitfully used in several 
works. Among others: Baraud (’00) and (’03) for 
least squares in the regression framework, 
Castellan (’03) for log-splines density estimation, 
Patricia Reynaud (’03) for poisson processes, etc…  



   Main drawback: typically involve some 
unkown multiplicative constante which may 
depend on the unknown distribution 
(variance of the regression errors, supremum 
of the density, classification noise etc…).  
Needs to be calibrated… 

Slope heuristics : one looks for some 
approximation of      (typically) of the form 
aD with a unknown. When D is large,            
is almost constant, it suffices to « read » a 
as a slope on the graph of          . On 
chooses the final penalty as 

 
γ

n
s

D( )

  
γ

n
ŝ

D( )

  
pen D( ) = 2 × aD



In fact                         is a minimal penalty  
and the slope heuristics provides a way of  
approximating it. The factor 2 which is finally  
used  reflects our hope that the excess risks  

are of the same order of magnitude. If this the  
case then 

« optimal » penalty=2 * « minimal » penalty 

  
pen

min
D( ) = v̂

D

  
v̂

D
= γ

n
s

D( ) − γ
n

ŝ
D( )    

 s
D
, ŝ

D( )



Recent advances 

•  Justification of the slope heuristics: 
   Arlot and Massart (JMLR’08) for histograms in 

the regression framework. Phd of Saumard 
(2010) regular parametric models. 

   Boucheron and Massart (PTRF’11) for 
concentration of the empirical excess risk 
(Wilks phenomenon) 

•   Calibration of regularization 

   Linear estimators Arlot and Bach (2010) 

   Lasso type algorithms. Thesis: Connault (2010)     

   and Meynet (work in progress…) 



High dimensional Wilks’ phenomenon 

Wilks’ Theorem: under some proper regularity 
conditions the log-likelihood           based on n 
i.i.d. observations  with distribution belonging to 
a parametric model with D parameters obeys to 
the following weak convergence result 

   
2 Ln θ( ) − Ln θ0( )( )→ χ 2 D( )

 
Ln θ( )

where    denotes  the MLE and      is 
the true value of the parameter.      

 θ0



Question: what’s left if we consider possibly  
irregular empirical risk minimization  
procedures and let the dimension of the  
model tend to infinity? 
Obviously one cannot expect similar 
asymptotic results. However it is still   
possible to exhibit some kind of Wilks’  
phenomenon. 
Motivation: modification of Akaike’s  
heuristics for model selection  

Data-driven penalties 



We consider the i.i.d. framework where one  
observes independent copies              of a  
random variable     with distribution     . We 
have in mind the regression framework for  
which               .     is an explanatory variable  
and     is the response variable.  
Let    be some target function to be estimated. 
For instance, if    denotes the regression  
function          
The function of interest    may be the regression  
function     itself. 

•  A statistical learning framework 

 s

 s



In the binary classification case where the  
response variable takes only the two values 0  
and 1, it may be the Bayes classifier 

We consider some criterion    , such that the  
target function    achieves the minimum of  

over some set    . For example 

•  with          leads to the regression function as 
a minimizer 

•  with                           leads to the Bayes 
classifier 

  
s = 1Ι η≥1/ 2{ }

  
t → Pγ t,.( )

 S

   S = L2

   
S = t :X → 0,1{ }{ }

 s



 Introducing the empirical criterion  

in order to estimate   one considers some  
subset    of    (a « model ») and defines the  
empirical risk minimizer     as a minimizer  
of      over   . 
This commonly used procedure includes LSE and also  
MLE for density estimation. 
In this presentation we shall assume that            
(makes life simpler but not necessary) and also that 
                 (boundedness is necessary).                              

  ŝ
 S S

 S

 s ∈S

 s

 0 ≤ γ ≤ 1



Introducing the natural loss function 

We are dealing with two « dual » estimation  
errors 
•  the excess loss  

•  the empirical excess loss  

Note that for MLE                         and Wilks’  
theorem provides the asymptotic behavior of           
            when    is a regular parametric model. 

   
 s, ŝ( ) = Pγ ŝ,.( ) − Pγ s,.( )

   
 n s, ŝ( ) = Pnγ s,.( ) − Pnγ ŝ,.( )

   
 s,t( ) = Pγ t,.( ) − Pγ s,.( )

   
 n s, ŝ( )

  
γ t,.( ) = − log t .( )

 S



Crucial issue: 
Concentration of the empirical excess loss:  
connected to empirical processes theory because 

Difficult problem: Talagrand’s inequality does not 
make directly the job (the        rate is hard to gain).  
Let us begin with the related but easier  
question: 
What is the order of magnitude of the excess loss and  
the empirical excess loss? 

   
 n s, ŝ( ) = sup

t∈S
Pn γ s,.( ) − γ t,.( )( )

  1 / n



We need to relate the variance of              
with the excess loss 

Introducing some pseudo-metric d such that 

We assume that for some convenient function  

In the regression or the classification case d is 
simply the     distance and    is either identity for  
regression or is related to a margin condition for  
classification. 

   
 s,t( ) = P γ t,.( ) − γ s,.( )( )

  
γ t,.( ) − γ s,.( )

  
P γ t,.( ) − γ s,.( )( )2

≤ d 2 s,t( )

   
d s,t( ) ≤ w  s,t( )( )

Risk bounds for the excess loss 

 w

 w



•  Tsybakov’s margin condition (AOS 2004) 

where          and            with 

Since for binary classification 

this condition is closely related to the behavior  
of          around      . For example margin 
condition        is achieved whenever  

  
d 2 s,t( ) = E s X( ) − t X( )⎡

⎣
⎤
⎦

 κ = 1

  
2η −1 ≥ h



•  Heuristics 
Let us introduce 

Then 

Now the variance of                     is bounded by                              
               hence empirical process theory tells  
you that the uniform fluctuation of 

remains under control in the ball 

  
γ n t( ) = Pn − P( )γ t,.( )

   
 s, ŝ( ) +  n s, ŝ( ) = γ n s( ) − γ n ŝ( )    

 s, ŝ( ) ≤ γ n s( ) − γ n ŝ( )



(Massart, Nédélec AOS 2006) 
Theorem : Let    ,           such that              ,                    with 
               and              .  Assume that  

and 

for every      such that                      . Then, defining      as 

one has 

where       is an absolute constant. 

   
E sup

t∈S ,d s,t( )≤σ
n γ n s( ) − γ n t( )( )⎡

⎣
⎢

⎤

⎦
⎥ ≤ φ σ( )

    
E  s,s( )⎡
⎣⎢

⎤
⎦⎥
≤ Cε*

2



Application to classification 
•  Tsybakov’s framework 
Tsybakov’s margin condition means that              
An entropy with bracketing condition implies that  
one can take                and we recover Tsybakov’s  
rate 
•  VC-classes under margin condition               one  
has                 . If    is a VC-class with VC-dimension                                       

so that (whenever             )   

   ε*
2  n−κ / 2κ +ρ−1( )

  
w ε( ) = ε / h

  
φ σ( ) ≈ σ D 1+ log 1 / σ( )( )

  
ε*

2 =
C
nh

D 1+ log
nh2

D
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

  
2η −1 ≥ h

 S  D

  nh2 ≥ D



Main points 

•  Local behavior of the empirical 
process 

•  Connection between     and     .    

Better rates than usual in VC-theory 

These rates are optimal (minimax) 



Concentration of the empirical excess loss 

Joint work with Boucheron (PTRF 2011). Since  

the proof of the above Theorem also leads to  
an upper bound for the empirical excess risk 
for the same price. In other words 
is also bounded by      up to some absolute  
constant. Concentration: start from identity 

   
 s, ŝ( ) +  n s, ŝ( ) = γ n s( ) − γ n ŝ( )

   
E γ n s( ) − γ n ŝ( )⎡
⎣

⎤
⎦

   
 n s, ŝ( ) = sup

t∈S
Pn γ s,.( ) − γ t,.( )( )



Let         be some independent copy of       . Defining                                        
                               and setting 

Efron-Stein’s inequality asserts that   

A Burkholder-type inequality (BBLM, AOP2005) 
 For every         such that      is integrable, one has  

  ξ1
' ,...ξn

'
  ξ1,...ξn

   
V + = E Z − Zi

'( )
+

2
ξ

i=1

n

∑⎡
⎣
⎢

⎤

⎦
⎥

  
Zi

' = ζ ξ1,...,ξi−1,ξi
' ,ξi+1,...ξn( )

•  Concentration tools 

   
Z − E Z⎡⎣ ⎤⎦( )

+ q
≤ 3q V +

q / 2



Comments 
This inequality can be compared to Burkholder’s  
martingale inequality  

where                                     denotes the 
quadratic variation w.r.t. Doob’s filtration          
                     ,              and     trivial   -field.  
It can also be compared with Marcinkiewicz 
Zygmund’s inequality which asserts that in the case  
where   



    Note that the constant         in Burkhölder’s 
inequality cannot generally be improved. Our 
inequality is therefore somewhere « between » 
Burkholder’s and Marcinkiewicz-Zygmund’s 
inequalities. We always get the       factor 
instead of       which turns out to be a crucial 
gain if one wants to derive sub-Gaussian 
inequalities. The price is to make the 
substitution 

which is absolutely painless in the 
Marcinkiewicz-Zygmund case. More generally, 
for the examples that we have in view,       will 
turn to be a quite manageable quantity and 
explicit moment inequalities will be obtained by 
applying iteratively the preceding one.  



•  Fundamental example 
    The supremum of an empirical process 

provides an important example, both for theory  
and applications. Assuming that                 ,  
Talagrand’s inequality (Inventiones 1996) ensures  
the existence of  some absolute positive contants     
and    , such that    

  
Z = sup

t∈S
ft ξi( )

i=1

n

∑ , 

   
where            W = sup

t∈S
ft

2 ξi( )
i=1

n

∑



Why? 
    Example: for empirical processes, one can 

prove that for some absolute positive 
constant  

Optimize Markov’s 
inequality w.r.t. q 

Talagrand’s concentration inequality 

•  Moment inequalities in action  



Refining Talagrand’s inequality 

The key: In the process of recovering  
Talagrand’s inequality via the moment method 
above, we may improve on the variance factor. 
Indeed, setting                          and   

we see that                            

and therefore                          

   
Z = sup

t∈S
ft ξi( )

i=1

n

∑ = fŝ ξi( )
i=1

n

∑ = n n s, ŝ( )

  
Z − Zi

' ≤ fŝ ξi( ) − fŝ ξi
'( )

   
V + = E Z − Zi

'( )
+

2
ξ

i=1

n

∑⎡
⎣
⎢

⎤

⎦
⎥ ≤ 2 Pfŝ

2 + fŝ
2 ξi( )( )

i=1

n

∑



at this stage instead of using the crude bound  

we can use the refined bound  

Now the point is that on the one hand  

  

V +

n
≤ 2 sup

t∈S
Pft

2 + sup
t∈S

Pn ft
2⎛

⎝⎜
⎞
⎠⎟

  

V +

n
≤ 2Pfŝ

2 + 2Pn fŝ
2( ) ≤ 4Pfŝ

2 + 2 Pn − P( ) fŝ
2( )

   
P f

s
2( ) ≤ w2  s,s( )⎛

⎝⎜
⎞
⎠⎟



and on the other hand we can handle the second 
term                  by using some kind of square  
root trick.                  can indeed shown to  
behave not worse than  

So finally it can be proved that    

and similar results for higher moments.                        

  
Pn − P( ) fŝ

2( )
  

Pn − P( ) fŝ
2( )

   
Pn − P( ) fŝ( ) =  n s, ŝ( ) +  s, ŝ( )

   Var Z⎡⎣ ⎤⎦ ≤ E V +⎡⎣ ⎤⎦ ≤ Cnw2 ε*( )



   Illustration 1 
In the (bounded) regression case. If we consider  
the regressogram estimator on some partition  
with      pieces, it can be proved that 

In this case                   can be shown to be   
approximately proportional to    . This  
exemplifies the high dimensional Wilks 
phenomenon.  
Application to model selection with adaptive  
penalties: Arlot and Massart, JMLR 2009.  
. 

    
n  n s, ŝ( ) − E  n s, ŝ( )⎡⎣ ⎤⎦ q

≤ C qD + q⎡
⎣

⎤
⎦

    
nE  n s, ŝ( )⎡⎣ ⎤⎦

 D

 D



   Illustration 2 
It can be shown that in the classification case,  
If    is a VC-class with VC-dimension    , under  
the margin condition      

provided that             . 
Application to model selection: work in progress  
with  Saumard and Boucheron.  

    
nh  n s, ŝ( ) − E  n s, ŝ( )⎡⎣ ⎤⎦ q

≤ C qD 1+ log
nh2

D
⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟ + q

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

  nh2 ≥ D

  
2η −1 ≥ h

 S  D



Thanks for your attention! 


