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Motivation: Stream Processing 

• In stream processing: 

• Data cannot be stored; one-pass 

• Analysis needs to be online – no waiting for answers 

• Time per update is limited 

 



Motivation: Stream Processing 

• Many of these trivial questions become extremely 

difficult for streams 

• How much traffic from/to a certain IP address? 

• How many distinct flows? 

• What are the heavy hitters? 

 

 

 

 

 



Stream Mining 

• Abstraction: 

• Stream is a continuous sequence of items 

 

 

• Problems: 

• Heavy hitters 

 

• How many distinct items do I have in my stream?    

        (6) 

• Frequent items in the stream 

  3 or more: 

… 



Stream Mining 

• It won’t always be possible to give an exact answer 

• Therefore relaxations 

 

• Popular: ,  - approximation: 

• In 1-  of the cases we are at most  off. 

 

• We will show three examples of stream mining 

algorithms: 

• Min-wise sampling 

• Number of Distinct Items (min-hash) 

• Frequent items 
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I. Heavy Hitters 

• “Given a stream, identify all items that occur more 

than 10% of the time” 

 

 

 

 



I. Heavy Hitters 

• “Given a stream, identify all items that occur more 

than 10% of the time” 

 

Solution storing 9 colors and counters : 

• Summary={} 

• For each item    that arrives 

− If (  , count) is in Summary: 

  update count to count + 1 

− Else if |S|<10: 

  add (   , 1) to S 

− Else: 

  decrease the count of all pairs in S 

  remove all pairs with count = 0 

 

 



I. Heavy Hitters 

• “Given a stream, identify all items that occur more 

than 10% of the time” 

 

Solution storing 9 colors and counters : 

 

• Guarantee: if an item     appeared more than 10% of 

time, there will be an entry (   , count) in the summary 

• Disadvantage: there may be false positives 

• Obviously extendible to other thresholds 

• Frequency threshold 1/k  k-1 memory places 
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II. Identify Frequent Items 

• Counting every item is impossible 

• E.g., all pairs of people that phone to each other 

• We do not know on beforehand which combinations 

will be frequent 

 

• Example: 

 

30 items;  :8,  :6,  :5 

All others are 3 

If frequency is 20%:   and   need to be outputted 



II. Identify Frequent Items 

• The following algorithm finds a superset of the s-frequent 
items: 

• Initialization: none of the items has a counter 

• Item    enters at time t: 

− If    has a counter: counter(  ) ++ 

− Else: 

− counter(  ) = 1 

− start(  ) = t 

− For all other counters    do: 

− If counter(  ) / ( t – start(  ) + 1 ) < s: 

− Delete counter(  ), start(  ) 

• When the frequent items are needed: return all items that 
have a counter 

 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  1 1 (100%) 

 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  1 1 (50%) 

  2 1 (100%) 

 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  1 1 (20%) 

  2 1 (25%) 

  3 2 (66%) 

  4 1 (50%) 

 

 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  1 1 (17%) 

  2 1 (20%) 

  3 2 (50%) 

  4 1 (33%) 

  5 1 (100%) 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  2 2 (25%) 

  3 2 (29%) 

  6 1 (25%) 

  8 2 (100%) 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  2 1 (25%) 

  17 4 (29%) 

  27 1 (25%) 

  8 6 (26%) 

  19 3 (25%) 

 

 



II. Identify Frequent Items 

• Why does it work? 

• If    is not recorded,    is not frequent in the stream 

 

• Imagine marking when   was recorded: 

• If     occurs, recording starts 

• Only stopped if     becomes infrequent since start recording 

 

 

 

 

• Whole stream can be partitioned into parts in which    is 

not frequent     is not frequent in the whole stream 

 

recorded recorded 

infrequent infrequent 

No  No  

Algorithm is called “lossy counting” 



II. Lossy Counting – Space Requirements 

• Let N be the length of the stream 

• s minimal frequency threshold. Let k=1/s 

 

• Item a is in the summary if: 

• a appears once among last k items 

• a appears twice among last 2k items 

• … 

• a appears x times among last  xk items 

• … 

• a appears sN times among last N items 



II. Lossy Counting – Space Requirements 

• Divide stream in blocks of size k = 1/s 

 

 

 

 

 

• Constellation with maximum number of candidates: 

k candidates; 

“consume”  

     1 element 

k candidates; 

“consume”  

     2 elements 

k candidates; 

“consume”  

     3 elements 

k candidates; 

“consume”  

     4 elements 

p p p p q q q q mmmnnnooo i  i  j  j  k  k  l  l  a b c d e f g h 

k/3 different 

each appears 

3 times 

k/4 different 

each appears 

4 times 

k/2 different 

each appears 

2 times 

k different 

each appears 

1 time 



II. Lossy Counting – Space Requirements 

• Hence total space requirement: 

 i=1…N/k k/i  k log(N/k) 

 

• Recall: k = 1/s 

• Worst case space requirement: 1/s log(Ns) 



II. Lossy Counting – Guarantee 

• Suppose that we want to know the frequency up to a 

factor  

• Same algorithm, yet use  as minimum support 

threshold 

• Report all items with count  (s- ) N 

 

• Guaranteed: true frequency in the interval 

  [ count/N, count/N+ ] 

 

 

recorded recorded 

No  No  

recorded 

Less than N occurrences of  



II. Lossy Counting - Summary 

• Worst case space consumption:  

  1/ log(N) 

• Guarantee: with 100% certainty, the relative error for 

all s-frequent itemsets is  

 

• Performs very well in practice 

• Optimization:  check if item is frequent only every 1/ 

steps 
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III. How Many Different Items do I have? 

• Number of distinct items is too big to keep all in 

memory 

 

• Observation: 

 If h(.) is a hash function: every xi  [0,1] 

 Maintain min{ h(x1), h(x2), …, h(xn) } 

 E[ min { h(x1), h(x2), …, h(xn) } ] = 1/(1+D) 

  with D = | { x1, x2, …, xn } | 

 

• Average over many (independent) h to decrease 

variance 

• Called: min-hash algorithm 



III. How Many Different Items do I have? 

• Example: 

 

 

 

• Min h(x) = .13 

• Estimate D: 1/(1+d) = 0.13  d = 1/0.13 – 1  6.7 

 

 

• Averaging over independent trials makes the result 

more accurate 

.13 .25 .17 .85 .33 .52 .13 .25 .17 .85 .33 .52 .33 .52 .13 



III. How Many Different Items do I have? 

• Many variations on the same idea 

 

• Multiple hash-functions h1 … hk 

− H1  estimate 1 mean D high variance 

− H2  estimate 2 mean D high variance 

− … 

− Hk  estimate k mean D high variance 

− Median {estimatei} mean D low variance 

 

 

• HyperLogLog sketch: count 1,000,000,000 items with 

2% error  1.5kB 

 

 



Stream still too fast? 

• No problem; easily parallelizable 

• min (min(A), min(B)) = min(AB) 

stream substream 

min h1, … min hk  

Local computation 

min h1, … min hk  

min h1, … min hk  

min h1, … min hk  

min h1, … min hk  

Global minimum 

min h1, … min hk  
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IV. Sketching 

• Extension of the model 

• Items + numbers 

− (a,5)  add 5 to a 

− (a,-3)  subtract 3 from the count of item a 

• Query 

− Sum for item a 

 

• New technique based upon a sketch 

• Smart summary of the data 

 

 



IV. Sketching 

• There is not enough space to store sums for all 

items 

• Instead we will store a (d x n) – matrix S 

• We have d hash functions h1, … , hd 

• The counts of item it are stored in cells  

S[1,h1(it)], … , S[d,hd(it)] 

 

 



IV. Sketching 

• Notice that there will be collisions: 

 

 

 

 

 

 

• For the non-negative case:  

• all cells S[1,h1(it)], … , S[d,hd(it)] will be overestimations 

of the count of it 

• Return min(S[1,h1(it)], … , S[d,hd(it)]) 

is 



Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

           0            0             0 

           0            0             0 

           0            0             0 

           0            0             0 

h1 

h2 

h3 

h4 



Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

           0            0             1 

           0            0             1 

           1            0             0 

           1            0             0 

h1 

h2 

h3 

h4 



Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

           1            0             1 

           0            1             1 

           1            0             1 

           2            0             0 

h1 

h2 

h3 

h4 



Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

           2            0             1 

           1            1             1 

           1            1             1 

           2            0             1 

h1 

h2 

h3 

h4 



• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

           3            0             1 

           2            1             1 

           1            2             1 

           2            0             2 

Example: Count-min Sketch  

h1 

h2 

h3 

h4 



           3            0             2 

           2            1             2 

           2            2             1 

           3            0             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           3            0             3 

           2            1             3 

           3            2             1 

           4            0             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           3            0             4 

           3            1             3 

           3            3             1 

           4            1             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            0             4 

           3            2             3 

           3            3             2 

           5            1             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            0             5 

           3            2             4 

           4            3             2 

           6            1             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            0             6 

           3            2             5 

           5            3             2 

           7            1             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            1             6 

           3            2             6 

           6            3             2 

           7            2             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            2             6 

           3            2             7 

           7            3             2 

           7            3             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            3             6 

           3            2             8 

           8            3             2 

           7            4             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            3             6 

           3            2             8 

           8            3             2 

           7            4             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

• Report frequencies: 

  estimate true count 

  6  5 

 2  2 

 2  2 

 3  1 

 3  3 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



IV. Sketching 

• Usually for many more items than in the example 

• Number of items usually exceeds number of cells by 

orders of magnitude 

• Especially effective if only few “heavy” items, many 

rare items 

• E.g., Zipfian distribution 

 

• Tight guarantees on the estimation 

    ; h1,..,hd pairwise independent 

    with probability            , 
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V. Neighborhood Function 

• Count the number of pairs of nodes at  

distance 1, 2, 3, … 

 

 

 

 

 

 

• Important statistics; allows to compute average 

degree, diameter, effective diameter. 

1: 6 

2: 3 

3: 1 



V. Neighborhood Function 

• Straightforward algorithm 

Set N0(v) = {v} 

For i = 1 to r: 

 For all v in V: 

  Ni(v)=Ni-1(v) 

 For {v,w} in E: 

  Ni(v)     Ni(v)  Ni-1(w) 

  Ni(w)     Ni(w)  Ni-1(v) 

 

Return avg(|N1(v)|), avg(|N2(v)|-|N1(v)|), … 

 

• Time: O( r |V| |E| ) 

• Space: O( |V|2 ) 

 

 

 

 

 

 



V. Neighborhood Function 

• Observation: we can replace every set by a summary 

• Take union, cardinality, add an element 

 

• Size of set: V versus size of summary: k <<< |V| 

• |V| versus log(log(|V|)) 

• With the summary we can: 

 

• Time O( r k |E| ) 

• Space O( k |V| ) 

 

• Speedup is enormous (1000s of times faster!) 
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• Example of an application of stream processing for 

attacking a truly big data problem 

 

 

 

 

 

• Given a graph, count, for every node, in how many 

triangles it appears 

VI. Streaming Graph Processing 

Becchetti et al. Efficient Semi-streaming algorithms for local triangle  

counting in massive graphs. In: KDD’08 



• Example of an application of stream processing for 

attacking a truly big data problem 

 

 

 

 

 

• Given a graph, count, for every node, in how many 

triangles it appears 

VI. Streaming Graph Processing 



• Example of an application of stream processing for 

attacking a truly big data problem 

 

 

 

 

 

• Given a graph, count, for every node, in how many 

triangles it appears 

VI. Streaming Graph Processing 



• Example of an application of stream processing for 

attacking a truly big data problem 

 

 

 

 

 

• Given a graph, count, for every node, in how many 

triangles it appears 

VI. Streaming Graph Processing 

3 



• Example of an application of stream processing for 

attacking a truly big data problem 

 

 

 

 

 

• Given a graph, count, for every node, in how many 

triangles it appears 

• Indicator for connectedness of the node into the 

community 

VI. Streaming Graph Processing 

3 

4 4 

3 
1 



VI. Storage Model 

• Graph stored as a stream of edges 

 

 

 

 

 

 

 

 

• Random access is expensive 

• Access data using limited number of linear scans 

a b 

c 

d 
e 

src dest 

a b 

a c 

a d 

a e 

b c 

b d 

b e 

c d 



VI. Counting Triangles - Notation 

• S(u) : neighbors of u 

• T(u) : number of triangles in which u is involved 

• du : degree of u 

• Local clustering coefficient: 

 2 T(u) 

 du(du-1) 

 

 

 

WHY counting triangles? T(u) and local clustering 

coefficient are informative features for many problems 

u 

S(u) 



VI. Counting Triangles 

Figure from: Becchetti et al. Efficient Semi-streaming algorithms for local triangle  

counting in massive graphs. In: KDD’08 



VI. We Need Brains, Not Just More Power … 

• N processors can speed up only a factor N at most 

• So, for N nodes, we need N2 processors to make it 

linear 

 

• Solution will be based upon: 

 T(u) = vS(u)  |S(u)  S(v)| / 2 

   and a smart way to do intersection approximately 

 

 

 

 

• Building block: estimate for the “Jaccard coefficient” 

u v 

Neighbor of both u and v 



VI. Brute Force- Example 

1. Compute 

 S(a) = {b,c,d,e} 

 S(b) = {a,c,d,e} 

 S(c) = {a,b,d} 

 S(d) = {a,b,c} 

 S(e) = {a,b} 

2.   Initialize all T(u) to 0 

3.   Iterate over all edges (u,v) 

 Add |S(u)  S(v)| to T(u) and T(v) 

4.   Divide all T(u) by 2 

 

  

src dest 

a b 

a c 

a d 

a e 

b c 

b d 

b e 

c d 

Too big to fit  

into memory 

Random access 

to secondary storage 



VI. Building Block: Jaccard Coefficient 

J(A,B) =  |AB| 

      |AB| 

Indicates how similar the sets A and B are. 

 

Example: 

 J({a,b,c},{c,d}) = 1/4 

 J({a,b,c},{b,c,d}) = 2/4 

 

Used, e.g., to detect near duplicates (Altavista) 

 A set of n-grams in document 1 

 B set of n-grams in document 2 



VI. Building Block: Jaccard Coefficient 

Let A, B be subsets of U 

h is a function mapping elements of U to {1,2,…,|U|} 

 

Example: d  1, c 2, a  3, b  4 

 

Let minh(A) := minaA h(a) 

 Pr[ minh(A) = minh(B) ]  

    =   Pr[ min of all elements in AB is in AB ] 

    =   |AB| / |AB| 

    =   J(A,B) 



VI. Building Block: Jaccard Coefficient 

For random h, Pr[ minh(A) = minh(B) ] = J(A,B) 

“estimate” this probability by sampling many 

independent h 

  excellent estimate of J(A,B) 

 

|AB| = J(A,B) |AB| = J(A,B) (|A|+|B|-|AB|) 

 = (|A| + |B|) J(A,B) / (1+J(A,B))  

 



VI. Building Block: Jaccard Coefficient 

• Independent functions h1, …, hm 

• “signature” of set A: 

|A| and vector ( minh1(A), minh2(A), …, minhm(A) ) 

 

• Estimating | A   B | 

• (a1, …, am) vector for A 

• (b1, …, bm) vector for B 

Let e = # { i | ai=bi }  

e / m is an estimator for J(A,B) 

 

| A   B |  (|A| + |B|) e / (m + e) 

 



VI. Building Block: Jaccard Coefficient 

Example: U = { a, b, c, d, e } 

 

A = { a, b } 

B = { b, c, d } 

C = { a, b, c, e } 

 

 

 

 

J(A,B) = 1/4 ; estimate: 0    0 

J(A,C) = 1/2 ; estimate: 1/2  6 x 2/6 = 2 

J(B,C) = 2/5 ; estimate: 1/4  7 x 1/5 = 7/5 

 

 

 

h1 h2 h3 h4 

a 1 2 5 2 

b 2 5 2 4 

c 3 1 4 5 

d 4 4 1 3 

e 5 3 3 1 
A 1 2 2 2 

B 2 1 1 3 

C 1 1 2 1 



VI. The Algorithm 

• Memory requirements: 

• Main memory: couple of bytes per vertex 

• External memory: One entry for every edge e 

 

 

• Based upon T(u) = vS(u)  |S(u)  S(v)|/ 2 

• For every edge (u,v) we maintain estimate of  

|S(u)  S(v)| in external memory 

− Using m functions h1, h2, …, hm 

 

 



VI. Intelligent Intersection Algorithm - Example 

1. Compute 

 Sig(a) = (a1,…,am) 

 Sig(b) = (b1,…,bm) 

 Sig(c) = (c1,…,cm) 

 Sig(d) = (d1,…,dm) 

 Sig(e) = (e1,…,em) 

2.   Initialize all T(u) to 0 

3.   Iterate over all edges (u,v) 

 Compute e = # { i | ui = vi } 

 Estimate |S(u)  S(v)| based upon e 

 Add estimate of |S(u)  S(v)| to T(u) and T(v) 

4.   Divide all T(u) by 2 

 

 

src dest 

a b 

a c 

a d 

a e 

b c 

b d 

b e 

c d 

Still quite expensive 

on memory 



VI. Intelligent Intersection Algorithm - Example 

For p = 1 to m: 

   1. Compute 

 Sig(a) = hp(S(a)) 

 … 

 Sig(e) = hp(S(e)) 

   2.   Iterate over all edges (u,v) 

   If p==1: initialize Zuv to 0 

   If hp(u) == hp(v): add 1 to Zuv 

Iterate over all Zuv: 

 Estimate |S(u)  S(v)| based upon Zuv 

 Add estimate of |S(u)  S(v)| to T(u) and T(v) 

Divide all T(u) by 2 

 

src dest 

a b 

a c 

a d 

a e 

b c 

b d 

b e 

c d 



VI. The Complete Algorithm 

for p : 1 to m     

 for every vertex v 

  min(v) := ∞ 

 for every edge (v,w)   

  min(v) := min(min(v) , hp(w)) 

  min(w) := min(min(w) , hp(v)) 

 for every edge (v,w)    

  if p==1 then Zv,w := 0 

  if min(v) == min(w) then 

   Zv,w := Zv,w + 1  

for every Zv,w :     

 T(v) := T(v) + estimate of |S(v)  S(w)| 

 T(w) := T(w) + estimate of |S(v)  S(w)| 

for all vertices v: 

 T(v) := T(v)/2 

 



VI. The Complete Algorithm 

for p : 1 to m     

 for every vertex v 

  min(v) := ∞ 

 for every edge (v,w)   

  min(v) := min(min(v) , hp(w)) 

  min(w) := min(min(w) , hp(v)) 

 for every edge (v,w)    

  if p==1 then Zv,w := 0 

  if min(v) == min(w) then 

   Zv,w := Zv,w + 1  

for every Zv,w :     

 T(v) := T(v) + estimate of |S(v)  S(w)| 

 T(w) := T(w) + estimate of |S(v)  S(w)| 

for all vertices v: 

 T(v) := T(v)/2 

 

min(u) for all vertices u: in memory 

T(u) for all vertices: in memory 

Zu,v for all edges (u,v): on disk 

In memory 

Sequential read 

Sequential write 

Secondary storage 



VI. Counting Triangles 

• Reduce complexity from |V|3 to O(m|E|) 

 

• Computing power is great, but only gives you an at 

most linear speed-up 

 

• Willingness to sacrifice exactness leads to incredible 

performance gains 

 

• Resulting approximation still excellent feature 



Outline 

• Some Basic Techniques 

• I. Heavy hitters 

• II. Frequent items 

• Sketching 

• III. Distinct count sketches 

• IV. Count-Min Sketch 

• Semi-streaming:  

• V. Neighborhood function 

• VI. Counting local triangles 

• Conclusion 



Conclusion 

• Stream mining: 

• Severe computational restrictions 

• Yet, surprisingly many operations are still possible 

− Heavy hitters 

− Number of distinct items 

− Frequent items 

− “Cash register” 

 

• Counting triangles and neighborhood function as 

applications 


