

Processing Data Streams

Toon Calders

Motivation: Stream Processing

• In stream processing:

• Data cannot be stored; one-pass

• Analysis needs to be online – no waiting for answers

• Time per update is limited

Motivation: Stream Processing

• Many of these trivial questions become extremely

difficult for streams

• How much traffic from/to a certain IP address?

• How many distinct flows?

• What are the heavy hitters?

Stream Mining

• Abstraction:

• Stream is a continuous sequence of items

• Problems:

• Heavy hitters

• How many distinct items do I have in my stream?

 (6)

• Frequent items in the stream

 3 or more:

…

Stream Mining

• It won’t always be possible to give an exact answer

• Therefore relaxations

• Popular: , - approximation:

• In 1- of the cases we are at most off.

• We will show three examples of stream mining

algorithms:

• Min-wise sampling

• Number of Distinct Items (min-hash)

• Frequent items

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

I. Heavy Hitters

• “Given a stream, identify all items that occur more

than 10% of the time”

I. Heavy Hitters

• “Given a stream, identify all items that occur more

than 10% of the time”

Solution storing 9 colors and counters :

• Summary={}

• For each item that arrives

− If (, count) is in Summary:

 update count to count + 1

− Else if |S|<10:

 add (, 1) to S

− Else:

 decrease the count of all pairs in S

 remove all pairs with count = 0

I. Heavy Hitters

• “Given a stream, identify all items that occur more

than 10% of the time”

Solution storing 9 colors and counters :

• Guarantee: if an item appeared more than 10% of

time, there will be an entry (, count) in the summary

• Disadvantage: there may be false positives

• Obviously extendible to other thresholds

• Frequency threshold 1/k k-1 memory places

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

II. Identify Frequent Items

• Counting every item is impossible

• E.g., all pairs of people that phone to each other

• We do not know on beforehand which combinations

will be frequent

• Example:

30 items; :8, :6, :5

All others are 3

If frequency is 20%: and need to be outputted

II. Identify Frequent Items

• The following algorithm finds a superset of the s-frequent
items:

• Initialization: none of the items has a counter

• Item enters at time t:

− If has a counter: counter() ++

− Else:

− counter() = 1

− start() = t

− For all other counters do:

− If counter() / (t – start() + 1) < s:

− Delete counter(), start()

• When the frequent items are needed: return all items that
have a counter

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 1 1 (100%)

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 1 1 (50%)

 2 1 (100%)

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 1 1 (20%)

 2 1 (25%)

 3 2 (66%)

 4 1 (50%)

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 1 1 (17%)

 2 1 (20%)

 3 2 (50%)

 4 1 (33%)

 5 1 (100%)

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 2 2 (25%)

 3 2 (29%)

 6 1 (25%)

 8 2 (100%)

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 2 1 (25%)

 17 4 (29%)

 27 1 (25%)

 8 6 (26%)

 19 3 (25%)

II. Identify Frequent Items

• Why does it work?

• If is not recorded, is not frequent in the stream

• Imagine marking when was recorded:

• If occurs, recording starts

• Only stopped if becomes infrequent since start recording

• Whole stream can be partitioned into parts in which is

not frequent is not frequent in the whole stream

recorded recorded

infrequent infrequent

No No

Algorithm is called “lossy counting”

II. Lossy Counting – Space Requirements

• Let N be the length of the stream

• s minimal frequency threshold. Let k=1/s

• Item a is in the summary if:

• a appears once among last k items

• a appears twice among last 2k items

• …

• a appears x times among last xk items

• …

• a appears sN times among last N items

II. Lossy Counting – Space Requirements

• Divide stream in blocks of size k = 1/s

• Constellation with maximum number of candidates:

k candidates;

“consume”

 1 element

k candidates;

“consume”

 2 elements

k candidates;

“consume”

 3 elements

k candidates;

“consume”

 4 elements

p p p p q q q q mmmnnnooo i i j j k k l l a b c d e f g h

k/3 different

each appears

3 times

k/4 different

each appears

4 times

k/2 different

each appears

2 times

k different

each appears

1 time

II. Lossy Counting – Space Requirements

• Hence total space requirement:

 i=1…N/k k/i k log(N/k)

• Recall: k = 1/s

• Worst case space requirement: 1/s log(Ns)

II. Lossy Counting – Guarantee

• Suppose that we want to know the frequency up to a

factor

• Same algorithm, yet use as minimum support

threshold

• Report all items with count (s-) N

• Guaranteed: true frequency in the interval

 [count/N, count/N+]

recorded recorded

No No

recorded

Less than N occurrences of

II. Lossy Counting - Summary

• Worst case space consumption:

 1/ log(N)

• Guarantee: with 100% certainty, the relative error for

all s-frequent itemsets is

• Performs very well in practice

• Optimization: check if item is frequent only every 1/

steps

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

III. How Many Different Items do I have?

• Number of distinct items is too big to keep all in

memory

• Observation:

 If h(.) is a hash function: every xi [0,1]

 Maintain min{ h(x1), h(x2), …, h(xn) }

 E[min { h(x1), h(x2), …, h(xn) }] = 1/(1+D)

 with D = | { x1, x2, …, xn } |

• Average over many (independent) h to decrease

variance

• Called: min-hash algorithm

III. How Many Different Items do I have?

• Example:

• Min h(x) = .13

• Estimate D: 1/(1+d) = 0.13 d = 1/0.13 – 1 6.7

• Averaging over independent trials makes the result

more accurate

.13 .25 .17 .85 .33 .52 .13 .25 .17 .85 .33 .52 .33 .52 .13

III. How Many Different Items do I have?

• Many variations on the same idea

• Multiple hash-functions h1 … hk

− H1 estimate 1 mean D high variance

− H2 estimate 2 mean D high variance

− …

− Hk estimate k mean D high variance

− Median {estimatei} mean D low variance

• HyperLogLog sketch: count 1,000,000,000 items with

2% error 1.5kB

Stream still too fast?

• No problem; easily parallelizable

• min (min(A), min(B)) = min(AB)

stream substream

min h1, … min hk

Local computation

min h1, … min hk

min h1, … min hk

min h1, … min hk

min h1, … min hk

Global minimum

min h1, … min hk

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

IV. Sketching

• Extension of the model

• Items + numbers

− (a,5) add 5 to a

− (a,-3) subtract 3 from the count of item a

• Query

− Sum for item a

• New technique based upon a sketch

• Smart summary of the data

IV. Sketching

• There is not enough space to store sums for all

items

• Instead we will store a (d x n) – matrix S

• We have d hash functions h1, … , hd

• The counts of item it are stored in cells

S[1,h1(it)], … , S[d,hd(it)]

IV. Sketching

• Notice that there will be collisions:

• For the non-negative case:

• all cells S[1,h1(it)], … , S[d,hd(it)] will be overestimations

of the count of it

• Return min(S[1,h1(it)], … , S[d,hd(it)])

is

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

 0 0 0

 0 0 0

 0 0 0

 0 0 0

h1

h2

h3

h4

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

 0 0 1

 0 0 1

 1 0 0

 1 0 0

h1

h2

h3

h4

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

 1 0 1

 0 1 1

 1 0 1

 2 0 0

h1

h2

h3

h4

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

 2 0 1

 1 1 1

 1 1 1

 2 0 1

h1

h2

h3

h4

• CM-Sketch with 3 columns and 4 rows

• Stream:

 3 0 1

 2 1 1

 1 2 1

 2 0 2

Example: Count-min Sketch

h1

h2

h3

h4

 3 0 2

 2 1 2

 2 2 1

 3 0 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 3 0 3

 2 1 3

 3 2 1

 4 0 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 3 0 4

 3 1 3

 3 3 1

 4 1 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 0 4

 3 2 3

 3 3 2

 5 1 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 0 5

 3 2 4

 4 3 2

 6 1 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 0 6

 3 2 5

 5 3 2

 7 1 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 1 6

 3 2 6

 6 3 2

 7 2 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 2 6

 3 2 7

 7 3 2

 7 3 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 3 6

 3 2 8

 8 3 2

 7 4 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 3 6

 3 2 8

 8 3 2

 7 4 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

• Report frequencies:

 estimate true count

 6 5

 2 2

 2 2

 3 1

 3 3

h1

h2

h3

h4

IV. Sketching

• Usually for many more items than in the example

• Number of items usually exceeds number of cells by

orders of magnitude

• Especially effective if only few “heavy” items, many

rare items

• E.g., Zipfian distribution

• Tight guarantees on the estimation

 ; h1,..,hd pairwise independent

 with probability ,

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

V. Neighborhood Function

• Count the number of pairs of nodes at

distance 1, 2, 3, …

• Important statistics; allows to compute average

degree, diameter, effective diameter.

1: 6

2: 3

3: 1

V. Neighborhood Function

• Straightforward algorithm

Set N0(v) = {v}

For i = 1 to r:

 For all v in V:

 Ni(v)=Ni-1(v)

 For {v,w} in E:

 Ni(v) Ni(v) Ni-1(w)

 Ni(w) Ni(w) Ni-1(v)

Return avg(|N1(v)|), avg(|N2(v)|-|N1(v)|), …

• Time: O(r |V| |E|)

• Space: O(|V|2)

V. Neighborhood Function

• Observation: we can replace every set by a summary

• Take union, cardinality, add an element

• Size of set: V versus size of summary: k <<< |V|

• |V| versus log(log(|V|))

• With the summary we can:

• Time O(r k |E|)

• Space O(k |V|)

• Speedup is enormous (1000s of times faster!)

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

• Example of an application of stream processing for

attacking a truly big data problem

• Given a graph, count, for every node, in how many

triangles it appears

VI. Streaming Graph Processing

Becchetti et al. Efficient Semi-streaming algorithms for local triangle

counting in massive graphs. In: KDD’08

• Example of an application of stream processing for

attacking a truly big data problem

• Given a graph, count, for every node, in how many

triangles it appears

VI. Streaming Graph Processing

• Example of an application of stream processing for

attacking a truly big data problem

• Given a graph, count, for every node, in how many

triangles it appears

VI. Streaming Graph Processing

• Example of an application of stream processing for

attacking a truly big data problem

• Given a graph, count, for every node, in how many

triangles it appears

VI. Streaming Graph Processing

3

• Example of an application of stream processing for

attacking a truly big data problem

• Given a graph, count, for every node, in how many

triangles it appears

• Indicator for connectedness of the node into the

community

VI. Streaming Graph Processing

3

4 4

3
1

VI. Storage Model

• Graph stored as a stream of edges

• Random access is expensive

• Access data using limited number of linear scans

a b

c

d
e

src dest

a b

a c

a d

a e

b c

b d

b e

c d

VI. Counting Triangles - Notation

• S(u) : neighbors of u

• T(u) : number of triangles in which u is involved

• du : degree of u

• Local clustering coefficient:

 2 T(u)

 du(du-1)

WHY counting triangles? T(u) and local clustering

coefficient are informative features for many problems

u

S(u)

VI. Counting Triangles

Figure from: Becchetti et al. Efficient Semi-streaming algorithms for local triangle

counting in massive graphs. In: KDD’08

VI. We Need Brains, Not Just More Power …

• N processors can speed up only a factor N at most

• So, for N nodes, we need N2 processors to make it

linear

• Solution will be based upon:

 T(u) = vS(u) |S(u) S(v)| / 2

 and a smart way to do intersection approximately

• Building block: estimate for the “Jaccard coefficient”

u v

Neighbor of both u and v

VI. Brute Force- Example

1. Compute

 S(a) = {b,c,d,e}

 S(b) = {a,c,d,e}

 S(c) = {a,b,d}

 S(d) = {a,b,c}

 S(e) = {a,b}

2. Initialize all T(u) to 0

3. Iterate over all edges (u,v)

 Add |S(u) S(v)| to T(u) and T(v)

4. Divide all T(u) by 2

src dest

a b

a c

a d

a e

b c

b d

b e

c d

Too big to fit

into memory

Random access

to secondary storage

VI. Building Block: Jaccard Coefficient

J(A,B) = |AB|

 |AB|

Indicates how similar the sets A and B are.

Example:

 J({a,b,c},{c,d}) = 1/4

 J({a,b,c},{b,c,d}) = 2/4

Used, e.g., to detect near duplicates (Altavista)

 A set of n-grams in document 1

 B set of n-grams in document 2

VI. Building Block: Jaccard Coefficient

Let A, B be subsets of U

h is a function mapping elements of U to {1,2,…,|U|}

Example: d 1, c 2, a 3, b 4

Let minh(A) := minaA h(a)

 Pr[minh(A) = minh(B)]

 = Pr[min of all elements in AB is in AB]

 = |AB| / |AB|

 = J(A,B)

VI. Building Block: Jaccard Coefficient

For random h, Pr[minh(A) = minh(B)] = J(A,B)

“estimate” this probability by sampling many

independent h

 excellent estimate of J(A,B)

|AB| = J(A,B) |AB| = J(A,B) (|A|+|B|-|AB|)

 = (|A| + |B|) J(A,B) / (1+J(A,B))

VI. Building Block: Jaccard Coefficient

• Independent functions h1, …, hm

• “signature” of set A:

|A| and vector (minh1(A), minh2(A), …, minhm(A))

• Estimating | A B |

• (a1, …, am) vector for A

• (b1, …, bm) vector for B

Let e = # { i | ai=bi }

e / m is an estimator for J(A,B)

| A B | (|A| + |B|) e / (m + e)

VI. Building Block: Jaccard Coefficient

Example: U = { a, b, c, d, e }

A = { a, b }

B = { b, c, d }

C = { a, b, c, e }

J(A,B) = 1/4 ; estimate: 0 0

J(A,C) = 1/2 ; estimate: 1/2 6 x 2/6 = 2

J(B,C) = 2/5 ; estimate: 1/4 7 x 1/5 = 7/5

h1 h2 h3 h4

a 1 2 5 2

b 2 5 2 4

c 3 1 4 5

d 4 4 1 3

e 5 3 3 1
A 1 2 2 2

B 2 1 1 3

C 1 1 2 1

VI. The Algorithm

• Memory requirements:

• Main memory: couple of bytes per vertex

• External memory: One entry for every edge e

• Based upon T(u) = vS(u) |S(u) S(v)|/ 2

• For every edge (u,v) we maintain estimate of

|S(u) S(v)| in external memory

− Using m functions h1, h2, …, hm

VI. Intelligent Intersection Algorithm - Example

1. Compute

 Sig(a) = (a1,…,am)

 Sig(b) = (b1,…,bm)

 Sig(c) = (c1,…,cm)

 Sig(d) = (d1,…,dm)

 Sig(e) = (e1,…,em)

2. Initialize all T(u) to 0

3. Iterate over all edges (u,v)

 Compute e = # { i | ui = vi }

 Estimate |S(u) S(v)| based upon e

 Add estimate of |S(u) S(v)| to T(u) and T(v)

4. Divide all T(u) by 2

src dest

a b

a c

a d

a e

b c

b d

b e

c d

Still quite expensive

on memory

VI. Intelligent Intersection Algorithm - Example

For p = 1 to m:

 1. Compute

 Sig(a) = hp(S(a))

 …

 Sig(e) = hp(S(e))

 2. Iterate over all edges (u,v)

 If p==1: initialize Zuv to 0

 If hp(u) == hp(v): add 1 to Zuv

Iterate over all Zuv:

 Estimate |S(u) S(v)| based upon Zuv

 Add estimate of |S(u) S(v)| to T(u) and T(v)

Divide all T(u) by 2

src dest

a b

a c

a d

a e

b c

b d

b e

c d

VI. The Complete Algorithm

for p : 1 to m

 for every vertex v

 min(v) := ∞

 for every edge (v,w)

 min(v) := min(min(v) , hp(w))

 min(w) := min(min(w) , hp(v))

 for every edge (v,w)

 if p==1 then Zv,w := 0

 if min(v) == min(w) then

 Zv,w := Zv,w + 1

for every Zv,w :

 T(v) := T(v) + estimate of |S(v) S(w)|

 T(w) := T(w) + estimate of |S(v) S(w)|

for all vertices v:

 T(v) := T(v)/2

VI. The Complete Algorithm

for p : 1 to m

 for every vertex v

 min(v) := ∞

 for every edge (v,w)

 min(v) := min(min(v) , hp(w))

 min(w) := min(min(w) , hp(v))

 for every edge (v,w)

 if p==1 then Zv,w := 0

 if min(v) == min(w) then

 Zv,w := Zv,w + 1

for every Zv,w :

 T(v) := T(v) + estimate of |S(v) S(w)|

 T(w) := T(w) + estimate of |S(v) S(w)|

for all vertices v:

 T(v) := T(v)/2

min(u) for all vertices u: in memory

T(u) for all vertices: in memory

Zu,v for all edges (u,v): on disk

In memory

Sequential read

Sequential write

Secondary storage

VI. Counting Triangles

• Reduce complexity from |V|3 to O(m|E|)

• Computing power is great, but only gives you an at

most linear speed-up

• Willingness to sacrifice exactness leads to incredible

performance gains

• Resulting approximation still excellent feature

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

Conclusion

• Stream mining:

• Severe computational restrictions

• Yet, surprisingly many operations are still possible

− Heavy hitters

− Number of distinct items

− Frequent items

− “Cash register”

• Counting triangles and neighborhood function as

applications

