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Motivation: Stream Processing 

• In stream processing: 

• Data cannot be stored; one-pass 

• Analysis needs to be online – no waiting for answers 

• Time per update is limited 

 



Motivation: Stream Processing 

• Many of these trivial questions become extremely 

difficult for streams 

• How much traffic from/to a certain IP address? 

• How many distinct flows? 

• What are the heavy hitters? 

 

 

 

 

 



Stream Mining 

• Abstraction: 

• Stream is a continuous sequence of items 

 

 

• Problems: 

• Heavy hitters 

 

• How many distinct items do I have in my stream?    

        (6) 

• Frequent items in the stream 

  3 or more: 

… 



Stream Mining 

• It won’t always be possible to give an exact answer 

• Therefore relaxations 

 

• Popular: ,  - approximation: 

• In 1-  of the cases we are at most  off. 

 

• We will show three examples of stream mining 

algorithms: 

• Min-wise sampling 

• Number of Distinct Items (min-hash) 

• Frequent items 
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I. Heavy Hitters 

• “Given a stream, identify all items that occur more 

than 10% of the time” 

 

 

 

 



I. Heavy Hitters 

• “Given a stream, identify all items that occur more 

than 10% of the time” 

 

Solution storing 9 colors and counters : 

• Summary={} 

• For each item    that arrives 

− If (  , count) is in Summary: 

  update count to count + 1 

− Else if |S|<10: 

  add (   , 1) to S 

− Else: 

  decrease the count of all pairs in S 

  remove all pairs with count = 0 

 

 



I. Heavy Hitters 

• “Given a stream, identify all items that occur more 

than 10% of the time” 

 

Solution storing 9 colors and counters : 

 

• Guarantee: if an item     appeared more than 10% of 

time, there will be an entry (   , count) in the summary 

• Disadvantage: there may be false positives 

• Obviously extendible to other thresholds 

• Frequency threshold 1/k  k-1 memory places 
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II. Identify Frequent Items 

• Counting every item is impossible 

• E.g., all pairs of people that phone to each other 

• We do not know on beforehand which combinations 

will be frequent 

 

• Example: 

 

30 items;  :8,  :6,  :5 

All others are 3 

If frequency is 20%:   and   need to be outputted 



II. Identify Frequent Items 

• The following algorithm finds a superset of the s-frequent 
items: 

• Initialization: none of the items has a counter 

• Item    enters at time t: 

− If    has a counter: counter(  ) ++ 

− Else: 

− counter(  ) = 1 

− start(  ) = t 

− For all other counters    do: 

− If counter(  ) / ( t – start(  ) + 1 ) < s: 

− Delete counter(  ), start(  ) 

• When the frequent items are needed: return all items that 
have a counter 

 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  1 1 (100%) 

 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  1 1 (50%) 

  2 1 (100%) 

 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  1 1 (20%) 

  2 1 (25%) 

  3 2 (66%) 

  4 1 (50%) 

 

 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  1 1 (17%) 

  2 1 (20%) 

  3 2 (50%) 

  4 1 (33%) 

  5 1 (100%) 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  2 2 (25%) 

  3 2 (29%) 

  6 1 (25%) 

  8 2 (100%) 



II. Identify Frequent Items 

• Example: (20%) 

  

 
start # (freq) 

  2 1 (25%) 

  17 4 (29%) 

  27 1 (25%) 

  8 6 (26%) 

  19 3 (25%) 

 

 



II. Identify Frequent Items 

• Why does it work? 

• If    is not recorded,    is not frequent in the stream 

 

• Imagine marking when   was recorded: 

• If     occurs, recording starts 

• Only stopped if     becomes infrequent since start recording 

 

 

 

 

• Whole stream can be partitioned into parts in which    is 

not frequent     is not frequent in the whole stream 

 

recorded recorded 

infrequent infrequent 

No  No  

Algorithm is called “lossy counting” 



II. Lossy Counting – Space Requirements 

• Let N be the length of the stream 

• s minimal frequency threshold. Let k=1/s 

 

• Item a is in the summary if: 

• a appears once among last k items 

• a appears twice among last 2k items 

• … 

• a appears x times among last  xk items 

• … 

• a appears sN times among last N items 



II. Lossy Counting – Space Requirements 

• Divide stream in blocks of size k = 1/s 

 

 

 

 

 

• Constellation with maximum number of candidates: 

k candidates; 

“consume”  

     1 element 

k candidates; 

“consume”  

     2 elements 

k candidates; 

“consume”  

     3 elements 

k candidates; 

“consume”  

     4 elements 

p p p p q q q q mmmnnnooo i  i  j  j  k  k  l  l  a b c d e f g h 

k/3 different 

each appears 

3 times 

k/4 different 

each appears 

4 times 

k/2 different 

each appears 

2 times 

k different 

each appears 

1 time 



II. Lossy Counting – Space Requirements 

• Hence total space requirement: 

 i=1…N/k k/i  k log(N/k) 

 

• Recall: k = 1/s 

• Worst case space requirement: 1/s log(Ns) 



II. Lossy Counting – Guarantee 

• Suppose that we want to know the frequency up to a 

factor  

• Same algorithm, yet use  as minimum support 

threshold 

• Report all items with count  (s- ) N 

 

• Guaranteed: true frequency in the interval 

  [ count/N, count/N+ ] 

 

 

recorded recorded 

No  No  

recorded 

Less than N occurrences of  



II. Lossy Counting - Summary 

• Worst case space consumption:  

  1/ log(N) 

• Guarantee: with 100% certainty, the relative error for 

all s-frequent itemsets is  

 

• Performs very well in practice 

• Optimization:  check if item is frequent only every 1/ 

steps 
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III. How Many Different Items do I have? 

• Number of distinct items is too big to keep all in 

memory 

 

• Observation: 

 If h(.) is a hash function: every xi  [0,1] 

 Maintain min{ h(x1), h(x2), …, h(xn) } 

 E[ min { h(x1), h(x2), …, h(xn) } ] = 1/(1+D) 

  with D = | { x1, x2, …, xn } | 

 

• Average over many (independent) h to decrease 

variance 

• Called: min-hash algorithm 



III. How Many Different Items do I have? 

• Example: 

 

 

 

• Min h(x) = .13 

• Estimate D: 1/(1+d) = 0.13  d = 1/0.13 – 1  6.7 

 

 

• Averaging over independent trials makes the result 

more accurate 

.13 .25 .17 .85 .33 .52 .13 .25 .17 .85 .33 .52 .33 .52 .13 



III. How Many Different Items do I have? 

• Many variations on the same idea 

 

• Multiple hash-functions h1 … hk 

− H1  estimate 1 mean D high variance 

− H2  estimate 2 mean D high variance 

− … 

− Hk  estimate k mean D high variance 

− Median {estimatei} mean D low variance 

 

 

• HyperLogLog sketch: count 1,000,000,000 items with 

2% error  1.5kB 

 

 



Stream still too fast? 

• No problem; easily parallelizable 

• min (min(A), min(B)) = min(AB) 

stream substream 

min h1, … min hk  

Local computation 

min h1, … min hk  

min h1, … min hk  

min h1, … min hk  

min h1, … min hk  

Global minimum 

min h1, … min hk  
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IV. Sketching 

• Extension of the model 

• Items + numbers 

− (a,5)  add 5 to a 

− (a,-3)  subtract 3 from the count of item a 

• Query 

− Sum for item a 

 

• New technique based upon a sketch 

• Smart summary of the data 

 

 



IV. Sketching 

• There is not enough space to store sums for all 

items 

• Instead we will store a (d x n) – matrix S 

• We have d hash functions h1, … , hd 

• The counts of item it are stored in cells  

S[1,h1(it)], … , S[d,hd(it)] 

 

 



IV. Sketching 

• Notice that there will be collisions: 

 

 

 

 

 

 

• For the non-negative case:  

• all cells S[1,h1(it)], … , S[d,hd(it)] will be overestimations 

of the count of it 

• Return min(S[1,h1(it)], … , S[d,hd(it)]) 

is 



Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

           0            0             0 

           0            0             0 

           0            0             0 

           0            0             0 

h1 

h2 

h3 

h4 



Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

           0            0             1 

           0            0             1 

           1            0             0 

           1            0             0 

h1 

h2 

h3 

h4 



Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

           1            0             1 

           0            1             1 

           1            0             1 

           2            0             0 

h1 

h2 

h3 

h4 



Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

           2            0             1 

           1            1             1 

           1            1             1 

           2            0             1 

h1 

h2 

h3 

h4 



• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

           3            0             1 

           2            1             1 

           1            2             1 

           2            0             2 

Example: Count-min Sketch  

h1 

h2 

h3 

h4 



           3            0             2 

           2            1             2 

           2            2             1 

           3            0             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           3            0             3 

           2            1             3 

           3            2             1 

           4            0             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           3            0             4 

           3            1             3 

           3            3             1 

           4            1             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            0             4 

           3            2             3 

           3            3             2 

           5            1             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            0             5 

           3            2             4 

           4            3             2 

           6            1             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            0             6 

           3            2             5 

           5            3             2 

           7            1             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            1             6 

           3            2             6 

           6            3             2 

           7            2             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            2             6 

           3            2             7 

           7            3             2 

           7            3             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            3             6 

           3            2             8 

           8            3             2 

           7            4             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

 

 

 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



           4            3             6 

           3            2             8 

           8            3             2 

           7            4             2 

Example: Count-min Sketch  

• CM-Sketch with 3 columns and 4 rows 

 

 

 

 

 

• Stream: 

• Report frequencies: 

  estimate true count 

  6  5 

 2  2 

 2  2 

 3  1 

 3  3 

 

 

 

 

 

 

 

 

 

 

h1 

h2 

h3 

h4 



IV. Sketching 

• Usually for many more items than in the example 

• Number of items usually exceeds number of cells by 

orders of magnitude 

• Especially effective if only few “heavy” items, many 

rare items 

• E.g., Zipfian distribution 

 

• Tight guarantees on the estimation 

    ; h1,..,hd pairwise independent 

    with probability            , 
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V. Neighborhood Function 

• Count the number of pairs of nodes at  

distance 1, 2, 3, … 

 

 

 

 

 

 

• Important statistics; allows to compute average 

degree, diameter, effective diameter. 

1: 6 

2: 3 

3: 1 



V. Neighborhood Function 

• Straightforward algorithm 

Set N0(v) = {v} 

For i = 1 to r: 

 For all v in V: 

  Ni(v)=Ni-1(v) 

 For {v,w} in E: 

  Ni(v)     Ni(v)  Ni-1(w) 

  Ni(w)     Ni(w)  Ni-1(v) 

 

Return avg(|N1(v)|), avg(|N2(v)|-|N1(v)|), … 

 

• Time: O( r |V| |E| ) 

• Space: O( |V|2 ) 

 

 

 

 

 

 



V. Neighborhood Function 

• Observation: we can replace every set by a summary 

• Take union, cardinality, add an element 

 

• Size of set: V versus size of summary: k <<< |V| 

• |V| versus log(log(|V|)) 

• With the summary we can: 

 

• Time O( r k |E| ) 

• Space O( k |V| ) 

 

• Speedup is enormous (1000s of times faster!) 
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• Example of an application of stream processing for 

attacking a truly big data problem 

 

 

 

 

 

• Given a graph, count, for every node, in how many 

triangles it appears 

VI. Streaming Graph Processing 

Becchetti et al. Efficient Semi-streaming algorithms for local triangle  

counting in massive graphs. In: KDD’08 



• Example of an application of stream processing for 

attacking a truly big data problem 

 

 

 

 

 

• Given a graph, count, for every node, in how many 

triangles it appears 

VI. Streaming Graph Processing 



• Example of an application of stream processing for 

attacking a truly big data problem 

 

 

 

 

 

• Given a graph, count, for every node, in how many 

triangles it appears 

VI. Streaming Graph Processing 



• Example of an application of stream processing for 

attacking a truly big data problem 

 

 

 

 

 

• Given a graph, count, for every node, in how many 

triangles it appears 

VI. Streaming Graph Processing 

3 



• Example of an application of stream processing for 

attacking a truly big data problem 

 

 

 

 

 

• Given a graph, count, for every node, in how many 

triangles it appears 

• Indicator for connectedness of the node into the 

community 

VI. Streaming Graph Processing 

3 

4 4 

3 
1 



VI. Storage Model 

• Graph stored as a stream of edges 

 

 

 

 

 

 

 

 

• Random access is expensive 

• Access data using limited number of linear scans 

a b 

c 

d 
e 

src dest 

a b 

a c 

a d 

a e 

b c 

b d 

b e 

c d 



VI. Counting Triangles - Notation 

• S(u) : neighbors of u 

• T(u) : number of triangles in which u is involved 

• du : degree of u 

• Local clustering coefficient: 

 2 T(u) 

 du(du-1) 

 

 

 

WHY counting triangles? T(u) and local clustering 

coefficient are informative features for many problems 

u 

S(u) 



VI. Counting Triangles 

Figure from: Becchetti et al. Efficient Semi-streaming algorithms for local triangle  

counting in massive graphs. In: KDD’08 



VI. We Need Brains, Not Just More Power … 

• N processors can speed up only a factor N at most 

• So, for N nodes, we need N2 processors to make it 

linear 

 

• Solution will be based upon: 

 T(u) = vS(u)  |S(u)  S(v)| / 2 

   and a smart way to do intersection approximately 

 

 

 

 

• Building block: estimate for the “Jaccard coefficient” 

u v 

Neighbor of both u and v 



VI. Brute Force- Example 

1. Compute 

 S(a) = {b,c,d,e} 

 S(b) = {a,c,d,e} 

 S(c) = {a,b,d} 

 S(d) = {a,b,c} 

 S(e) = {a,b} 

2.   Initialize all T(u) to 0 

3.   Iterate over all edges (u,v) 

 Add |S(u)  S(v)| to T(u) and T(v) 

4.   Divide all T(u) by 2 

 

  

src dest 

a b 

a c 

a d 

a e 

b c 

b d 

b e 

c d 

Too big to fit  

into memory 

Random access 

to secondary storage 



VI. Building Block: Jaccard Coefficient 

J(A,B) =  |AB| 

      |AB| 

Indicates how similar the sets A and B are. 

 

Example: 

 J({a,b,c},{c,d}) = 1/4 

 J({a,b,c},{b,c,d}) = 2/4 

 

Used, e.g., to detect near duplicates (Altavista) 

 A set of n-grams in document 1 

 B set of n-grams in document 2 



VI. Building Block: Jaccard Coefficient 

Let A, B be subsets of U 

h is a function mapping elements of U to {1,2,…,|U|} 

 

Example: d  1, c 2, a  3, b  4 

 

Let minh(A) := minaA h(a) 

 Pr[ minh(A) = minh(B) ]  

    =   Pr[ min of all elements in AB is in AB ] 

    =   |AB| / |AB| 

    =   J(A,B) 



VI. Building Block: Jaccard Coefficient 

For random h, Pr[ minh(A) = minh(B) ] = J(A,B) 

“estimate” this probability by sampling many 

independent h 

  excellent estimate of J(A,B) 

 

|AB| = J(A,B) |AB| = J(A,B) (|A|+|B|-|AB|) 

 = (|A| + |B|) J(A,B) / (1+J(A,B))  

 



VI. Building Block: Jaccard Coefficient 

• Independent functions h1, …, hm 

• “signature” of set A: 

|A| and vector ( minh1(A), minh2(A), …, minhm(A) ) 

 

• Estimating | A   B | 

• (a1, …, am) vector for A 

• (b1, …, bm) vector for B 

Let e = # { i | ai=bi }  

e / m is an estimator for J(A,B) 

 

| A   B |  (|A| + |B|) e / (m + e) 

 



VI. Building Block: Jaccard Coefficient 

Example: U = { a, b, c, d, e } 

 

A = { a, b } 

B = { b, c, d } 

C = { a, b, c, e } 

 

 

 

 

J(A,B) = 1/4 ; estimate: 0    0 

J(A,C) = 1/2 ; estimate: 1/2  6 x 2/6 = 2 

J(B,C) = 2/5 ; estimate: 1/4  7 x 1/5 = 7/5 

 

 

 

h1 h2 h3 h4 

a 1 2 5 2 

b 2 5 2 4 

c 3 1 4 5 

d 4 4 1 3 

e 5 3 3 1 
A 1 2 2 2 

B 2 1 1 3 

C 1 1 2 1 



VI. The Algorithm 

• Memory requirements: 

• Main memory: couple of bytes per vertex 

• External memory: One entry for every edge e 

 

 

• Based upon T(u) = vS(u)  |S(u)  S(v)|/ 2 

• For every edge (u,v) we maintain estimate of  

|S(u)  S(v)| in external memory 

− Using m functions h1, h2, …, hm 

 

 



VI. Intelligent Intersection Algorithm - Example 

1. Compute 

 Sig(a) = (a1,…,am) 

 Sig(b) = (b1,…,bm) 

 Sig(c) = (c1,…,cm) 

 Sig(d) = (d1,…,dm) 

 Sig(e) = (e1,…,em) 

2.   Initialize all T(u) to 0 

3.   Iterate over all edges (u,v) 

 Compute e = # { i | ui = vi } 

 Estimate |S(u)  S(v)| based upon e 

 Add estimate of |S(u)  S(v)| to T(u) and T(v) 

4.   Divide all T(u) by 2 

 

 

src dest 

a b 

a c 

a d 

a e 

b c 

b d 

b e 

c d 

Still quite expensive 

on memory 



VI. Intelligent Intersection Algorithm - Example 

For p = 1 to m: 

   1. Compute 

 Sig(a) = hp(S(a)) 

 … 

 Sig(e) = hp(S(e)) 

   2.   Iterate over all edges (u,v) 

   If p==1: initialize Zuv to 0 

   If hp(u) == hp(v): add 1 to Zuv 

Iterate over all Zuv: 

 Estimate |S(u)  S(v)| based upon Zuv 

 Add estimate of |S(u)  S(v)| to T(u) and T(v) 

Divide all T(u) by 2 

 

src dest 

a b 

a c 

a d 

a e 

b c 

b d 

b e 

c d 



VI. The Complete Algorithm 

for p : 1 to m     

 for every vertex v 

  min(v) := ∞ 

 for every edge (v,w)   

  min(v) := min(min(v) , hp(w)) 

  min(w) := min(min(w) , hp(v)) 

 for every edge (v,w)    

  if p==1 then Zv,w := 0 

  if min(v) == min(w) then 

   Zv,w := Zv,w + 1  

for every Zv,w :     

 T(v) := T(v) + estimate of |S(v)  S(w)| 

 T(w) := T(w) + estimate of |S(v)  S(w)| 

for all vertices v: 

 T(v) := T(v)/2 

 



VI. The Complete Algorithm 

for p : 1 to m     

 for every vertex v 

  min(v) := ∞ 

 for every edge (v,w)   

  min(v) := min(min(v) , hp(w)) 

  min(w) := min(min(w) , hp(v)) 

 for every edge (v,w)    

  if p==1 then Zv,w := 0 

  if min(v) == min(w) then 

   Zv,w := Zv,w + 1  

for every Zv,w :     

 T(v) := T(v) + estimate of |S(v)  S(w)| 

 T(w) := T(w) + estimate of |S(v)  S(w)| 

for all vertices v: 

 T(v) := T(v)/2 

 

min(u) for all vertices u: in memory 

T(u) for all vertices: in memory 

Zu,v for all edges (u,v): on disk 

In memory 

Sequential read 

Sequential write 

Secondary storage 



VI. Counting Triangles 

• Reduce complexity from |V|3 to O(m|E|) 

 

• Computing power is great, but only gives you an at 

most linear speed-up 

 

• Willingness to sacrifice exactness leads to incredible 

performance gains 

 

• Resulting approximation still excellent feature 
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Conclusion 

• Stream mining: 

• Severe computational restrictions 

• Yet, surprisingly many operations are still possible 

− Heavy hitters 

− Number of distinct items 

− Frequent items 

− “Cash register” 

 

• Counting triangles and neighborhood function as 

applications 


