

Motivation: Stream Processing

- In stream processing:
- Data cannot be stored; one-pass
- Analysis needs to be online - no waiting for answers
- Time per update is limited

Motivation: Stream Processing

- Many of these trivial questions become extremely difficult for streams
- How much traffic from/to a certain IP address?
- How many distinct flows?
- What are the heavy hitters?

Stream Mining

- Abstraction:
- Stream is a continuous sequence of items
- Problems:
- Heavy hitters
- How many distinct items do I have in my stream?
(6)
- Frequent items in the stream

3 or more:

Stream Mining

- It won't always be possible to give an exact answer
- Therefore relaxations
- Popular: ε, δ - approximation:
- In 1- δ of the cases we are at most ε off.
- We will show three examples of stream mining algorithms:
- Min-wise sampling
- Number of Distinct Items (min-hash)
- Frequent items
- Some Basic Techniques
- I. Heavy hitters
- II. Frequent items
- Sketching
- III. Distinct count sketches
- IV. Count-Min Sketch
- Semi-streaming:
- V. Neighborhood function
- VI. Counting local triangles
- Conclusion
- "Given a stream, identify all items that occur more than 10% of the time"

I. Heavy Hitters

- "Given a stream, identify all items that occur more than 10% of the time"

Solution storing 9 colors and counters :

- Summary=\{\}
- For each item \bullet that arrives
- If (θ, count) is in Summary: update count to count + 1
- Else if $|\mathrm{S}|<10$: add $(\bullet, 1)$ to S
- Else:
decrease the count of all pairs in S remove all pairs with count $=0$

I. Heavy Hitters

- "Given a stream, identify all items that occur more than 10% of the time"

Solution storing 9 colors and counters :

- Guarantee: if an item - appeared more than 10% of time, there will be an entry (\odot, count) in the summary
- Disadvantage: there may be false positives
- Obviously extendible to other thresholds
- Frequency threshold $1 / k \rightarrow$ k-1 memory places
- Some Basic Techniques
- I. Heavy hitters
- II. Frequent items
- Sketching
- III. Distinct count sketches
- IV. Count-Min Sketch
- Semi-streaming:
- V. Neighborhood function
- VI. Counting local triangles
- Conclusion

II. Identify Frequent Items

- Counting every item is impossible
- E.g., all pairs of people that phone to each other
- We do not know on beforehand which combinations will be frequent
- Example:

30 items;»:8,॰:6,॰:5
All others are 3
If frequency is $\mathbf{2 0 \%}$: \bullet and \bullet need to be outputted

II. Identify Frequent Items

- The following algorithm finds a superset of the s-frequent items:
- Initialization: none of the items has a counter
- Item - enters at time t:
- If \bullet has a counter: counter(॰) ++
- Else:
- counter(o) = 1
- start(o) = t
- For all other counters do:
- If counter($)$ / (t - start($)$ + 1) < s:
- Delete counter($)$, start()
- When the frequent items are needed: return all items that have a counter

II. Identify Frequent Items

- Example: (20\%)

```
start # (freq)
    1 (100%)
```


II. Identify Frequent Items

- Example: (20\%)
-

	start
\# (freq)	
	1
2	$1(50 \%)$
	$1(100 \%)$

II. Identify Frequent Items

- Example: (20\%)
-○○○○

	start	\# (freq)
-	1	$1(20 \%)$
-	2	$1(25 \%)$
-	3	$2(66 \%)$
-	4	$1(50 \%)$

II. Identify Frequent Items

- Example: (20\%)
- ••••

	start	\# (freq)
		$1(179)$
\bullet	2	$1(20 \%)$
\bullet	3	$2(50 \%)$
0	4	$1(33 \%)$
0	5	$1(100 \%)$

II. Identify Frequent Items

- Example: (20\%)
- ••••○ー・ー

start	$\#$ (freq)
2	$2(25 \%)$
3	$2(29 \%)$
6	$1(25 \%)$
8	$2(100 \%)$

II. Identify Frequent Items

- Example: (20\%)

start	\# (freq)
2	$1(25 \%)$
17	$4(29 \%)$
27	$1(25 \%)$
8	$6(26 \%)$
19	$3(25 \%)$

II. Identify Frequent Items

- Why does it work?
- If \bigcirc is not recorded, \bigcirc is not frequent in the stream
- Imagine marking when was recorded:
- If O occurs, recording starts
- Only stopped if o becomes infrequent since start recording

- Whole stream can be partitioned into parts in which is not frequent \rightarrow o is not frequent in the whole stream

Algorithm is called "lossy counting"

II. Lossy Counting - Space Requirements

- Let N be the length of the stream
- s minimal frequency threshold. Let $k=1 / \mathrm{s}$
- Item a is in the summary if:
- a appears once among last k items
- a appears twice among last $2 k$ items
- a appears \mathbf{x} times among last $x k$ items
- a appears sN times among last \mathbf{N} items

II. Lossy Counting - Space Requirements

- Divide stream in blocks of size k=1/s

- Constellation with maximum number of candidates:

ppppqqqq	mmmnnnooo	k k l	abcdefgh
\uparrow	-	\uparrow	『
k/4 different	k/3 different	k/2 different	k different
each appears	each appears	each appears	each appears
4 times	3 times	2 times	1 time

II. Lossy Counting - Space Requirements

- Hence total space requirement:
$\Sigma_{\mathrm{i}=1 \ldots \mathrm{~N} / \mathrm{k}} \mathrm{k} / \mathrm{i} \approx \mathrm{k} \log (\mathrm{N} / \mathrm{k})$
- Recall: k=1/s
- Worst case space requirement: $1 / \mathrm{s} \log (N s)$

II. Lossy Counting - Guarantee

- Suppose that we want to know the frequency up to a factor ε
- Same algorithm, yet use ε as minimum support threshold
- Report all items with count $\geq(s-\varepsilon) N$
- Guaranteed: true frequency in the interval [count/ N, count $/ \mathrm{N}+\varepsilon$]

II. Lossy Counting - Summary

- Worst case space consumption:
$1 / \varepsilon \log (N \varepsilon)$
- Guarantee: with 100\% certainty, the relative error for all s-frequent itemsets is ε
- Performs very well in practice
- Optimization: check if item is frequent only every $1 / \varepsilon$ steps
- Some Basic Techniques
- I. Heavy hitters
- II. Frequent items
- Sketching
- III. Distinct count sketches
- IV. Count-Min Sketch
- Semi-streaming:
- V. Neighborhood function
- VI. Counting local triangles
- Conclusion

III. How Many Different Items do I have?

- Number of distinct items is too big to keep all in memory
- Observation:

If $h($.$) is a hash function: every x_{i} \rightarrow[0,1]$
Maintain $\min \left\{\mathrm{h}\left(\mathrm{x}_{1}\right), \mathrm{h}\left(\mathrm{x}_{2}\right), \ldots, \mathrm{h}\left(\mathrm{x}_{\mathrm{n}}\right)\right\}$
$E\left[\min \left\{h\left(x_{1}\right), h\left(x_{2}\right), \ldots, h\left(x_{n}\right)\right\}\right]=1 /(1+D)$
with $D=\left|\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right|$

- Average over many (independent) h to decrease variance
- Called: min-hash algorithm

III. How Many Different Items do I have?

- Example:

- $\operatorname{Minh} \mathrm{h}(\mathrm{x})=.13$
- Estimate D: $1 /(1+d)=0.13 \rightarrow d=1 / 0.13-1 \approx 6.7$
- Averaging over independent trials makes the result more accurate

III. How Many Different Items do I have?

- Many variations on the same idea
- Multiple hash-functions $h_{1} \ldots h_{k}$
- $\mathrm{H}_{1} \rightarrow$ estimate $1 \quad$ mean $\mathrm{D} \quad$ high variance
- $\mathrm{H}_{2} \rightarrow$ estimate 2 mean D high variance
- $\mathrm{H}_{\mathrm{k}} \rightarrow$ estimate $\mathrm{k} \quad$ mean $\mathrm{D} \quad$ high variance
- Median \{estimate $\left.{ }_{i}\right\} \quad$ mean D Iow variance
- HyperLogLog sketch: count 1,000,000,000 items with 2% error $\rightarrow 1.5 \mathrm{kB}$

Stream still too fast?

- No problem; easily parallelizable
- $\min (\min (A), \min (B))=\min (A \cup B)$

Local computation

- Some Basic Techniques
- I. Heavy hitters
- II. Frequent items
- Sketching
- III. Distinct count sketches
- IV. Count-Min Sketch
- Semi-streaming:
- V. Neighborhood function
- VI. Counting local triangles
- Conclusion

IV. Sketching

- Extension of the model
- Items + numbers
- $(a, 5) \rightarrow$ add 5 to a
- $(\mathrm{a},-3) \rightarrow$ subtract 3 from the count of item a
- Query
- Sum for item a
- New technique based upon a sketch
- Smart summary of the data

IV. Sketching

- There is not enough space to store sums for all items
- Instead we will store a (dxn) - matrix S
- We have d hash functions h_{1}, \ldots, h_{d}
- The counts of item i_{t} are stored in cells $\mathrm{S}\left[1, \mathrm{~h}_{1}\left(\mathrm{i}_{\mathrm{t}}\right)\right], \ldots, \mathrm{S}\left[\mathrm{d}, \mathrm{h}_{\mathrm{d}}\left(\mathrm{i}_{\mathrm{t}}\right)\right]$

IV. Sketching

- Notice that there will be collisions:

- For the non-negative case:
- all cells $\mathrm{S}\left[1, \mathrm{~h}_{1}\left(\mathrm{i}_{\mathrm{t}}\right)\right], \ldots, \mathrm{S}\left[\mathrm{d}, \mathrm{h}_{\mathrm{d}}\left(\mathrm{i}_{\mathrm{t}}\right)\right]$ will be overestimations of the count of i_{t}
- Return $\min \left(S\left[1, \mathrm{~h}_{1}\left(\mathrm{i}_{\mathrm{t}}\right)\right], \ldots, \mathrm{S}\left[\mathrm{d}, \mathrm{h}_{\mathrm{d}}\left(\mathrm{i}_{\mathrm{t}}\right)\right]\right)$

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

h1	0 O	$0 \bigcirc$	0	0
h2	0	0 O	0	-
h3	0 O	0 O	0	-
h4	$0 \quad 0$	0	0	

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

h1	0	0	-	1	
h2	0	0	-	1	-
h3	1	0	O	0	0
n4	1	0	-	0	

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

	h1	1	0	0	0	1
h2	0	0	1	0	0	
	h3	1	0	0	0	1
	h4	2	0	0	0	

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

	h1	2	0	0	0	1
h2	1	0	1	0	0	
	h3	1	0	1	0	1
	h4	2	0	0		1

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

	h1	3	0	0	0	1
h2	2	0	1	0	1	0
	h3	1		2	0	1
	h4	2	0	0	2	0

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

h1	3	-O	0	- 0	2	00
h2	2	-	1	0	2	\bigcirc
h3	2	\bigcirc	2	-	1	\bigcirc
h4	3	O	0	O	2	-

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

h1	3	-O	0	- 0	3	00
h2	2	-	1	- 0	3	\bigcirc
h3	3	O-	2	O	1	\bigcirc
h4	4	O	0	O	2	-

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

	h1	3	0	0	0	4
h2	3	0	1	0	3	0
	h3	3	0	3		1
	h4	4	0	1		2

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

	h1	4	0	0	0	4
h2	3	0	2	0	3	0
	h3	3	0	3		2
	h4	5	0	1		2

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

	h1	4	0	0	0	5
h2	3	0	2	0	4	0
	h3	4	0	3		2
	h4	6	0	1		2

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

	h1	4	0	0	0	6
h2	3	0	2	0	5	0
	h3	5	0	3		2
	h4	7	0	1		2

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

h1	4	0	1	0	6	0
	h2	3	0	2	0	6
	h3	6		3	0	2
	h4	7	0	2	0	2

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

	h1	4	0	2	0	6
h2	3	0	2	0	7	0
	h3	7	0	3		2
	h4	7	0	3		2

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

	h1	4	0	3	0	6
h2	3	0	2	0	8	0
	h3	8	0	3		2
	h4	7	0	4		2

- Stream:

Example: Count-min Sketch

- CM-Sketch with 3 columns and 4 rows

	h1	4	0	3	0	6
h2	3	0	2	0	8	0
	h3	8	0	3		2
	h4	7	0	4		2

- Stream: ○○○○○○○○○○○○○
- Report frequencies:

estimate		true count
6		5
2	2	
2	2	
3	1	
3	3	

IV. Sketching

- Usually for many more items than in the example
- Number of items usually exceeds number of cells by orders of magnitude
- Especially effective if only few "heavy" items, many rare items
- E.g., Zipfian distribution
- Tight guarantees on the estimation $w=\left\lceil\frac{e}{\varepsilon}\right\rceil$ and $d=\left\lceil\ln \frac{1}{\delta}\right\rceil ; \mathbf{h}_{1}, \ldots, \mathbf{h}_{\mathbf{d}}$ pairwise independent with probability $1-\delta, \hat{a}_{i} \leq a_{i}+\varepsilon\|\boldsymbol{a}\|_{1}$
- Some Basic Techniques
- I. Heavy hitters
- II. Frequent items
- Sketching
- III. Distinct count sketches
- IV. Count-Min Sketch
- Semi-streaming:
- V. Neighborhood function
- VI. Counting local triangles
- Conclusion

V. Neighborhood Function

- Count the number of pairs of nodes at distance 1, 2, 3, ...

1: 6
2: 3
3: 1

- Important statistics; allows to compute average degree, diameter, effective diameter.

V. Neighborhood Function

- Straightforward algorithm

Set $\mathrm{N}_{0}(\mathrm{v})=\{\mathrm{v}\}$
For $\mathrm{i}=1$ to r :
For all v in V :

$$
N_{i}(v)=N_{i-1}(v)
$$

For $\{\mathbf{v}, \mathrm{w}\}$ in E :

$$
\begin{aligned}
& N_{i}(v) \leftarrow N_{i}(v) \cup N_{i-1}(w) \\
& N_{i}(w) \leftarrow N_{i}(w) \cup N_{i-1}(v)
\end{aligned}
$$

Return $\operatorname{avg}\left(\left|\mathrm{N}_{1}(\mathrm{v})\right|\right), \operatorname{avg}\left(\left|\mathrm{N}_{2}(\mathrm{v})\right|-\left|\mathrm{N}_{1}(\mathrm{v})\right|\right), \ldots$

- Time: O(r |V| |E|)
- Space: O(|V|²)

V. Neighborhood Function

- Observation: we can replace every set by a summary
- Take union, cardinality, add an element
- Size of set: V versus size of summary: $\mathbf{k} \lll|\mathrm{V}|$
- |V| versus $\log (\log (|\mathrm{V}|))$
- With the summary we can:
- Time O(r k |E|)
- Space O(k|V|)
- Speedup is enormous (1000s of times faster!)
- Some Basic Techniques
- I. Heavy hitters
- II. Frequent items
- Sketching
- III. Distinct count sketches
- IV. Count-Min Sketch
- Semi-streaming:
- V. Neighborhood function
- VI. Counting local triangles
- Conclusion

VI. Streaming Graph Processing

- Example of an application of stream processing for attacking a truly big data problem

- Given a graph, count, for every node, in how many triangles it appears

Becchetti et al. Efficient Semi-streaming algorithms for local triangle counting in massive graphs. In: KDD'08

VI. Streaming Graph Processing

- Example of an application of stream processing for attacking a truly big data problem

- Given a graph, count, for every node, in how many triangles it appears

VI. Streaming Graph Processing

- Example of an application of stream processing for attacking a truly big data problem

- Given a graph, count, for every node, in how many triangles it appears

VI. Streaming Graph Processing

- Example of an application of stream processing for attacking a truly big data problem

- Given a graph, count, for every node, in how many triangles it appears

VI. Streaming Graph Processing

- Example of an application of stream processing for attacking a truly big data problem

- Given a graph, count, for every node, in how many triangles it appears
- Indicator for connectedness of the node into the community

VI. Storage Model

- Graph stored as a stream of edges

src	dest
a	b
a	c
a	d
a	e
b	c
b	d
b	e
c	d

- Random access is expensive
- Access data using limited number of linear scans

VI. Counting Triangles - Notation

- S(u) : neighbors of u
- $T(u)$: number of triangles in which u is involved
- d_{u} : degree of u

WHY counting triangles? T(u) and local clustering coefficient are informative features for many problems

VI. Counting Triangles

Figure from: Becchetti et al. Efficient Semi-streaming algorithms for local triangle counting in massive graphs. In: KDD'08

VI. We Need Brains, Not Just More Power ...

- N processors can speed up only a factor \mathbf{N} at most
- So, for \mathbf{N} nodes, we need \mathbf{N}^{2} processors to make it linear
- Solution will be based upon:

$$
\mathrm{T}(\mathrm{u})=\sum_{\mathrm{v} \in \mathrm{~S}(\mathrm{u})}|\mathrm{S}(\mathrm{u}) \cap \mathrm{S}(\mathrm{v})| / 2
$$

and a smart way to do intersection approximately

- Building block: estimate for the "Jaccard coefficient"

Vl. Brute Force- Example

1. Compute

$$
\begin{aligned}
& \mathrm{S}(\mathrm{a})=\{\mathrm{b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\} \\
& \mathrm{S}(\mathrm{~b})=\{\mathrm{a}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\} \\
& \mathrm{S}(\mathrm{c})=\{\mathrm{a}, \mathrm{~b}, \mathrm{~d}\} \\
& \mathrm{S}(\mathrm{~d})=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
& \mathrm{S}(\mathrm{e})=\{\mathrm{a}, \mathrm{~b}\}
\end{aligned}
$$

2. Initialize all $\mathrm{T}(\mathrm{u})$ to 0
3. Iterate over all edges (u,v)

$$
\text { Add }\|S(u) \cap S(v)\| \text { to } T(u) \text { and } T(v)
$$

4. Divide all $T(u)$ by 2

Too big to fit into memory

Random access

src	dest
a	b
a	c
a	d
a	e
b	c
b	d
b	e
c	d

VI. Building Block: Jaccard Coefficient

$J(A, B)=\frac{|A \cap B|}{|A \cup B|}$
Indicates how similar the sets A and B are.

Example:

$$
\begin{aligned}
& J(\{a, b, c\},\{c, d\})=1 / 4 \\
& J(\{a, b, c\},\{b, c, d\})=2 / 4
\end{aligned}
$$

Used, e.g., to detect near duplicates (Altavista) A set of n-grams in document 1
B set of n-grams in document 2

VI. Building Block: Jaccard Coefficient

Let A, B be subsets of U
h is a function mapping elements of U to $\{1,2, \ldots,|\mathrm{U}|\}$

Example: $\mathrm{d} \rightarrow 1, \mathrm{c} \rightarrow 2, \mathrm{a} \rightarrow 3, \mathrm{~b} \rightarrow 4$

Let $\min _{h}(A):=\min _{\mathrm{a} \in \mathrm{A}} \mathrm{h}(\mathrm{a})$
$\operatorname{Pr}\left[\min _{h}(A)=\min _{h}(B)\right]$
$=\operatorname{Pr}[$ min of all elements in $A \cup B$ is in $A \cap B]$
$=|A \cap B| /|A \cup B|$
$=J(A, B)$

VI. Building Block: Jaccard Coefficient

For random $h, \operatorname{Pr}\left[\min _{h}(A)=\min _{h}(B)\right]=J(A, B)$ "estimate" this probability by sampling many independent h
\rightarrow excellent estimate of $\mathrm{J}(\mathrm{A}, \mathrm{B})$

$$
\begin{aligned}
|A \cap B| & =J(A, B)|A \cup B|=J(A, B)(|A|+|B|-|A \cap B|) \\
& =(|A|+|B|) J(A, B) /(1+J(A, B))
\end{aligned}
$$

VI. Building Block: Jaccard Coefficient

- Independent functions h_{1}, \ldots, h_{m}
- "signature" of set A:
$|A|$ and vector ($\left.\min _{h 1}(A), \min _{h 2}(A), \ldots, \min _{h m}(A)\right)$
- Estimating | $\mathbf{A} \cap \mathbf{B} \mid$
- $\left(a_{1}, \ldots, a_{m}\right)$ vector for A
- $\left(b_{1}, \ldots, b_{m}\right)$ vector for B

Let $e=\#\left\{i \mid a_{i}=b_{i}\right\}$
e / m is an estimator for $J(A, B)$
$|A \cap B| \approx(|A|+|B|) e /(m+e)$

VI. Building Block: Jaccard Coefficient

Example: $\quad \mathbf{U}=\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathrm{d}, \mathrm{e}\}$
$A=\{a, b\}$
$B=\{b, c, d\}$
$C=\{a, b, c, e\}$

A	1	2	2	2
B	2	1	1	3
C	1	1	2	1

$J(A, B)=1 / 4$; estimate: 0
$J(A, C)=1 / 2$; estimate: $1 / 2$
$\rightarrow \quad 0$
$\rightarrow \quad 6 \times 2 / 6=2$
$J(B, C)=2 / 5$; estimate: $1 / 4$
$\rightarrow \quad 7 \times 1 / 5=7 / 5$

VI. The Algorithm

- Memory requirements:
- Main memory: couple of bytes per vertex
- External memory: One entry for every edge e
- Based upon T(u) = $\sum_{v \in S(u)}|S(u) \cap S(v)| / 2$
- For every edge (u,v) we maintain estimate of $|S(u) \cap S(v)|$ in external memory
- Using m functions $h_{1}, h_{2}, \ldots, h_{m}$

VI. Intelligent Intersection Algorithm - Example

1. Compute

$$
\begin{aligned}
& \operatorname{Sig}(a)=\left(a_{1}, \ldots, a_{m}\right) \\
& \operatorname{Sig}(b)=\left(b_{1}, \ldots, b_{m}\right) \\
& \operatorname{Sig}(c)=\left(c_{1}, \ldots, c_{m}\right) \\
& \operatorname{Sig}(d)=\left(d_{1}, \ldots, d_{m}\right) \\
& \operatorname{Sig}(e)=\left(e_{1}, \ldots, e_{m}\right)
\end{aligned}
$$

2. Initialize all $\mathrm{T}(\mathrm{u})$ to 0
3. Iterate over all edges (u,v)

src	dest
a	b
a	c
a	d
a	e
b	c
b	d
b	e
c	d

Compute e = \# \{i| $\left.u_{i}=v_{i}\right\}$
Estimate $|\mathbf{S}(\mathrm{u}) \cap \mathrm{S}(\mathrm{v})|$ based upon e
Add estimate of $|\mathbf{S}(\mathrm{u}) \cap \mathbf{S}(\mathrm{v})|$ to $\mathrm{T}(\mathrm{u})$ and $\mathrm{T}(\mathrm{v})$
4. Divide all $\mathbf{T}(\mathrm{u})$ by 2

VI. Intelligent Intersection Algorithm - Example

For $\mathbf{p}=1$ to \mathbf{m} :

1. Compute

Sig(a) $=h_{p}(S(a))$

Sig(e) $=h_{p}(S(e))$
2. Iterate over all edges (u,v) If $p==1$: initialize $Z_{u v}$ to 0 If $h_{p}(u)==h_{p}(v)$: add 1 to $Z_{u v}$

src	dest
a	b
a	c
a	d
a	e
b	c
b	d
b	e
c	d

Iterate over all Z_{uv} :
Estimate $|\mathbf{S}(\mathrm{u}) \cap \mathrm{S}(\mathrm{v})|$ based upon Z_{uv}
Add estimate of $|S(u) \cap S(v)|$ to $T(u)$ and $T(v)$
Divide all T(u) by 2

VI. The Complete Algorithm

for p : 1 to m
for every vertex v
$\min (v):=\infty$
for every edge (v, w)
$\min (\mathrm{v}):=\min \left(\min (\mathrm{v}), \mathrm{h}_{\mathrm{p}}(\mathrm{w})\right)$
$\min (w):=\min \left(\min (w), h_{p}(v)\right)$
for every edge (\mathbf{v}, w)
if $p==1$ then $Z_{v, w}:=0$
if $\min (v)==\min (w)$ then

$$
Z_{v, w}:=Z_{v, w}+1
$$

for every $Z_{v, w}$:
$T(v):=T(v)+$ estimate of $|S(v) \cap S(w)|$
$T(w):=T(w)+$ estimate of $|S(v) \cap S(w)|$
for all vertices v :

$$
T(v):=T(v) / 2
$$

VI. The Complete Algorithm

for p : 1 to m

for every vertex v $\min (v):=\infty$
for every edge (v, w)
:---
$\min (w):=\min \left(\min (w), h_{p}(v)\right)$

Sequential read

Sequential write

Secondary storage
for every edge (v,w)

$$
\text { if } p==1 \text { then } Z_{v, w}:=0
$$

if $\min (v)==\min (w)$ then

$$
Z_{v, w}:=Z_{v, w}+1
$$

for every $Z_{v, w}$:
$\mathrm{T}(\mathrm{v}):=\mathrm{T}(\mathrm{v})+$ estimate of $|\mathrm{S}(\mathrm{v}) \cap \mathrm{S}(\mathrm{w})|$
$\mathrm{T}(\mathrm{w}):=\mathrm{T}(\mathrm{w})+$ estimate of $\mid \mathrm{S}(\mathrm{v}) \cap \mathrm{S}(\mathrm{w})$
for all vertices v :

$$
\mathrm{T}(\mathrm{v}):=\mathrm{T}(\mathrm{v}) / 2
$$

$\min (u)$ for all vertices u : in memory $T(u)$ for all vertices: in memory $Z_{u, v}$ for all edges (u,v): on disk

VI. Counting Triangles

- Reduce complexity from $|\mathrm{V}|^{3}$ to $\mathrm{O}(\mathrm{m}|\mathrm{E}|)$
- Computing power is great, but only gives you an at most linear speed-up
- Willingness to sacrifice exactness leads to incredible performance gains
- Resulting approximation still excellent feature
- Some Basic Techniques
- I. Heavy hitters
- II. Frequent items
- Sketching
- III. Distinct count sketches
- IV. Count-Min Sketch
- Semi-streaming:
- V. Neighborhood function
- VI. Counting local triangles
- Conclusion

Conclusion

- Stream mining:
- Severe computational restrictions
- Yet, surprisingly many operations are still possible
- Heavy hitters
- Number of distinct items
- Frequent items
- "Cash register"
- Counting triangles and neighborhood function as applications

