Processing Data Streams

Toon Calders

ECOLE POLYTECHNIQUE DE BRUXELLES

Motivation: Stream Processing

- In stream processing:
 - Data cannot be stored; one-pass
 - Analysis needs to be online no waiting for answers
 - Time per update is limited

Motivation: Stream Processing

- Many of these trivial questions become extremely difficult for streams
 - How much traffic from/to a certain IP address?
 - How many distinct flows?
 - What are the heavy hitters?

Stream Mining

- Abstraction:
 - Stream is a continuous sequence of *items*

- Problems:
 - Heavy hitters
 - How many distinct items do I have in my stream?

• • • • • (6)

Frequent items in the stream

3 or more: • • •

Stream Mining

- It won't always be possible to give an exact answer
 - Therefore relaxations
- Popular: ε , δ approximation:
 - In 1- δ of the cases we are at most ϵ off.
- We will show three examples of stream mining algorithms:
 - Min-wise sampling
 - Number of Distinct Items (min-hash)
 - Frequent items

Outline

- Some Basic Techniques
 - I. Heavy hitters
 - II. Frequent items
- Sketching
 - III. Distinct count sketches
 - IV. Count-Min Sketch
- Semi-streaming:
 - V. Neighborhood function
 - VI. Counting local triangles
- Conclusion

I. Heavy Hitters

 "Given a stream, identify all items that occur more than 10% of the time"

 "Given a stream, identify all items that occur more than 10% of the time"

Solution storing 9 colors and counters :

- Summary={}
- For each item

 that arrives
 - If (•, count) is in Summary:
 update count to count + 1
 - Else if |S|<10:
 add (•, 1) to S

- Else:

decrease the count of all pairs in S remove all pairs with count = 0 "Given a stream, identify all items that occur more than 10% of the time"

Solution storing 9 colors and counters :

- Guarantee: if an item

 appeared more than 10% of time, there will be an entry (
 count) in the summary
- Disadvantage: there may be false positives
- Obviously extendible to other thresholds
 - Frequency threshold $1/k \rightarrow k-1$ memory places

Outline

- Some Basic Techniques
 - I. Heavy hitters
 - II. Frequent items
- Sketching
 - III. Distinct count sketches
 - IV. Count-Min Sketch
- Semi-streaming:
 - V. Neighborhood function
 - VI. Counting local triangles
- Conclusion

- Counting every item is impossible
 - E.g., all pairs of people that phone to each other
- We do not know on beforehand which combinations will be frequent
- Example:

- 30 items; :8, :6, :5
- All others are 3
- If frequency is 20%: and need to be outputted

- The following algorithm finds a superset of the s-frequent items:
 - Initialization: none of the items has a counter
 - Item enters at time t:
 - If has a counter: counter(•) ++
 - Else:
 - counter(•) = 1
 - start(•) = t
 - For all other counters do:
 - If counter(•) / (t start(•) + 1) < s:</p>
 - Delete counter(-), start(-)
- When the frequent items are needed: return all items that have a counter

• Example: (20%)

Example: (20%)

	start	# (freq)
	1	1 (20%)
	2	1 (25%)
	3	2 (66%)
\bigcirc	4	1 (50%)

Example: (20%) •••••

	start	# (freq)				
	2	1 (20%)				
	3	2 (50%)				
\bigcirc	4	1 (33%)				
\bigcirc	5	1 (100%)				

Example: (20%)

	start	# (freq)
	2	2 (25%)
	3	2 (29%)
\bigcirc	6	1 (25%)
	8	2 (100%)

	start	# (freq)
	2	<u>1 (25%)</u>
	<u>17</u>	4 (29%)
\bigcirc	27	1 (25%)
\bigcirc	8	<u>6 (26%)</u>
\bigcirc	19	3 (25%)

- Why does it work?
 - If
 is not recorded,
 is not frequent in the stream
- Imagine marking when was recorded:
 - If occurs, recording starts
 - Only stopped if
 becomes infrequent since start recording

 Whole stream can be partitioned into parts in which ● is not frequent → ● is not frequent in the whole stream

Algorithm is called "lossy counting"

II. Lossy Counting – Space Requirements

- Let N be the length of the stream
- s minimal frequency threshold. Let k=1/s
- Item a is in the summary if:
 - a appears once among last k items
 - a appears twice among last 2k items
 -
 - a appears x times among last xk items
 - ...
 - a appears sN times among last N items

II. Lossy Counting – Space Requirements

Divide stream in blocks of size k = 1/s

Constellation with maximum number of candidates:

II. Lossy Counting – Space Requirements

- Hence total space requirement:
 Σ_{i=1...N/k} k/i ≈ k log(N/k)
- Recall: k = 1/s
- Worst case space requirement: 1/s log(Ns)

II. Lossy Counting – Guarantee

- Suppose that we want to know the frequency up to a factor $\boldsymbol{\epsilon}$
 - Same algorithm, yet use ϵ as minimum support threshold
 - Report all items with count \geq (s- ε) N
- Guaranteed: true frequency in the interval [count/N, count/N+ε]

II. Lossy Counting - Summary

- Worst case space consumption:
 1/ε log(Nε)
- Guarantee: with 100% certainty, the relative error for all s-frequent itemsets is $\boldsymbol{\epsilon}$
- Performs very well in practice
 - Optimization: check if item is frequent only every 1/ε steps

Outline

- Some Basic Techniques
 - I. Heavy hitters
 - II. Frequent items
- Sketching
 - III. Distinct count sketches
 - IV. Count-Min Sketch
- Semi-streaming:
 - V. Neighborhood function
 - VI. Counting local triangles
- Conclusion

III. How Many Different Items do I have?

- Number of distinct items is too big to keep all in memory
- Observation:

If h(.) is a hash function: every $x_i \rightarrow [0,1]$ Maintain min{ h(x₁), h(x₂), ..., h(x_n) } E[min { h(x₁), h(x₂), ..., h(x_n) }] = 1/(1+D) with D = | { x₁, x₂, ..., x_n } |

- Average over many (independent) h to decrease variance
- Called: min-hash algorithm

III. How Many Different Items do I have?

• Example:

				\bigcirc						\bigcirc		\bigcirc		
.13	.25	.17	.85	.33	.52	.13	.25	.17	.85	.33	.52	.33	.52	.13

- Min h(x) = .13
- Estimate D: 1/(1+d) = 0.13 → d = 1/0.13 1 ≈ 6.7

 Averaging over independent trials makes the result more accurate

III. How Many Different Items do I have?

Many variations on the same idea

Multiple hash-functions h ₁ h _k							
- $H_1 \rightarrow estimate 1$	mean D	high variance					
$-H_2 \rightarrow estimate 2$	mean D	high variance					
− H _k → estimate k	mean D	high variance					
– Median {estimate _i }	mean D	low variance					

 HyperLogLog sketch: count 1,000,000,000 items with 2% error → 1.5kB

Stream still too fast?

- No problem; easily parallelizable
 - min (min(A), min(B)) = min(A∪B)

Local computation

Outline

- Some Basic Techniques
 - I. Heavy hitters
 - II. Frequent items
- Sketching
 - III. Distinct count sketches
 - IV. Count-Min Sketch
- Semi-streaming:
 - V. Neighborhood function
 - VI. Counting local triangles
- Conclusion

IV. Sketching

- Extension of the model
 - Items + numbers
 - (a,5) → add 5 to a
 - (a,-3) \rightarrow subtract 3 from the count of item a
 - Query
 - Sum for item a
- New technique based upon a sketch
 - Smart summary of the data

IV. Sketching

- There is not enough space to store sums for all items
- Instead we will store a (d x n) matrix S
 - We have d hash functions h_1, \dots, h_d
 - The counts of item i_t are stored in cells S[1,h₁(i_t)], ..., S[d,h_d(i_t)]

IV. Sketching

Notice that there will be collisions:

• For the non-negative case:

- all cells S[1,h₁(i_t)], ..., S[d,h_d(i_t)] will be overestimations of the count of i_t
- Return *min*(S[1,h₁(i_t)], ..., S[d,h_d(i_t)])

Example: Count-min Sketch

CM-Sketch with 3 columns and 4 rows

• Stream:

Example: Count-min Sketch

CM-Sketch with 3 columns and 4 rows

• Stream: •

Example: Count-min Sketch

CM-Sketch with 3 columns and 4 rows

• Stream: • •
CM-Sketch with 3 columns and 4 rows

• Stream: • • •

CM-Sketch with 3 columns and 4 rows

• Stream: • • • •

CM-Sketch with 3 columns and 4 rows

• Stream: • • • • •

CM-Sketch with 3 columns and 4 rows

• Stream: • • • • • •

CM-Sketch with 3 columns and 4 rows

• Stream: • • • • • • • •

CM-Sketch with 3 columns and 4 rows

• Stream: • • • • • • • • • • •

CM-Sketch with 3 columns and 4 rows

- Report frequencies:

<u>estimate</u>	<u>true count</u>
6	5
2	2
2	2
<u> </u>	1
• 3	3

IV. Sketching

- Usually for many more items than in the example
 - Number of items usually exceeds number of cells by orders of magnitude
- Especially effective if only few "heavy" items, many rare items
 - E.g., Zipfian distribution
- Tight guarantees on the estimation $w = \lceil \frac{e}{\epsilon} \rceil$ and $d = \lceil \ln \frac{1}{\delta} \rceil$; h₁,..,h_d pairwise independent with probability $1 - \delta$, $\hat{a}_i \le a_i + \varepsilon ||\boldsymbol{a}||_1$

Outline

- Some Basic Techniques
 - I. Heavy hitters
 - II. Frequent items
- Sketching
 - III. Distinct count sketches
 - IV. Count-Min Sketch
- Semi-streaming:
 - V. Neighborhood function
 - VI. Counting local triangles
- Conclusion

V. Neighborhood Function

• Count the number of pairs of nodes at distance 1, 2, 3, ...

 Important statistics; allows to compute average degree, diameter, effective diameter.

V. Neighborhood Function

```
• Straightforward algorithm

Set N_0(v) = \{v\}

For i = 1 to r:

For all v in V:

N_i(v)=N_{i-1}(v)

For \{v,w\} in E:

N_i(v) \leftarrow N_i(v) \cup N_{i-1}(w)

N_i(w) \leftarrow N_i(w) \cup N_{i-1}(v)
```

Return $avg(|N_1(v)|)$, $avg(|N_2(v)|-|N_1(v)|)$, ...

- Time: O(r |V| |E|)
- Space: O(|V|²)

V. Neighborhood Function

- Observation: we can replace every set by a *summary*
 - Take union, cardinality, add an element
- Size of set: V versus size of summary: k <<< |V|
 - |V| versus log(log(|V|))
 - With the summary we can:
- Time O(r k |E|)
- Space O(k |V|)
- Speedup is enormous (1000s of times faster!)

Outline

- Some Basic Techniques
 - I. Heavy hitters
 - II. Frequent items
- Sketching
 - III. Distinct count sketches
 - IV. Count-Min Sketch
- Semi-streaming:
 - V. Neighborhood function
 - VI. Counting local triangles
- Conclusion

 Example of an application of stream processing for attacking a truly big data problem

 Given a graph, count, for every node, in how many triangles it appears

Becchetti et al. Efficient Semi-streaming algorithms for local triangle counting in massive graphs. In: KDD'08

 Example of an application of stream processing for attacking a truly big data problem

 Given a graph, count, for every node, in how many triangles it appears

 Example of an application of stream processing for attacking a truly big data problem

 Given a graph, count, for every node, in how many triangles it appears

 Example of an application of stream processing for attacking a truly big data problem

 Given a graph, count, for every node, in how many triangles it appears

 Example of an application of stream processing for attacking a truly big data problem

- Given a graph, count, for every node, in how many triangles it appears
 - Indicator for connectedness of the node into the community

Graph stored as a stream of edges

- Random access is *expensive*
- Access data using limited number of linear scans

VI. Counting Triangles - Notation

- S(u) : neighbors of u
- T(u) : number of triangles in which u is involved
- d_u: degree of u
- Local clustering coefficient: 2 T(u)

$$d_u(d_u-1)$$

WHY counting triangles? T(u) and local clustering coefficient are informative features for many problems

VI. Counting Triangles

Figure from: Becchetti et al. Efficient Semi-streaming algorithms for local triangle counting in massive graphs. In: KDD'08

VI. We Need Brains, Not Just More Power ...

- N processors can speed up only a factor N at most
 - So, for N nodes, we need N² processors to make it linear
- Solution will be based upon: $T(u) = \sum_{v \in S(u)} |S(u) \cap S(v)| / 2$

and a smart way to do intersection approximately

Building block: estimate for the "Jaccard coefficient"

VI. Brute Force- Example

1. Compute

S(a) = {b,c,d,e} S(b) = {a,c,d,e} S(c) = {a,b,d} S(d) = {a,b,c} S(e) = {a,b}

- 2. Initialize all T(u) to 0
- 3. Iterate over all edges (u,v)Add $|S(u) \cap S(v)|$ to T(u) and T(v)
- 4. Divide all T(u) by 2

Random access to secondary storage

src	dest
а	b
а	С
а	d
а	е
b	С
b	d
b	е
C	Ь

Too big to fit into memory

VI. Building Block: Jaccard Coefficient

Indicates how similar the sets A and B are.

Example: J({a,b,c},{c,d}) = 1/4 J({a,b,c},{b,c,d}) = 2/4

Used, e.g., to detect near duplicates (Altavista) A set of n-grams in document 1 B set of n-grams in document 2 Let A, B be subsets of U h is a function mapping elements of U to {1,2,...,|U|}

Example: $d \rightarrow 1$, $c \rightarrow 2$, $a \rightarrow 3$, $b \rightarrow 4$

```
Let \min_{h}(A) := \min_{a \in A} h(a)

Pr[\min_{h}(A) = \min_{h}(B)]

= Pr[min of all elements in A\cupB is in A\capB]

= |A \cap B| / |A \cup B|

= J(A,B)
```

For random h, Pr[min_h(A) = min_h(B)] = J(A,B) "estimate" this probability by sampling many independent h

→ excellent estimate of J(A,B)

 $|A \cap B| = J(A,B) |A \cup B| = J(A,B) (|A|+|B|-|A \cap B|)$ = (|A| + |B|) J(A,B) / (1+J(A,B))

VI. Building Block: Jaccard Coefficient

- Independent functions h₁, ..., h_m
- "signature" of set A:
 |A| and vector (min_{h1}(A), min_{h2}(A), ..., min_{hm}(A))
- Estimating $| A \cap B |$
 - (a₁, ..., a_m) vector for A
 - (b₁, ..., b_m) vector for B
 - Let $e = # \{ i | a_i = b_i \}$
 - e / m is an estimator for J(A,B)

 $|A \cap B| \approx (|A| + |B|) e / (m + e)$

VI. Building Block: Jaccard Coefficient

Example: U = { a, b, c, d, e }

A = { a, b } B = { b, c, d } C = { a, b, c, e }

А	1	2	2	2
В	2	1	1	3
С	1	1	2	1

	h ₁	h ₂	h ₃	h ₄
а	1	2	5	2
b	2	5	2	4
С	3	1	4	5
d	4	4	1	3
е	5	3	3	1

J(A,B) = 1/4 ; estimate: 0 J(A,C) = 1/2 ; estimate: 1/2 J(B,C) = 2/5 ; estimate: 1/4 $\rightarrow 0$ $\rightarrow 6 \times 2/6 = 2$

→ 7 x 1/5 = 7/5

VI. The Algorithm

- Memory requirements:
 - Main memory: couple of bytes per vertex
 - External memory: One entry for every edge e

- Based upon T(u) = $\sum_{v \in S(u)} |S(u) \cap S(v)|/2$
 - For every edge (u,v) we maintain estimate of $|S(u) \cap S(v)|$ in external memory

- Using m functions h₁, h₂, ..., h_m

VI. Intelligent Intersection Algorithm - Example

Still quite expensive

on memory

1. Compute

Sig(a) = $(a_1,...,a_m)$ Sig(b) = $(b_1,...,b_m)$ Sig(c) = $(c_1,...,c_m)$ Sig(d) = $(d_1,...,d_m)$ Sig(e) = $(e_1,...,e_m)$

2. Initialize all T(u) to 0

3. Iterate over all edges (u,v)
Compute e = # { i | u_i = v_i }
Estimate |S(u) ∩ S(v)| based upon e
Add estimate of |S(u) ∩ S(v)| to T(u) and T(v)
4. Divide all T(u) by 2

src	dest
а	b
а	С
а	d
а	е
b	С
b	d
b	е
С	d

VI. Intelligent Intersection Algorithm - Example

For $p = 1$ to m:		dest	
1. Compute	а	b	
$Sig(a) = h_{a}(S(a))$	а	С	
		d	
•••	а	е	
Sig(e) = h _p (S(e))	b	С	
2. Iterate over all edges (u,v)	b	d	
If p==1: initialize Z _{uv} to 0	b	е	
If $h_p(u) == h_p(v)$: add 1 to Z_{uv}	С	d	
Iterate over all Z _{uv} :			
Estimate $ S(u) \cap S(v) $ based upon Z_{uv}	v		
Add estimate of $ S(u) \cap S(v) $ to T(u) and T(v)			
Divide all T(u) by 2			
VI. The Complete Algorithm

```
for p : 1 to m
        for every vertex v
                 min(v) := ∞
        for every edge (v,w)
                 min(v) := min(min(v), h_p(w))
                 min(w) := min(min(w), h_p(v))
        for every edge (v,w)
                 if p==1 then Z_{v,w} := 0
                 if min(v) == min(w) then
                          Z_{v.w} := Z_{v.w} + 1
for every Z_{v,w}:
        T(v) := T(v) + estimate of |S(v) \cap S(w)|
        T(w) := T(w) + estimate of |S(v) \cap S(w)|
for all vertices v:
        T(v) := T(v)/2
```

VI. The Complete Algorithm

VI. Counting Triangles

- Reduce complexity from |V|³ to O(m|E|)
- Computing power is great, but only gives you an at most linear speed-up
- Willingness to sacrifice exactness leads to incredible performance gains
- Resulting approximation still excellent feature

Outline

- Some Basic Techniques
 - I. Heavy hitters
 - II. Frequent items
- Sketching
 - III. Distinct count sketches
 - IV. Count-Min Sketch
- Semi-streaming:
 - V. Neighborhood function
 - VI. Counting local triangles
- Conclusion

Conclusion

- Stream mining:
 - Severe computational restrictions
 - Yet, surprisingly many operations are still possible
 - Heavy hitters
 - Number of distinct items
 - Frequent items
 - "Cash register"
- Counting triangles and neighborhood function as applications