

Processing Data Streams

Toon Calders

Motivation: Stream Processing

• In stream processing:

• Data cannot be stored; one-pass

• Analysis needs to be online – no waiting for answers

• Time per update is limited

Motivation: Stream Processing

• Many of these trivial questions become extremely

difficult for streams

• How much traffic from/to a certain IP address?

• How many distinct flows?

• What are the heavy hitters?

Stream Mining

• Abstraction:

• Stream is a continuous sequence of items

• Problems:

• Heavy hitters

• How many distinct items do I have in my stream?

 (6)

• Frequent items in the stream

 3 or more:

…

Stream Mining

• It won’t always be possible to give an exact answer

• Therefore relaxations

• Popular: ,  - approximation:

• In 1-  of the cases we are at most  off.

• We will show three examples of stream mining

algorithms:

• Min-wise sampling

• Number of Distinct Items (min-hash)

• Frequent items

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

I. Heavy Hitters

• “Given a stream, identify all items that occur more

than 10% of the time”

I. Heavy Hitters

• “Given a stream, identify all items that occur more

than 10% of the time”

Solution storing 9 colors and counters :

• Summary={}

• For each item that arrives

− If (, count) is in Summary:

 update count to count + 1

− Else if |S|<10:

 add (, 1) to S

− Else:

 decrease the count of all pairs in S

 remove all pairs with count = 0

I. Heavy Hitters

• “Given a stream, identify all items that occur more

than 10% of the time”

Solution storing 9 colors and counters :

• Guarantee: if an item appeared more than 10% of

time, there will be an entry (, count) in the summary

• Disadvantage: there may be false positives

• Obviously extendible to other thresholds

• Frequency threshold 1/k  k-1 memory places

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

II. Identify Frequent Items

• Counting every item is impossible

• E.g., all pairs of people that phone to each other

• We do not know on beforehand which combinations

will be frequent

• Example:

30 items; :8, :6, :5

All others are 3

If frequency is 20%: and need to be outputted

II. Identify Frequent Items

• The following algorithm finds a superset of the s-frequent
items:

• Initialization: none of the items has a counter

• Item enters at time t:

− If has a counter: counter() ++

− Else:

− counter() = 1

− start() = t

− For all other counters do:

− If counter() / (t – start() + 1) < s:

− Delete counter(), start()

• When the frequent items are needed: return all items that
have a counter

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 1 1 (100%)

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 1 1 (50%)

 2 1 (100%)

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 1 1 (20%)

 2 1 (25%)

 3 2 (66%)

 4 1 (50%)

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 1 1 (17%)

 2 1 (20%)

 3 2 (50%)

 4 1 (33%)

 5 1 (100%)

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 2 2 (25%)

 3 2 (29%)

 6 1 (25%)

 8 2 (100%)

II. Identify Frequent Items

• Example: (20%)

start # (freq)

 2 1 (25%)

 17 4 (29%)

 27 1 (25%)

 8 6 (26%)

 19 3 (25%)

II. Identify Frequent Items

• Why does it work?

• If is not recorded, is not frequent in the stream

• Imagine marking when was recorded:

• If occurs, recording starts

• Only stopped if becomes infrequent since start recording

• Whole stream can be partitioned into parts in which is

not frequent  is not frequent in the whole stream

recorded recorded

infrequent infrequent

No No

Algorithm is called “lossy counting”

II. Lossy Counting – Space Requirements

• Let N be the length of the stream

• s minimal frequency threshold. Let k=1/s

• Item a is in the summary if:

• a appears once among last k items

• a appears twice among last 2k items

• …

• a appears x times among last xk items

• …

• a appears sN times among last N items

II. Lossy Counting – Space Requirements

• Divide stream in blocks of size k = 1/s

• Constellation with maximum number of candidates:

k candidates;

“consume”

 1 element

k candidates;

“consume”

 2 elements

k candidates;

“consume”

 3 elements

k candidates;

“consume”

 4 elements

p p p p q q q q mmmnnnooo i i j j k k l l a b c d e f g h

k/3 different

each appears

3 times

k/4 different

each appears

4 times

k/2 different

each appears

2 times

k different

each appears

1 time

II. Lossy Counting – Space Requirements

• Hence total space requirement:

 i=1…N/k k/i  k log(N/k)

• Recall: k = 1/s

• Worst case space requirement: 1/s log(Ns)

II. Lossy Counting – Guarantee

• Suppose that we want to know the frequency up to a

factor 

• Same algorithm, yet use  as minimum support

threshold

• Report all items with count  (s- ) N

• Guaranteed: true frequency in the interval

 [count/N, count/N+]

recorded recorded

No No

recorded

Less than N occurrences of

II. Lossy Counting - Summary

• Worst case space consumption:

 1/ log(N)

• Guarantee: with 100% certainty, the relative error for

all s-frequent itemsets is 

• Performs very well in practice

• Optimization: check if item is frequent only every 1/

steps

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

III. How Many Different Items do I have?

• Number of distinct items is too big to keep all in

memory

• Observation:

 If h(.) is a hash function: every xi  [0,1]

 Maintain min{ h(x1), h(x2), …, h(xn) }

 E[min { h(x1), h(x2), …, h(xn) }] = 1/(1+D)

 with D = | { x1, x2, …, xn } |

• Average over many (independent) h to decrease

variance

• Called: min-hash algorithm

III. How Many Different Items do I have?

• Example:

• Min h(x) = .13

• Estimate D: 1/(1+d) = 0.13  d = 1/0.13 – 1  6.7

• Averaging over independent trials makes the result

more accurate

.13 .25 .17 .85 .33 .52 .13 .25 .17 .85 .33 .52 .33 .52 .13

III. How Many Different Items do I have?

• Many variations on the same idea

• Multiple hash-functions h1 … hk

− H1  estimate 1 mean D high variance

− H2  estimate 2 mean D high variance

− …

− Hk  estimate k mean D high variance

− Median {estimatei} mean D low variance

• HyperLogLog sketch: count 1,000,000,000 items with

2% error  1.5kB

Stream still too fast?

• No problem; easily parallelizable

• min (min(A), min(B)) = min(AB)

stream substream

min h1, … min hk

Local computation

min h1, … min hk

min h1, … min hk

min h1, … min hk

min h1, … min hk

Global minimum

min h1, … min hk

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

IV. Sketching

• Extension of the model

• Items + numbers

− (a,5)  add 5 to a

− (a,-3)  subtract 3 from the count of item a

• Query

− Sum for item a

• New technique based upon a sketch

• Smart summary of the data

IV. Sketching

• There is not enough space to store sums for all

items

• Instead we will store a (d x n) – matrix S

• We have d hash functions h1, … , hd

• The counts of item it are stored in cells

S[1,h1(it)], … , S[d,hd(it)]

IV. Sketching

• Notice that there will be collisions:

• For the non-negative case:

• all cells S[1,h1(it)], … , S[d,hd(it)] will be overestimations

of the count of it

• Return min(S[1,h1(it)], … , S[d,hd(it)])

is

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

 0 0 0

 0 0 0

 0 0 0

 0 0 0

h1

h2

h3

h4

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

 0 0 1

 0 0 1

 1 0 0

 1 0 0

h1

h2

h3

h4

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

 1 0 1

 0 1 1

 1 0 1

 2 0 0

h1

h2

h3

h4

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

 2 0 1

 1 1 1

 1 1 1

 2 0 1

h1

h2

h3

h4

• CM-Sketch with 3 columns and 4 rows

• Stream:

 3 0 1

 2 1 1

 1 2 1

 2 0 2

Example: Count-min Sketch

h1

h2

h3

h4

 3 0 2

 2 1 2

 2 2 1

 3 0 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 3 0 3

 2 1 3

 3 2 1

 4 0 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 3 0 4

 3 1 3

 3 3 1

 4 1 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 0 4

 3 2 3

 3 3 2

 5 1 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 0 5

 3 2 4

 4 3 2

 6 1 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 0 6

 3 2 5

 5 3 2

 7 1 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 1 6

 3 2 6

 6 3 2

 7 2 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 2 6

 3 2 7

 7 3 2

 7 3 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 3 6

 3 2 8

 8 3 2

 7 4 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

h1

h2

h3

h4

 4 3 6

 3 2 8

 8 3 2

 7 4 2

Example: Count-min Sketch

• CM-Sketch with 3 columns and 4 rows

• Stream:

• Report frequencies:

 estimate true count

 6 5

 2 2

 2 2

 3 1

 3 3

h1

h2

h3

h4

IV. Sketching

• Usually for many more items than in the example

• Number of items usually exceeds number of cells by

orders of magnitude

• Especially effective if only few “heavy” items, many

rare items

• E.g., Zipfian distribution

• Tight guarantees on the estimation

 ; h1,..,hd pairwise independent

 with probability ,

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

V. Neighborhood Function

• Count the number of pairs of nodes at

distance 1, 2, 3, …

• Important statistics; allows to compute average

degree, diameter, effective diameter.

1: 6

2: 3

3: 1

V. Neighborhood Function

• Straightforward algorithm

Set N0(v) = {v}

For i = 1 to r:

 For all v in V:

 Ni(v)=Ni-1(v)

 For {v,w} in E:

 Ni(v)  Ni(v)  Ni-1(w)

 Ni(w)  Ni(w)  Ni-1(v)

Return avg(|N1(v)|), avg(|N2(v)|-|N1(v)|), …

• Time: O(r |V| |E|)

• Space: O(|V|2)

V. Neighborhood Function

• Observation: we can replace every set by a summary

• Take union, cardinality, add an element

• Size of set: V versus size of summary: k <<< |V|

• |V| versus log(log(|V|))

• With the summary we can:

• Time O(r k |E|)

• Space O(k |V|)

• Speedup is enormous (1000s of times faster!)

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

• Example of an application of stream processing for

attacking a truly big data problem

• Given a graph, count, for every node, in how many

triangles it appears

VI. Streaming Graph Processing

Becchetti et al. Efficient Semi-streaming algorithms for local triangle

counting in massive graphs. In: KDD’08

• Example of an application of stream processing for

attacking a truly big data problem

• Given a graph, count, for every node, in how many

triangles it appears

VI. Streaming Graph Processing

• Example of an application of stream processing for

attacking a truly big data problem

• Given a graph, count, for every node, in how many

triangles it appears

VI. Streaming Graph Processing

• Example of an application of stream processing for

attacking a truly big data problem

• Given a graph, count, for every node, in how many

triangles it appears

VI. Streaming Graph Processing

3

• Example of an application of stream processing for

attacking a truly big data problem

• Given a graph, count, for every node, in how many

triangles it appears

• Indicator for connectedness of the node into the

community

VI. Streaming Graph Processing

3

4 4

3
1

VI. Storage Model

• Graph stored as a stream of edges

• Random access is expensive

• Access data using limited number of linear scans

a b

c

d
e

src dest

a b

a c

a d

a e

b c

b d

b e

c d

VI. Counting Triangles - Notation

• S(u) : neighbors of u

• T(u) : number of triangles in which u is involved

• du : degree of u

• Local clustering coefficient:

 2 T(u)

 du(du-1)

WHY counting triangles? T(u) and local clustering

coefficient are informative features for many problems

u

S(u)

VI. Counting Triangles

Figure from: Becchetti et al. Efficient Semi-streaming algorithms for local triangle

counting in massive graphs. In: KDD’08

VI. We Need Brains, Not Just More Power …

• N processors can speed up only a factor N at most

• So, for N nodes, we need N2 processors to make it

linear

• Solution will be based upon:

 T(u) = vS(u) |S(u)  S(v)| / 2

 and a smart way to do intersection approximately

• Building block: estimate for the “Jaccard coefficient”

u v

Neighbor of both u and v

VI. Brute Force- Example

1. Compute

 S(a) = {b,c,d,e}

 S(b) = {a,c,d,e}

 S(c) = {a,b,d}

 S(d) = {a,b,c}

 S(e) = {a,b}

2. Initialize all T(u) to 0

3. Iterate over all edges (u,v)

 Add |S(u)  S(v)| to T(u) and T(v)

4. Divide all T(u) by 2

src dest

a b

a c

a d

a e

b c

b d

b e

c d

Too big to fit

into memory

Random access

to secondary storage

VI. Building Block: Jaccard Coefficient

J(A,B) = |AB|

 |AB|

Indicates how similar the sets A and B are.

Example:

 J({a,b,c},{c,d}) = 1/4

 J({a,b,c},{b,c,d}) = 2/4

Used, e.g., to detect near duplicates (Altavista)

 A set of n-grams in document 1

 B set of n-grams in document 2

VI. Building Block: Jaccard Coefficient

Let A, B be subsets of U

h is a function mapping elements of U to {1,2,…,|U|}

Example: d  1, c 2, a  3, b  4

Let minh(A) := minaA h(a)

 Pr[minh(A) = minh(B)]

 = Pr[min of all elements in AB is in AB]

 = |AB| / |AB|

 = J(A,B)

VI. Building Block: Jaccard Coefficient

For random h, Pr[minh(A) = minh(B)] = J(A,B)

“estimate” this probability by sampling many

independent h

  excellent estimate of J(A,B)

|AB| = J(A,B) |AB| = J(A,B) (|A|+|B|-|AB|)

 = (|A| + |B|) J(A,B) / (1+J(A,B))

VI. Building Block: Jaccard Coefficient

• Independent functions h1, …, hm

• “signature” of set A:

|A| and vector (minh1(A), minh2(A), …, minhm(A))

• Estimating | A  B |

• (a1, …, am) vector for A

• (b1, …, bm) vector for B

Let e = # { i | ai=bi }

e / m is an estimator for J(A,B)

| A  B |  (|A| + |B|) e / (m + e)

VI. Building Block: Jaccard Coefficient

Example: U = { a, b, c, d, e }

A = { a, b }

B = { b, c, d }

C = { a, b, c, e }

J(A,B) = 1/4 ; estimate: 0  0

J(A,C) = 1/2 ; estimate: 1/2  6 x 2/6 = 2

J(B,C) = 2/5 ; estimate: 1/4  7 x 1/5 = 7/5

h1 h2 h3 h4

a 1 2 5 2

b 2 5 2 4

c 3 1 4 5

d 4 4 1 3

e 5 3 3 1
A 1 2 2 2

B 2 1 1 3

C 1 1 2 1

VI. The Algorithm

• Memory requirements:

• Main memory: couple of bytes per vertex

• External memory: One entry for every edge e

• Based upon T(u) = vS(u) |S(u)  S(v)|/ 2

• For every edge (u,v) we maintain estimate of

|S(u)  S(v)| in external memory

− Using m functions h1, h2, …, hm

VI. Intelligent Intersection Algorithm - Example

1. Compute

 Sig(a) = (a1,…,am)

 Sig(b) = (b1,…,bm)

 Sig(c) = (c1,…,cm)

 Sig(d) = (d1,…,dm)

 Sig(e) = (e1,…,em)

2. Initialize all T(u) to 0

3. Iterate over all edges (u,v)

 Compute e = # { i | ui = vi }

 Estimate |S(u)  S(v)| based upon e

 Add estimate of |S(u)  S(v)| to T(u) and T(v)

4. Divide all T(u) by 2

src dest

a b

a c

a d

a e

b c

b d

b e

c d

Still quite expensive

on memory

VI. Intelligent Intersection Algorithm - Example

For p = 1 to m:

 1. Compute

 Sig(a) = hp(S(a))

 …

 Sig(e) = hp(S(e))

 2. Iterate over all edges (u,v)

 If p==1: initialize Zuv to 0

 If hp(u) == hp(v): add 1 to Zuv

Iterate over all Zuv:

 Estimate |S(u)  S(v)| based upon Zuv

 Add estimate of |S(u)  S(v)| to T(u) and T(v)

Divide all T(u) by 2

src dest

a b

a c

a d

a e

b c

b d

b e

c d

VI. The Complete Algorithm

for p : 1 to m

 for every vertex v

 min(v) := ∞

 for every edge (v,w)

 min(v) := min(min(v) , hp(w))

 min(w) := min(min(w) , hp(v))

 for every edge (v,w)

 if p==1 then Zv,w := 0

 if min(v) == min(w) then

 Zv,w := Zv,w + 1

for every Zv,w :

 T(v) := T(v) + estimate of |S(v)  S(w)|

 T(w) := T(w) + estimate of |S(v)  S(w)|

for all vertices v:

 T(v) := T(v)/2

VI. The Complete Algorithm

for p : 1 to m

 for every vertex v

 min(v) := ∞

 for every edge (v,w)

 min(v) := min(min(v) , hp(w))

 min(w) := min(min(w) , hp(v))

 for every edge (v,w)

 if p==1 then Zv,w := 0

 if min(v) == min(w) then

 Zv,w := Zv,w + 1

for every Zv,w :

 T(v) := T(v) + estimate of |S(v)  S(w)|

 T(w) := T(w) + estimate of |S(v)  S(w)|

for all vertices v:

 T(v) := T(v)/2

min(u) for all vertices u: in memory

T(u) for all vertices: in memory

Zu,v for all edges (u,v): on disk

In memory

Sequential read

Sequential write

Secondary storage

VI. Counting Triangles

• Reduce complexity from |V|3 to O(m|E|)

• Computing power is great, but only gives you an at

most linear speed-up

• Willingness to sacrifice exactness leads to incredible

performance gains

• Resulting approximation still excellent feature

Outline

• Some Basic Techniques

• I. Heavy hitters

• II. Frequent items

• Sketching

• III. Distinct count sketches

• IV. Count-Min Sketch

• Semi-streaming:

• V. Neighborhood function

• VI. Counting local triangles

• Conclusion

Conclusion

• Stream mining:

• Severe computational restrictions

• Yet, surprisingly many operations are still possible

− Heavy hitters

− Number of distinct items

− Frequent items

− “Cash register”

• Counting triangles and neighborhood function as

applications

