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Text Analytics Matters!
Some important applications are based on the 

analysis of text-centric data; for example:!
!

Semantic Search 
Seman&c	  understanding	  &	  indexing	  of	  
content	  to	  be5er	  match	  user's	  intent	  

Life-Science Mining 
Extract	  knowledge	  bases	  from	  

scien&fic	  publica&ons	  

e-Commerce 
Comparison	  Shopping	  extracts	  &	  

compares	  inventory	  from	  online	  sources	  

CRM / BI 
Monitor	  customer’s	  social-‐media	  ac&vity	  	  

for	  sen&ment	  &	  business	  leads	  

Log Analysis 
Summarize,	  visualize	  and	  analyze	  logs	  

produced	  by	  machines	  



Core Task: Information Extraction (IE)!

“Information Extraction (IE) is the name given to any process 
which selectively structures and combines data which is found, 
explicitly stated or implied, in one or more texts. The final 
output of the extraction process varies; in every case, however, it 
can be transformed so as to populate some type of database.” 

J.	  Cowie	  and	  Y.	  Wilks.,	  Handbook	  of	  
Natural	  Language	  Processing,	  2000	  

“Information extraction is the identification, and consequent or concurrent 
classification and structuring into semantic classes, of specific 
information found in unstructured data sources, such as natural language 
text, making the information more suitable for information processing tasks.” 

M.	  F.	  Moens,	  Informa&on	  Extrac&on:	  Algorithms	  
and	  Prospects	  in	  a	  Retrieval	  Context,	  2006	  

→	  data-in-text !
(unstructured)	  

data-in-db !
(structured) !

In short:	  



Popular Classes of IE Tasks!

•  Named Entity Recognition!

From September 1936 to July 1938, 
Turing spent most of his time studying 
under Church at Princeton University. 
In June 1938, he obtained his PhD 
from Princeton. 

person	   person	   organiza8on	  

organiza8on	  



Popular Classes of IE Tasks!

AdvisedBy	  

WorksIn	  

From September 1936 to July 1938, 
Turing spent most of his time studying 
under Church at Princeton University. 
In June 1938, he obtained his PhD 
from Princeton. 

•  Named Entity Recognition!

•  Relation Extraction!



Popular Classes of IE Tasks!

From September 1936 to July 1938, 
Turing spent most of his time studying 
under Church at Princeton University. 
In June 1938, he obtained his PhD 
from Princeton. 

Gradua8on	  

Where?	  
Who?	  

•  Named Entity Recognition!

•  Relation Extraction!

•  Event Extraction!



Popular Classes of IE Tasks!

From September 1936 to July 1938, 
Turing spent most of his time studying 
under Church at Princeton University. 
In June 1938, he obtained his PhD 
from Princeton. 

Educa8on	  

Start	   End	  

Gradua8on	  

When?	  

•  Named Entity Recognition!

•  Relation Extraction!

•  Event Extraction!

•  Temporal IE!



Popular Classes of IE Tasks!

From September 1936 to July 1938, 
Turing spent most of his time studying 
under Church at Princeton University. 
In June 1938, he obtained his PhD 
from Princeton. 

SameEn8ty	  

SameEn8ty	  

•  Named Entity Recognition!

•  Relation Extraction!

•  Event Extraction!

•  Temporal IE!

•  Coreference Resolution!
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Abstract

The rise of “Big Data” analytics over unstruc-
tured text has led to renewed interest in infor-
mation extraction (IE). We surveyed the land-
scape of IE technologies and identified a major
disconnect between industry and academia:
while rule-based IE dominates the commercial
world, it is widely regarded as dead-end tech-
nology by the academia. We believe the dis-
connect stems from the way in which the two
communities measure the benefits and costs of
IE, as well as academia’s perception that rule-
based IE is devoid of research challenges. We
make a case for the importance of rule-based
IE to industry practitioners. We then lay out a
research agenda in advancing the state-of-the-
art in rule-based IE systems which we believe
has the potential to bridge the gap between
academic research and industry practice.

1 Introduction

The recent growth of “Big Data” analytics over large
quantities of unstructured text has led to increased
interest in information extraction technologies from
both academia and industry (Mendel, 2013).

Most recent academic research in this area starts
from the assumption that statistical machine learn-
ing is the best approach to solving information ex-
traction problems. Figure 1 shows empirical ev-
idence of this trend drawn from a survey of re-
cent published research papers. We examined the
EMNLP, ACL, and NAACL conference proceedings
from 2003 through 2012 and identified 177 different
EMNLP research papers on the topic of entity ex-
traction. We then classified these papers into three
categories, based on the techniques used: purely

Commercial*Vendors*(2013)*
NLP*Papers*
(200392012)*

100%$

50%$

0%$

3.5%*

21%$

75%$

Rule,$
Based$

Hybrid$

Machine$
Learning$
Based$

45%*

22%$

33%$

Implementa@ons*of*En@ty*Extrac@on*

Large*Vendors*

67%*

17%$

17%$

All*Vendors*

Figure 1: Fraction of NLP conference papers from
EMNLP, ACL, and NAACL over 10 years that use ma-
chine learning versus rule-based techniques to perform
entity extraction over text (left); the same breakdown for
commercial entity extraction vendors one year after the
end of this 10-year period (right). The rule-based ap-
proach, although largely ignored in the research commu-
nity, dominates the commercial market.

rule-based, purely machine learning-based, or a hy-
brid of the two. We focus on entity extraction, as it
is a classical IE task, and most industrial IE systems
offer this feature.

The left side of the graph shows the breakdown
of research papers according to this categorization.
Only six papers relied solely on rules to perform the
extraction tasks described. The remainder relied en-
tirely or substantially on statistical techniques. As
shown in Figure 2, these fractions were roughly con-
stant across the 10-year period studied, indicating
that attitudes regarding the relative importance of the
different techniques have remained constant.

We found that distinguishing “hybrid” systems
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IE Paradigms: Rules & Statistics!
•  Rules!
•  ML classification!
•  Probabilistic graphical models !
•  Soft logic!

[Chiticariu, Li, Reiss, EMNLP’13]!

• EMNLP, ACL, NAACL, 
2003-2012!

• 54 industrial vendors (Who’s 
Who in Text Analytics, 2012)!

“[…] rules are effective, 
interpretable, and are easy 
to customize by non-experts 
to cope with errors.” 

Gupta	  &	  Manning,	  CONLL’14	  

+!
NLP!



Database Management Systems!
•  Old news: Data management is involved!!

–  Data semantics, query/analysis semantics, storage, 
query evaluation, indices, consistency, transactions, 
backup, privacy, recovery, …!

–  From-scratch engineering is highly challenging!
•  Motivation to the concept of a general-purpose 

Database Management System!
–  Most notably: relational model (pioneered by Edgar 

F. Codd in 1969) and SQL!



“Big Data” Phenomena!

 Proprietary data in orgs. 
(enterprises, governments, …)!

Proliferation of publically open 
data sources (Web, social, …)!

Past: Present: 

Massive-data analyses incurred 
high machinery/personnel cost!

Business models (cloud, crowd, 
opensource) facilitate analyses!

Data structured/controlled by 
admins, e-forms, software, …!

Uncontrolled data from humans’ 
free text, heterogeneous kbs, …!

Analyses by specialized teams 
of heavily trained experts!

Analyses by a wide community 
featuring a wide range of skills !



“By 2018, the United States alone could face a shortage of 140,000 
to 190,000 people with deep analytical skills as well as 1.5 million 
managers and analysts with the know-how to use the analysis of 
big data to make effective decisions.” 

“Big data: The next frontier for innovation, competition, and productivity”!
McKinsey Report, May 2011!

We need dev. & management systems 
to facilitate value extraction from Big 
Data by a wide range of users / skills!



•  Text Analytics in Modern Applications!

•  Information Extraction Systems & Formalism!

•  Foundational Research Challenges !

•  Conclusions and Outlook!

Outline



Xlog: Datalog for IE!
•  Extension of (non-recursive) Datalog!
•  Use case: DBLife (db research kb: dblife.cs.wisc.edu)!
•  Data types: string, document, span!

–  Focus on single-document programs!
•  “Procedural predicates” (p-predicates) are user-defined 

functions that produce relations over spans!
–  Example: sentence(doc, span)!

•  Query-plan optimization!

[Shen, Doan, Naughton, Ramakrishnan, VLDB 2007]!

Kaspersky Lab CEO Eugene Kaspersky said Intel CEO 
Paul Otellini and the Intel board had no idea what 
they were in for when the company announced it was 
acquiring McAfee on August 19, 2010.

Same string, different spans 

Span [42,47) 



people(d,personMention) :- docs(d), personPatterns(personPattern),
match(d, personPattern, personMention).

conferences(d,conferenceMention) :- docs(d), confPatterns(confPattern),
match(d, confPattern, conferenceMention).

chairType(d,chairType,chairPosition) :- docs(d), chairTypePatterns(chairTypePattern),
match(d, chairTypePattern, chairType),
match(d, “(?i)(vice\W+)?(co-)?chair”, chairPosition),
isBefore(chairType, chairPosition),
distChar(chairType, chairPosition) < 20.

chair(d,personMention,conferenceMention,chairPosition,chairType) :-
people(d, personMention), conferences(d, conferenceMention),
chairType(d, chairType, chairPosition),
isBefore(conferenceMention, chairType),
isBefore(chairPosition, personMention),
distChar(chairPosition, personMention) < 20.

Figure 3: A sample Xlog program in our experiments.

match(d, p, y) finds occurrences of the above patterns in di.
In d1 for example, match(d, p, y) may find “D. Smith” and
“Dr. Smith”. These occurrences are returned as person
names in variable y.

Finally, rule R3 examines all pairs of titles and person
names that occur in di, and retains only names that oc-
cur within 2 lines of a title. These names are returned
as the authors of document di. The final output are tuples
(“D. Smith”, d1) and (“Jane Brown”, d2).

Extension with Bulk P-Predicates: So far we have as-
sumed that each p-predicate q executes in a singleton man-
ner, in that each invocation of q takes as input a single value
for each bound argument. In practice, however, for perfor-
mance reasons developers often want to implement certain
p-predicates so that each invocation takes as input multiple
values, in a bulk manner.

To see why, consider evaluating rule R2 in Figure 2. If the
p-predicate match(d, p, y) is singleton, then we must invoke
match multiple times, once for each possible combination
of document d and pattern p. In contrast, if match is a
bulk p-predicate, then we only need to invoke match once,
with the input being all documents d in docs(d) and all pat-
terns p generated by namePatterns, and the output being
all occurrences of p in all documents d. In this case, since
match gets access to documents and patterns all at once, it
can execute certain optimizations that the singleton version
cannot (e.g., indexing the set of patterns to avoid unneces-
sary pattern matching, see Section 5.4).

For these reasons, we allow developers to implement p-
predicates as either singleton or bulk (or supply both imple-
mentations). Formally, we have

Definition 7 (Bulk p-predicate). Consider a
p-predicate q(a1, . . . , an, b1, . . . , bm) with an associated pro-
cedure g. The bulk version of q is associated with a procedure
g′ such that g′ takes input relations r1, . . . , rn and produces
as output a relation r = ∪(u1,...,un)∈r1✶···✶rn

g(u1, . . . , un).

It is easy to show that under the above definition, the seman-
tics of Xlog remains the same regardless of using singleton
or bulk versions.

Per-Document IE Tasks: IE tasks can be classified into
two groups. The first group extracts from each document
in isolation, e.g., extracting authors of a document as in
Figure 2, or publications from a Web page. The second
group extracts across documents, e.g., finding pairs (a, b)
where a is a professor homepage and b is the homepage of a
class taught by a.

Per-document IE tasks are pervasive (e.g., constituting
94% of IE tasks in the current DBLife system). Hence, as a
first step, in this paper we consider such IE tasks, leaving
across-document IE tasks for future research.

3.2 Benefits of Xlog-like Languages
We have applied Xlog to several IE tasks in the DBLife

system [11], and found it relatively easy to use. Given an IE
task, we first decomposed it into smaller tasks. For exam-
ple, we decomposed finding authors of documents into (a)
finding titles, (b) finding names, then (c) combining titles
and names and keeping those satisfying certain criteria.

Next, we wrote an Xlog program that reflects the above
decomposition, utilizing a set of built-in predicates and func-
tions, and “making up” other predicates and functions as we
went along. For example, we wrote rules R1−R3 in Figure 2,
where lines, allCaps, match, and distLine are built-in pred-
icates and functions, and docs and seedNames are exten-
sional predicates, defined over some tables. We made up
p-predicate namePatterns. Finally, we implemented made-
up predicates and functions (e.g., namePatterns as a Java
procedure). We iterated over the above steps until achieving
a satisfactory solution. Figure 3 shows a small Xlog program
that we wrote for DBLife and used in our experiments.

The above process suggests that Xlog is highly flexible.
Clearly any IE task can be expressed in Xlog, because in the
extreme we can just implement the entire task as a single
p-predicate. However, the more we decompose the IE task
(into smaller “pieces” and “stitching” them together using
Xlog), the more declarative the code becomes, the more we
can save on coding labor (e.g., by re-using built-in predicates
and functions), the easier it is to debug and understand the
code, and the more opportunities we have for optimization.

The current Xlog implementation already has a substan-
tial set of built-in p-predicates and p-functions that capture
common text related tasks. Figures 2-3 show examples of
such predicates and functions, and we omit their descrip-
tions for space reasons. However, we note that the current
set already allows us to write powerful IE tasks (see the ex-
periment section), and that this set is highly extensible, as
new predicates and functions become available.

Besides ease of use, another benefit of Xlog is a clean se-
mantics based on the well-understood Datalog semantics.
This is important as we seek to optimize Xlog programs,
or to extend the language. For instance, while it has been
difficult to understand the semantics of many current IE lan-
guages in the presence of recursion (which occurs in many
IE settings), extending Xlog to recursion should still result
in a well-defined language, based on the recursion semantics
of Datalog.

Finally, we note that, while not considered in depth in
this paper, IE programs in Xlog-like languages can also po-
tentially benefit from the wealth of relational technologies
developed in the past thirty years, to handle storage, query
processing, indexing, and optimization, all crucial issues to
large-scale IE development.

4. GENERATING EXECUTION PLANS
Given an Xlog program P , we now discuss how to create

a default physical execution plan h for P . (Section 5 shows
how to optimize h.) We begin by creating a logical plan
fragment for each rule in P , then combine these fragments
into a logical plan f for P . Next, we elaborate on f to
obtain a physical plan e. Finally, we modify e into h to

1037

Xlog Example!

“Declarative Information Extraction using Datalog with Embedded Extraction Predicates” 

[Shen, Doan, Naughton, Ramakrishnan, VLDB 2007]!
Regex. 
(string) 

Unary 
regex 

formula 

Binary 
regex 

formula 



•  Datalog syntax!
– Types: string, span!

•  Built in collection of p-predicates!
– Various types of built-in regex formulas!

– Linguistic: deep parsing, coreference 
resolution, named-entity extractor!

63

other, differing only in the stem of the verb that was used. Anna decides to refactor those

rules, so that a first rule identifies a relevant verb, and a second rule identifies the syntactic

structure using a relevant verb. Her new set of rules is now more compact (Decomposition

Tool).

• Anna then decides to test the existing rules of her extractor more carefully. She notices that

one rule produces many false positives; Anna thus tries to make it more precise by by adding

another condition. After testing her extractor on a sample of sentences, Anna is satisfied with

the results.

In the following sections we describe the technical details of INSTAREAD. We start by describ-

ing INSTAREAD’s rule language, then discuss the four accelerator tools, and finally INSTAREAD’s

capability of evaluating rules extremely quickly.

4.4 Creating Relation Extractors using Logical Rules

An important factor impacting user efficiency is the space of possible inputs. With an expres-

sive input language, feedback can be shorter and more direct, thus potentially reducing user effort.

INSTAREAD accepts input in the form of condition-action rules expressed in first-order logic 1. This

has several advantages. Logical rules are relatively easy to read and write for experts. The language

is generic; it can be used to model a wide variety of things, and can always be extended by defining

new predicates. Our rules are similar (but not identical) to those used in logic programming lan-

guages such as Prolog, allowing us to leverage a large body of existing work. Finally, our rules can

be used in more advanced statistical modeling languages, such as Markov Logic networks [48], thus

making it easier to integrate statistical learning in the future.

For an illustrative example of an extraction rule, let us assume we would like to extract instances

of the killed(killer,victim) relation from text. We could create the following rule:

killed(a, c)( next(a, b) ^ next(b, c) ^ token(b, ‘killed’)

^ capitalized(a) ^ capitalized(b)

1For tractability, we require rules to be in safe domain-relational calculus [154]. See section 4.6 for details.

Instaread: Datalog + NLP!

Binary regex 
formulas Unary regex 

formulas 

[Hoffmann, 2012]!



Formal Framework!
•  Repeated concept: Extend a relational query 

language with text transducers (p-predicates, 
usually regex formulas)!

•  Research challenge: theoretical underpinnings 
of this combined document/relation model!

•  Expressive power!
–  Query-plan optimization: Can we rewrite an operator via 
“easier” building blocks?!

–  System extensions: Can we express a new operation using 
existing ones, or prove impossibility?!

•  Next: a formal framework !
–  With Fagin, Reiss, Vansummeren, PODS’13, JACM’15!



Terminology!
Kaspersky Lab CEO Eugene Kaspersky said Intel CEO 
Paul Otellini and the Intel board had no idea what 
they were in for when the company announced it was 
acquiring McAfee on August 19, 2010.

Company CEO CompanyCEO 
[1,14) 

(Kaspersky Lab) 
[19,36) 

(Eugene Kaspersky) 
[1,36) 

[42,47) 
(Intel) 

[52,65) 
(Paul Otellini) 

[42,65) 

Relation over spans from the document 

Document 
Span [52,65) 



Document Spanners !

Document d! Relation over the spans of d!

Kaspersky  Lab  CEO  Eugene 
Kaspersky  said  Intel  CEO 
Paul Otellini and the Intel 
board had no idea what they 
were in for when the company 
announced  it  was  acquiring 
McAfee on August 19, 2010.

x y z 

[1,14) [30,36) [1,36) 

[42,47) [52,65) [42,65) 

[102,110) [115,125) [102,125) 

Document Spanner: a function that maps every 
doc. (string) into a relation over the doc.’s spans!
More formally: 
•  Finite alphabet Σ of symbols 
•  A spanner maps each doc. d ∈ Σ* into a relation over the spans [i,j) of d  
•  The relation has a fixed signature (set of attributes) 

− The attributes come from an infinite domain of variables x, y, z, … 



Spanners as Datalog w/ Regex!
•  Non-recursive Datalog (NR-Datalog)!
•  Operate over a document (not a relational db)!

Token(x)	   :=	   [	  (ε	  |	  .*_)	  x{[a-‐zA-‐Z]+}	  (	  ((,V_)	  .*)	  |	  ε)	  ]	  
State(x)	   :=	   Token(x)	  ,	  [.*	  x{Georgia|Virginia|Washington}.*]	  

Cap1st(x)	   :=	  	   Token(x)	  ,	  [.*	  x{[A-‐Z].*}.*]	  
CommaSp(x,y,z)	   :=	  	   [.*	  z{x{.*}	  ,_	  y{.*}}.*]	  

Loc(z)	   :=	  	   CommaSp(x,y,z)	  ,	  Cap1st(x)	  ,	  State(y)	  
RETURN(x,z)	   :=	  	   	  Cap1st(x)	  ,	  [.*x{.*}_from_z{.*}.*}]	  ,	  Loc(z)	  

Carter_from_Plains,_Georgia,_Washington
_from_Westmoreland,_Virginia	  

x	   z	  

[1,7)	  	  	  
Carter	  

[13,28)	  	  
Plains,_Georgia	  

[30,40)	  
Washington	  

[46,69)	  
Westmoreland,_Virginia	  

Query 
goal	  

Rep. of 
Spanners	  

Rep. of  Spanners	  



Spanners as Automata!
0,1 0 1 

Ordinary	  
NFA	  

1 0 0 1 1 1 0 1 

Var-‐Stack	  
Automaton	  

1 0 0 1 1 1 0 1 x{	   y{	  

}	  

}	  

y{	  x{	   }	   }	  

Var-‐Set	  
Automaton	  

1 0 0 1 1 1 0 1 x{	  

}y	  

y{	  x{	   }x	   }y	  

}x	  

0,1 0 1 

0,1 0 1 

•  In an accepting run, each variable opens and later closes exactly once 
 ⇒ Each accepting run defines an assignment to the variables 

•  Nondeterministic ⇒ multiple accepting runs ⇒ multiple tuples 

Close most recent 

Close x 

y	  

x	  

x	  

y	  

Another	  representa3on	  system	  for	  spanners	  

y{	  



Token(x)) :=) [)(ε)|).*_))x{[a4zA4Z]+})()((,V_)).*))|)ε))])
State(x)) :=) Token(x)),)[.*)x{Georgia|Virginia|Washington}.*])

Cap1st(x)) :=)) Token(x)),)[.*)x{[A4Z].*}.*])
CommaSp(x,y,z)) :=)) [.*)z{x{.*}),_)y{.*}}.*])

Loc(z)) :=)) CommaSp(x,y,z)),)Cap1st(x)),)State(y))
RETURN(x,z)) :=)) )Cap1st(x)),)[.*x{.*}_from_z{.*}.*}]),)Loc(z))

x{	   y{	  

}	  

}	  

0,1 0 1 

x{	  

}y	  

}x	  

0,1 0 1 
y{	  

Study of Expressive Power!

Spanners definable by!
regex formulas!=!Spanners definable by!

var-stack automata!

Spanners definable by!
var-set automata!=!

Spanners definable by!
Datalog (NR) w/ !
regex formulas!

.*y{x{.*}_from_z{.*}.*}	  

=!

Join	   ⨝	  	  

Union	   ∪

Product	   ⨉	  

Projec8on	   π	  

Selec8on	   ς	  

Difference	   -‐	  

Spanners definable by!
Rel. Algebra over !
regex formulas!



Consequences!
•  Connections between Datalog+regex 

spanners and other language formalisms!
– Classic string relations [Berstel 79]!
– Graph queries (CRPQs) [Cruz et al. 87]!

•  Extension with string equality & difference!
– Expressiveness / closure properties!

•  Principles for cleaning inconsistencies !
– Follow up work [PODS’14]!
–  (Later in the talk …)!



IBM SystemT: SQL for IE!

[Chiticariu, Krishnamurthy, Li, Raghavan, Reiss, Vaithyanathan, ACL 2010] 

regex + join w/ previous views 

projection 

union 

Cleaning 

Unary regex formulas 



SystemT Research!
•  Engine for AQL: SQL-like declarative IE lang.!

–  AQL = Annotation Query Language!

•  SystemT = AQL + Runtime + Dev. Tooling!
–  [Chiticariu et al., ACL 2010]: position SystemT as a 

high-quality and high-efficiency IE solution!
–  System and IDE demos in ACL 2011, SIGMOD 2011!

•  Commercial product, high academic presence!
–  Integration on public financial records [Hernández et al., EDBT’13, 

Balakrishnan et al. SIGMOD’10], NER [Chiticariu et al. EMNLP’10, 
ACL’10, Nagesh et al. EMNLP’12, Roy et al. SIGMOD’13], IR [Zhu et 
al. WWW’10, K et al. SIGIR’12, CIKM’12], sentiment analysis [Hu et 
al., Interact’13], social media [Sindhwani et al., IBM Journal 2011]!



•  Text Analytics in Modern Applications!

•  Information Extraction Systems & Formalism!

•  Foundational Research Challenges !

•  Conclusions and Outlook!

Outline



Propelled Research!
•  Next, highlight 2 lines of foundational research 

motivated by text analytics:!
§  Cleaning inconsistency w/ prioritized repairs !
- [Fagin, K, Reiss, Vansummeren 2014]!
- [Fagin, K, Kolaitis, PODS’15]!

§  Frequent subgraph mining !
- [K, Kolaitis, PODS’13, TODS’14]!

•  Not covered:!
§  Update propagation !
- [K+, VLDB’13, TODS’12, PODS’12, PODS’11]!

§  Querying Markov sequences !
- [PODS’08, JACM’14]!



•  Extractors may produce inconsistent results!
–  Data artifacts!
–  Developer limitations!

•  Rather than repairing the existing extractors, 
common practice is to clean (intermediate) results!
–  SystemT “consolidators” [Chiticariu et al.10]!
–  GATE/JAPE “controls” [Cunningham 02]!
–  Implicit in other rule systems, e.g., WHISK [Soderland 99]!
–  POSIX regex disambiguation [Fowler 03]!

Cleaning IE Inconsistencies!

33 Martin Luther King Jr. Dr., SE, Atlanta, GA 30303  

Person2 

Person1 

Address1 



SystemT Consolidators!

[Chiticariu, Krishnamurthy, Li, Raghavan, Reiss, Vaithyanathan, ACL 2010] 

Other policies 
built in 



Five GATE/JAPE Controls!

All 

Once 

First 

Appelt Brin 

.* x{\d\d+} .* Sequence 12345 and sequence 12. 

Document Spanner 

Screenshots from GATE UI 



Declarative Cleaning!
•  Problem: existing policies are ad-hoc; how to 

expose a language for user declaration?!
•  [Fagin, K, Reiss, Vansummeren, PODS14]: spanner 

formalism for declarative cleaning !
–  Captures SystemT, GATE, WHISK, POSIX, …!
–  Can state rules like:!

x and y are overlapping spans →    not [ Person(x) & Location(y) ] 

x and y are separated by “and/or” →    not [ Person(x) & Location(y) ] 

y strictly contains x →    Prefer Person(y) to Person(x)  

→    Prefer Location(y) to Person(x)  true 



Prioritized Repairs: Definition 

Database! Denial 
Constraints!

Collection of facts! Which sets of facts 
cannot co-exist?!

Priority 
Relation!

Binary “is preferred 
to” relation!

•  [Arenas, Bertossi, Chomicki 99]: Inconsistent DB 
represents a set of (equally likely) “repairs” !
§  Then we can ask for the “possible” or “consistent” query answers!

•  [Staworko, Chomicki, Marcinkowski 12] add priorities:!
•  Improve a consistent DB subsets by “profitable” exchanges of 

facts, again and again until impossible!
•  A preferred repair is a subset that cannot be improved!

Inconsistent Database Instance!



Example!
professor	   university	   city	  

Monica	   ubiobio	   Concepción	  

Monica	   carleton	   Ooawa	  

Jorge	   uchile	   San8ago	  

Jorge	   ubiobio	   San8ago	  

Pablo	   uchile	   San8ago	  

Violated	  constraints	  (func&onal	  
dependencies):	  
•  professor	  à	  university,	  city	  

(“key constraint”)!
•  university	  à	  city	  

professor	   university	   city	  

Monica	   ubiobio	   Concepción	  

Monica	   carleton	   Ooawa	  

Jorge	   uchile	   San8ago	  

Jorge	   ubiobio	   San8ago	  

Pablo	   uchile	   San8ago	  

professor	   university	   city	  

Monica	   ubiobio	   Concepción	  

Monica	   carleton	   Ooawa	  

Jorge	   uchile	   San8ago	  

Jorge	   ubiobio	   San8ago	  

Pablo	   uchile	   San8ago	  

“Ordinary” repairs

Tuple priority à some repairs can be discarded



Complexity of Testing Improvability !

§  In the case of a single functional dependency 
or two keys per relation, improvability can be 
tested in polynomial time!

§  In any other combination of FDs, the 
problem is NP-complete!!

university	   faculty	   dean	  

UChile	   Economics	   Agosin	  

Technion	   CS	   Yavneh	  

Stanford	   Law	   Magill	  

two keys

Can a consistent subset be improved?

[Fagin, K, Kolaitis, PODS’15]!



IE with Recurring Patterns!

I want to buy my advisor a gift.

I really want to buy a gift to my advisor.

I want to buy a gift to the secretary and to my advisor.

1.  Apply	  
dependency	  
parsing	  

[Zhang,	  Baldwin,	  Ho,	  K,	  Li,	  ACL13]:	  Restoring	  grammar	  in	  social	  media,	  sms,	  etc.	  



IE with Recurring Patterns!

I want to buy my advisor a gift.

I really want to buy a gift to my advisor.

I want to buy a gift to the secretary and to my advisor.

I	  

want 	  

buy	  

gift	   advisor	  

1.  Apply	  
dependency	  
parsing	  

2.  Find	  freq.	  
recurring	  
paoerns	  

[Zhang,	  Baldwin,	  Ho,	  K,	  Li,	  ACL13]:	  Restoring	  grammar	  in	  social	  media,	  sms,	  etc.	  



τ = 3 
g1 g2 g3 g4 

Freq. 

Freq. Max. 

Freq. 
Max. 

Maximal Frequent Subgraphs!



Complexity Study!
•  Naturally, there has been a lot of work on this problem !

–  SPIN [Huan et al. 04], MARGIN [Thomas et al. 10], …!

•  But little was known about the computational complexity !
•  Studied: impact of assumptions on comp. complexity !

–  Graph properties (e.g., trees, treewidth, etc.), label 
repeatability, bounded #results desired, bounded threshold!

–  [Kolaitis, K, PODS’13, TODS’14]!

•  Solved open problems on graph-mining complexity!
•  Established a novel approach to graph mining, based 

on enumeration with hereditary properties !
–  [Cohen, K, Sagiv, JCSS’08]!



•  Text Analytics in Modern Applications!

•  Information Extraction Systems & Formalism!

•  Foundational Research Challenges !

•  Conclusions and Outlook!

Outline



Summary!
•  Text analytics & IE!
•  Rule systems for IE!
•  A formal framework for rules, relating IE to 

traditional DB concepts such as Datalog!
•  Research directions motivated by IE!

– Prioritized repairs!
– Graph mining!

!



Outlook: DB w/ Proper Text Support!
•  Structured + text data & query model !

–  Elegant and useful marriage!
–  Based on spanners!
–  Gracefully incorporate generic NLP solvers!

•  Underspecification!
–  Balance automation & control: from full specification 

by experts to feature generation for nonexperienced  !
– Maximally realize the potential of every developer!

•  In-model uncertainty!
–  Well-defined & intuitive probability model w/ practical 

execution cost for principled recall/precision control!

!



PS looking for grads and postdocs to build next-generation DBs in Haifa…



