# An Approach for Alert Raising in Real-Time Data Warehouses

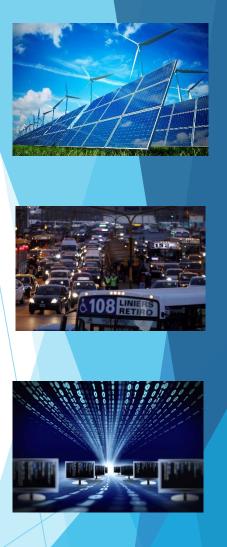
« Journées francophones sur les Entrepôts de Données et l'Analyse en ligne » Brussels, Belgium, April 2-3, 2015

Maximiliano Ariel López\*, Sergi Nadal Francesch\*\* Mahfoud Djedaini\*\*\*, Patrick Marcel\*\*\*, Verónika Peralta\*\*\*, Pedro Furtado \*\*\*\*

\* École Centrale Paris \*\*\* Université de Tours



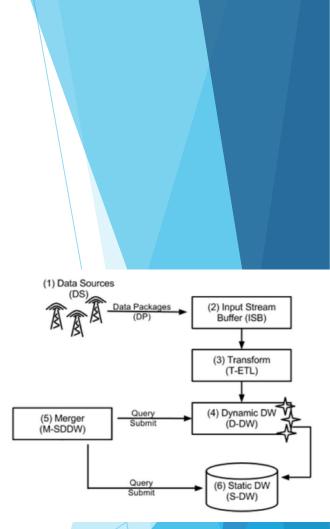



\*\* Universitat Politècnica de Catalunya\*\*\*\* University of Coimbra



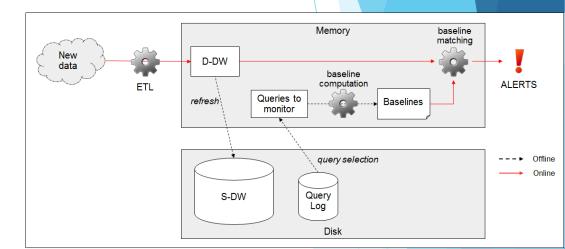


### Introduction

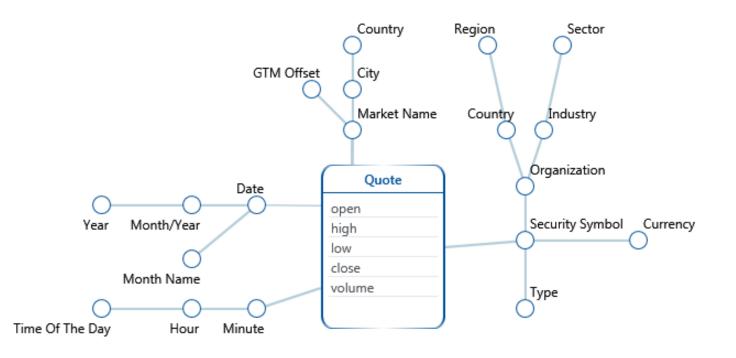

- Currently, many organisations have the requirement of analysing their information in a real-time manner:
  - Energy Production and Consumption
  - Traffic Monitoring
  - IT Networks Monitoring
  - Stock Markets
- Monitoring and quickly detecting deviations from the expected behaviour allow analysts to face abrupt changes.
- To enable near real-time analysis based on the most recent information, data warehouse architectures have been extended or adapted.






### **Real-Time Data Warehousing**

- Ferreira and Furtado have proposed an approach that implements a realtime data warehouse without data duplication which is composed of three main components:
  - the Dynamic Data Warehouse (D-DW),
  - the Static Data Warehouse (S-DW) and
  - the Merger.
- In our paper, we present an approach for alert raising in a real-time data warehouse that assumes this architecture.
- The key idea involves leveraging query logs to build an in-memory summary of the S-DW and then checking this summary against the data in the D-DW to raise alerts.
- We assume that user traces express sets of facts that need to be monitored.




### **Proposed Approach**

- In an <u>offline phase</u>, for each query, we construct a "baseline":
  - ▶ The query is run over the S-DW.
  - A confidence interval is calculated for the facts contributing to each cell.
- Confidence intervals are built using the bootstrap method (Efron and Tibshirani, 1986).
- This method is particularly well adapted to a real-time context:
  - Unknown population: complete answer of the query.
  - Sample: current answer to this query.
- In the <u>online phase</u> of our approach, new data loaded into the D-DW are compared to the appropriate baselines. This comparison is used to raise alerts.

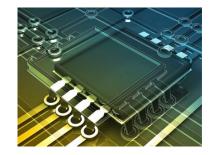


# Stock Exchange Markets Example



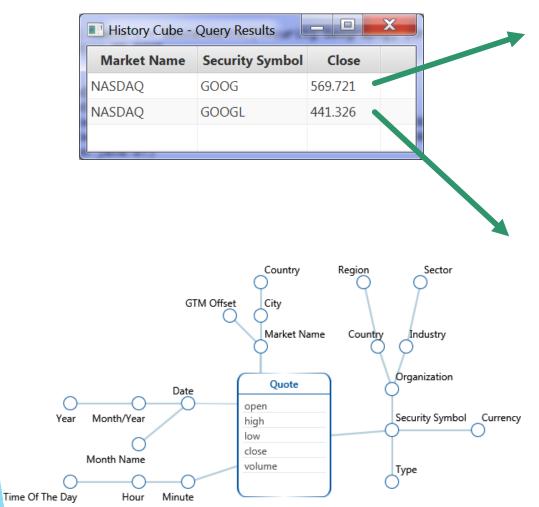


|   | Period             | Data Volume per<br>Security     |
|---|--------------------|---------------------------------|
|   | Up to 50 years ago | 1 record every quarter          |
|   | Up to 20 years ago | 1 record every month            |
|   | Up to 10 years ago | 1 record every week             |
|   | Up to 3 years ago  | 1 record every day              |
|   | Up to 15 days ago  | Around 100 records<br>every day |
| / | Up to 1 day ago    | Around 400 records              |


- New York Stock Exchange (NYSE)
- National Association of Securities Dealers Automated Quotations (NASDAQ)
- Buenos Aires Stock Exchange (MERVAL)
- Mexican Stock Exchange (IPC)
- Sao Paolo Stock Exchange (BOVESPA)
- Currency Exchange Rates

# Example: Starting Point

Log Example:


|                       | Group By Set                                                            | Filters                                                                                    | Measures        |
|-----------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------|
| <b>Q</b> <sub>1</sub> | [Market.Geography].[Market Name]<br>[Security.Type].[Security Symbol]   | [Security.Geography].[Organisation].[Google Inc.]                                          | [Close]         |
| <b>Q</b> <sub>2</sub> | [Security.Geography].[Organisation]<br>[Market.Geography].[Market Name] | [Security.Activity].[Sector].[Health Care]<br>[Security.Geography].[Country].[USA]         | [Open], [Close] |
| <b>Q</b> <sub>3</sub> | [Security.Activity].[Security Symbol]<br>[Date.DateMonthYear].[Year]    | [Market.Geography].[Market Name].[NASDAQ]<br>[Sector.Activity].[Industry].[Semiconductors] | [Volume]        |
| <b>Q</b> <sub>4</sub> | [Security.Activity].[Security Symbol]<br>[Date.DateMonthYear].[Year]    | [Sector.Activity].[Industry].[Water Supply]                                                | [All]           |







### **Example: Baseline Computation**



| date_id  | time_id | market_name | security_symbol | open     | high  | low   | dose     | volume    |
|----------|---------|-------------|-----------------|----------|-------|-------|----------|-----------|
| 20141009 | 2259    | NASDAQ      | GOOG            | 559.0600 | 571.4 | 571.1 | 560.8800 | 517900    |
| 20141009 | 2000    | NASDAQ      | GOOG            | 560.8800 | 560.8 | 560.8 | 560.8800 | .0000     |
| 20141009 | 1959    | NASDAQ      | GOOG            | 561.0000 | 562.3 | 561.5 | 561.0500 | 17000.0   |
| 20141009 | 1954    | NASDAQ      | GOOG            | 560.1200 | 561.6 | 560.5 | 561.5100 | 3900.0000 |
| 20141009 | 1949    | NASDAQ      | GOOG            | 560.6800 | 562.0 | 561.8 | 560.9200 | 6700.0000 |
|          |         |             |                 |          |       |       |          |           |
|          |         |             | •••             |          |       |       |          |           |

| date_id  | time_id | market_name | security_symbol | open     | high  | low   | close    | volume    |
|----------|---------|-------------|-----------------|----------|-------|-------|----------|-----------|
| 20141009 | 2259    | NASDAQ      | GOOGL           | 569.0300 | 582.5 | 581.6 | 570.8100 | 411700    |
| 20141009 | 2000    | NASDAQ      | GOOGL           | 570.8100 | 570.8 | 570.8 | 570.8100 | .0000     |
| 20141009 | 1959    | NASDAQ      | GOOGL           | 570.7300 | 572.2 | 571.4 | 571.1100 | 66300.0   |
| 20141009 | 1954    | NASDAQ      | GOOGL           | 570.4200 | 571.6 | 570.6 | 571.3000 | 8000.0000 |
| 20141009 | 1949    | NASDAQ      | GOOGL           | 571.0000 | 572.0 | 572.0 | 571.0000 | 3600.0000 |

...

- Boostrap replications (e.g. 100 or 1000)
- Sample percentage (1 %)
- 95% confidence rate:
  - Percentile 2.5
  - Percentile 97.5

### **Example: Persisted Baselines**

|  | Base | lines | Viewer |
|--|------|-------|--------|
|--|------|-------|--------|

| Baseline (Header) |                                                 |                        |         |    | Cells (Items)                                                                          |                  |           |           |           |           |  |
|-------------------|-------------------------------------------------|------------------------|---------|----|----------------------------------------------------------------------------------------|------------------|-----------|-----------|-----------|-----------|--|
| Cube              | Group by set                                    | Filters                | Cells # | Id | Coordinates                                                                            | Measure 🔺        | Min. Mean | Max. Mean | Min. Dev. | Max. Dev. |  |
| Quote             | [Market.Geography].[<br>[Security.Type].[Securi | [Security.Geography].[ | 10      | 61 | [Market.Geography].[Market Name].[NASDAQ]<br>[Security.Type].[Security Symbol].[GOOG]  | [Measures].close | 568.586   | 571.243   | 8.498     | 12.878    |  |
|                   |                                                 |                        |         |    | [Market.Geography].[Market Name].[NASDAQ]<br>[Security.Type].[Security Symbol].[GOOGL] | [Measures].close | 423.475   | 464.039   | 144.287   | 163.634   |  |
|                   |                                                 |                        |         |    | [Market.Geography].[Market Name].[NASDAQ]<br>[Security.Type].[Security Symbol].[GOOG]  | [Measures].high  | 570.212   | 572.516   | 8.054     | 11.987    |  |
|                   |                                                 |                        |         |    | [Market.Geography].[Market Name].[NASDAQ]<br>[Security.Type].[Security Symbol].[GOOGL] | [Measures].high  | 427.706   | 468.189   | 143.079   | 161.332   |  |

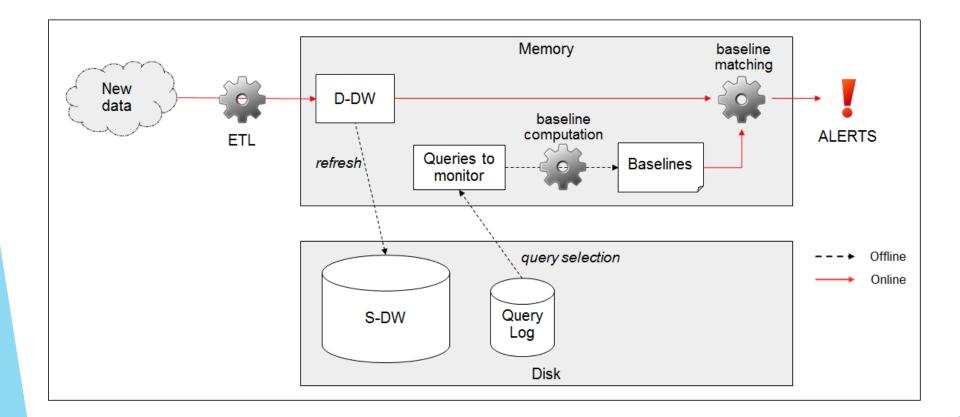
Interval for GOOG with 2 standard deviations:

- Lower bound: (568.586 2 \* 12.878) = 542.83
- Upper bound: (568.586 + 2 \* 12.878) = 594.342

Interval for GOOGL with 2 standard deviations:

- Lower bound: (423.475 2 \* 163.634) = 96.207
- Upper bound: (423.475 + 2 \* 163.634) = 750.743

# Motivating Example (cont.)


Baseline Example for Close measure  $(Q_1)$ :

| NASDAQ | GOOG  | [542.83 - 594.342] |
|--------|-------|--------------------|
| NASDAQ | GOOGL | [96.207 - 750.743] |

#### The following fact inserted into DDW <u>might</u> then trigger an alert:

| date_id | minute_id | market_name | security_symbol | open | high | low | close | volume |  |
|---------|-----------|-------------|-----------------|------|------|-----|-------|--------|--|
|         |           | NASDAQ      | GOOG            | •••  | •••  |     | 542   |        |  |
|         |           |             |                 |      |      |     |       |        |  |

### Example Recap



### **Baselines Refresh**

 $\frac{|DDW_Q|}{|DDW_Q|+|SDW_Q|} \times \left(1 - (1 - s)^b\right) \times \left(1 - (1 - \frac{1}{|Q|})^{|DDW_Q|+|SDW_Q|}\right)$ 

- "Q" is the query from which baselines are derived.
- $\triangleright$  "DDW<sub>Q</sub>" is the set of facts of the real time component of the DW covered by Q.
- "SDW<sub>Q</sub>" is the set of facts of the history component of the DW covered by Q.
- "s" is the sampling percentage
- "b" is the number of bootstrap replications.

   <sup>|DDW<sub>Q</sub>|</sup>
   <sup>|DDW<sub>Q</sub>|</sup>
   is the probability that a fact comes form the real time component.

•  $(1 - (1 - s)^b)$  is the probability that a fact is chosen for the bootstrap computation.

- The last term is the probability that a cell of the baseline covers at least a given primary fact, which is derived from the Cardenas formula (Shukla et al., 1996).
- > A given baseline is recomputed if this probability exceeds a threshold

### Experiments

Parameters:

- For bootstrapping: 100 replications with samples of 1% of relevant records.
- Intervals built on the basis of 3 standard deviations.
- Anomalies threshold was set to 0.1%.

Case 1: A Black Day for Markets

- October 10th, 2014: NASDAQ Composite Index plummeted by 2.33%
- S-DW contained data from 4/Jan/1965 to 10/Oct/2014 at 13:29 GMT (1,974,462 rows).
- D-DW contained data for 10/Oct/2014 between 13:30 and 13:35 GMT (854 rows).

|                                        | Inp         | out                  |              | Results |                   |
|----------------------------------------|-------------|----------------------|--------------|---------|-------------------|
|                                        | Input Facts | Coordinate<br>groups | Output Cells | Time    | Storage<br>(est.) |
| European Health-Care Companies         | 18,623      | 10                   | 50           | 8 min   | 9 KB              |
| US Health-Care Companies               | 152,063     | 80                   | 400          | 56 min  | 74 KB             |
| Semiconductors firms in NASDAQ by Year | 34,868      | 406                  | 2030         | 9 min   | 378 KB            |
| Water Supply firms by Year             | 3,518       | 20                   | 100          | 1 min   | 19 KB             |
| TOTALS                                 | 209,072     | 516                  | 2,580        | 74 min  | 480 KB            |

Computation time is more sensitive to the number of input facts than to the number of output cells.

### Experiments (cont.)

- > 90 out of the 854 facts present in the Real-Time fact table were relevant.
- They demanded 450 comparisons (5 measures).
- All of them were assessed in about 627 seconds, which represents an average of 1.39 seconds/measure/fact.
- One of the baselines, "Semiconductors firms in NASDAQ by Year", detected 6 anomalies.
- As the threshold of 0.1% we had set was exceeded at baseline level (6 out of 90), at baseline cell level (1 out 1 in 6 cells) and at general level (6 out of 450), alerts were issued in the three of them.
- Ex-post analysis:
  - Five minutes after the alert, the price kept on falling for some stocks (e.g. TXN)
  - For another stock, we see that the price at the end of the day turned out to be higher (e.g. MCHP).

### Experiments (cont.)

Case 2: An Apparently Quiet Day

- November 13, 2014 has been apparently a quiet day for NASDAQ market as a whole. NASDAQ composite showed an overall slight increase of almost 0.11%.
- S-DW had data from 4/Jan/1965 and 13/Nov/2014 at 13:29 GMT (3,221,378 rows).
- D-DW had data for 13/Nov/2014 between 13:30 and 14:34 GMT (1386 rows).
- Compared to Case 1, the number of input facts increased approximately a 62% and so did the baseline computation time.
- Only 110 out of 1386 facts were relevant, shielding 550 comparisons.
- All of them were assessed in 384 seconds, representing an average of 0.7 seconds/measure/fact, which is lower than the figure obtained in Case 1.
- No anomalies were detected in any of the four baselines.

### In Conclusion

- Our approach leverages a specific real-time data warehouse architecture.
- It is analyst tailored.
- It is made up by an offline phase and an online phase.
- We implemented the approach and illustrated its interest in the domain of technical analysis of stock markets.
- As future work, we will first address the optimisation of baseline computation, which might be seen as the bottleneck of our approach.
- We will particularly study strategies for an iterative computation of baselines, using a combination of application logic and database features.
- Test our approach in a more realistic data warehouse situation, where anomaly detection competes with regular analytical queries.

### Merci! Avez-vous des questions?

