
An Approach for Alert

Raising in Real-Time

Data Warehouses
« Journées francophones sur les Entrepôts de Données et l’Analyse en ligne »

Brussels, Belgium, April 2-3, 2015

Maximiliano Ariel López*, Sergi Nadal Francesch**

Mahfoud Djedaini***, Patrick Marcel***, Verónika Peralta***, Pedro Furtado ****

* École Centrale Paris ** Universitat Politècnica de Catalunya

*** Université de Tours **** University of Coimbra

Introduction

 Currently, many organisations have the requirement of analysing their

information in a real-time manner:

 Energy Production and Consumption

 Traffic Monitoring

 IT Networks Monitoring

 Stock Markets

 Monitoring and quickly detecting deviations from the expected behaviour

allow analysts to face abrupt changes.

 To enable near real-time analysis based on the most recent information, data

warehouse architectures have been extended or adapted.

Real-Time Data Warehousing
 Ferreira and Furtado have proposed an approach that implements a real-

time data warehouse without data duplication which is composed of three

main components:

 the Dynamic Data Warehouse (D-DW),

 the Static Data Warehouse (S-DW) and

 the Merger.

 In our paper, we present an approach for alert raising in a real-time data

warehouse that assumes this architecture.

 The key idea involves leveraging query logs to build an in-memory summary

of the S-DW and then checking this summary against the data in the D-DW to

raise alerts.

 We assume that user traces express sets of facts that need to be monitored.

Proposed Approach

 In an offline phase, for each query, we construct a

“baseline”:

 The query is run over the S-DW.

 A confidence interval is calculated for the facts

contributing to each cell.

 Confidence intervals are built using the bootstrap

method (Efron and Tibshirani, 1986).

 This method is particularly well adapted to a real-time

context:

 Unknown population: complete answer of the query.

 Sample: current answer to this query.

 In the online phase of our approach, new data loaded

into the D-DW are compared to the appropriate

baselines. This comparison is used to raise alerts.

Stock Exchange Markets Example

• New York Stock Exchange (NYSE)

• National Association of Securities Dealers Automated Quotations (NASDAQ)

• Buenos Aires Stock Exchange (MERVAL)

• Mexican Stock Exchange (IPC)

• Sao Paolo Stock Exchange (BOVESPA)

• Currency Exchange Rates

Period Data Volume per

Security

Up to 50 years ago 1 record every quarter

Up to 20 years ago 1 record every month

Up to 10 years ago 1 record every week

Up to 3 years ago 1 record every day

Up to 15 days ago Around 100 records

every day

Up to 1 day ago Around 400 records

Example: Starting Point

Group By Set Filters Measures

Q1
[Market.Geography].[Market Name]

[Security.Type].[Security Symbol]

[Security.Geography].[Organisation].[Google Inc.] [Close]

Q2
[Security.Geography].[Organisation]

[Market.Geography].[Market Name]

[Security.Activity].[Sector].[Health Care]

[Security.Geography].[Country].[USA]

[Open], [Close]

Q3
[Security.Activity].[Security Symbol]

[Date.DateMonthYear].[Year]

[Market.Geography].[Market Name].[NASDAQ]

[Sector.Activity].[Industry].[Semiconductors]

[Volume]

Q4
[Security.Activity].[Security Symbol]

[Date.DateMonthYear].[Year]

[Sector.Activity].[Industry].[Water Supply] [All]

Log Example:

Example: Baseline Computation

…

…

• Boostrap replications (e.g. 100 or 1000)

• Sample percentage (1 %)

• 95% confidence rate:

• Percentile 2.5

• Percentile 97.5

Example: Persisted Baselines

Interval for GOOG with 2 standard deviations:

• Lower bound: (568.586 – 2 * 12.878) = 542.83

• Upper bound: (568.586 + 2 * 12.878) = 594.342

Interval for GOOGL with 2 standard deviations:

• Lower bound: (423.475 – 2 * 163.634) = 96.207

• Upper bound: (423.475 + 2 * 163.634) = 750.743

Motivating Example (cont.)

date_id minute_id market_name security_symbol open high low close volume

… … NASDAQ GOOG … … … 542 …

NASDAQ GOOG [542.83 – 594.342]

NASDAQ GOOGL [96.207 – 750.743]

Baseline Example for Close measure (Q1):

The following fact inserted into DDW might then trigger an alert:

Example Recap

Baselines Refresh

 “Q” is the query from which baselines are derived.

 “DDWQ” is the set of facts of the real time component of the DW covered by Q.

 “SDWQ” is the set of facts of the history component of the DW covered by Q.

 “s” is the sampling percentage

 “b” is the number of bootstrap replications.

 is the probability that a fact comes form the real time component.

 is the probability that a fact is chosen for the bootstrap computation.

 The last term is the probability that a cell of the baseline covers at least a given primary

fact, which is derived from the Cardenas formula (Shukla et al., 1996).

 A given baseline is recomputed if this probability exceeds a threshold

Experiments

Parameters:

 For bootstrapping: 100 replications with samples of 1% of relevant records.

 Intervals built on the basis of 3 standard deviations.

 Anomalies threshold was set to 0.1%.

Case 1: A Black Day for Markets

 October 10th, 2014: NASDAQ Composite Index plummeted by 2.33%

 S-DW contained data from 4/Jan/1965 to 10/Oct/2014 at 13:29 GMT (1,974,462 rows).

 D-DW contained data for 10/Oct/2014 between 13:30 and 13:35 GMT (854 rows).

Input Results

Input Facts Coordinate

groups

Output Cells Time Storage

(est.)

European Health-Care Companies 18,623 10 50 8 min 9 KB

US Health-Care Companies 152,063 80 400 56 min 74 KB

Semiconductors firms in NASDAQ by Year 34,868 406 2030 9 min 378 KB

Water Supply firms by Year 3,518 20 100 1 min 19 KB

TOTALS 209,072 516 2,580 74 min 480 KB

Computation time is more

sensitive to the number of

input facts than to the

number of output cells.

Experiments (cont.)

 90 out of the 854 facts present in the Real-Time fact table were relevant.

 They demanded 450 comparisons (5 measures).

 All of them were assessed in about 627 seconds, which represents an average

of 1.39 seconds/measure/fact.

 One of the baselines, “Semiconductors firms in NASDAQ by Year”, detected 6

anomalies.

 As the threshold of 0.1% we had set was exceeded at baseline level (6 out of

90), at baseline cell level (1 out 1 in 6 cells) and at general level (6 out of

450), alerts were issued in the three of them.

 Ex-post analysis:

 Five minutes after the alert, the price kept on falling for some stocks (e.g. TXN)

 For another stock, we see that the price at the end of the day turned out to be

higher (e.g. MCHP).

Experiments (cont.)

Case 2: An Apparently Quiet Day

 November 13, 2014 has been apparently a quiet day for NASDAQ market as a

whole. NASDAQ composite showed an overall slight increase of almost 0.11%.

 S-DW had data from 4/Jan/1965 and 13/Nov/2014 at 13:29 GMT (3,221,378 rows).

 D-DW had data for 13/Nov/2014 between 13:30 and 14:34 GMT (1386 rows).

 Compared to Case 1, the number of input facts increased approximately a 62% and

so did the baseline computation time.

 Only 110 out of 1386 facts were relevant, shielding 550 comparisons.

 All of them were assessed in 384 seconds, representing an average of 0.7

seconds/measure/fact, which is lower than the figure obtained in Case 1.

 No anomalies were detected in any of the four baselines.

In Conclusion

 Our approach leverages a specific real-time data warehouse architecture.

 It is analyst tailored.

 It is made up by an offline phase and an online phase.

 We implemented the approach and illustrated its interest in the domain of

technical analysis of stock markets.

 As future work, we will first address the optimisation of baseline

computation, which might be seen as the bottleneck of our approach.

 We will particularly study strategies for an iterative computation of baselines,

using a combination of application logic and database features.

 Test our approach in a more realistic data warehouse situation, where

anomaly detection competes with regular analytical queries.

Merci! Avez-vous des questions?

