Experimental Evaluation of a Dynamic Cubing system: workflow, metrics and prototype

Anne Tchounikine, Maryvonne Miquel, Usman Ahmed LIRIS

CNRS UMR 5205, INSA-Université de Lyon, France

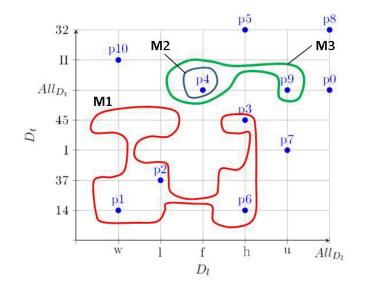
Motivations

- Motivé par des travaux précédents : Cube et OLAP dynamique
- Problématique de l'évaluation de la solution
 - Démonstration et qualification formelle
 - Démarche expérimentale
 - Prototypage
 - Appréciation des résultats
- Démarche expérimentale
 - Observer des comportements
 - Vérifier certaines intuitions
 - Mesurer des résultats

Objectifs et éléments de la contribution

- Résultats et démarche de l'évaluation expérimentale
- Un prototype et des expérimentations pour :
 - Montrer la faisabilité
 - Effectuer des tests fonctionnels
 - Ajuster les paramètres de la solution
 - Evaluer la performance
 - Etudier le comportement
 - Mener des études comparatives
- Définition d'un workflow pour l'expérimentation
 - Métriques
 - Caractérisation des éléments en entrée
 - Définition de scenarios d'exécution
 - Outils de monitoring

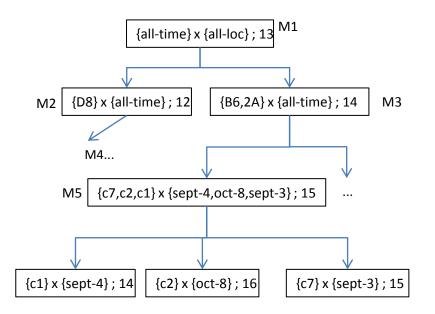
→Appliqué à notre proposition de cube dynamique


Le modèle de cube

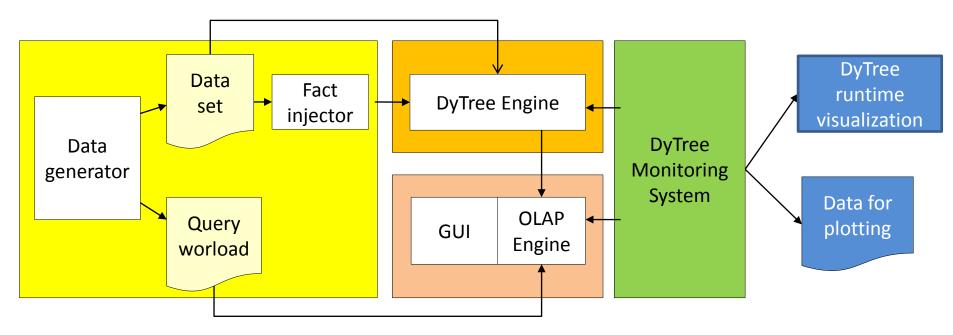
- Contexte : BI temps-réel
- Un espace multidimensionnel hiérarchique
 - Tous les membres d'une dimension sur le même axe
 - Membres non ordonnés
 - Axes construits dynamiquement
- Les MBS (Minimum Bounding Set) regroupent des points de même niveau hiérarchique

Let $\Delta = \{(x_{1,1}, x_{1,2}, ..., x_{1,n}), (x_{2,1}, x_{2,2}, ..., x_{2,n}), ..., (x_{m,1}, x_{m,2}, ..., x_{m,n})\}$ be a set of m points lying in a same n-dimensional hyper-plane i.e. $x_{j,i} \in domain(l_i^{k_i})$ for $1 \leq i \leq n, 1 \leq j \leq m$ and k_i is a level in the hierarchy of dimension D_i . A minimum bounding space (MBS) constructed over Δ , denoted by M_{Δ} , is defined as:

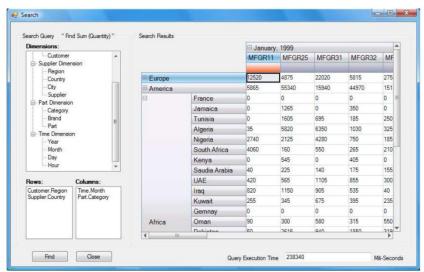
$$M_{\Delta} = \bigcup_{j=1}^{m} x_{j,1} \times \bigcup_{j=1}^{m} x_{j,2} \times \dots \times \bigcup_{j=1}^{m} x_{j,n}$$


where each set $\bigcup_{j=1}^{m} x_{j,i}$ is called the $i^{th}(1 \leq i \leq n)$ dimension edge E_i of M_{Δ}

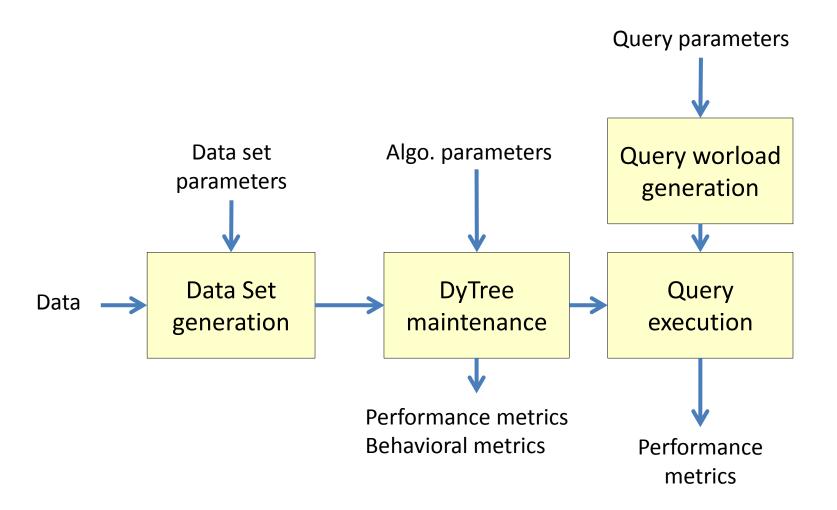
 $|M_{\triangle}| = \prod_{i=1}^{n} |E_i|$ the number of points covered by the MBS M_{\triangle} , $||M_{\triangle}|| = |\triangle|$ the number of points enclosed in the MBS M_{\triangle} .


Le modèle d'arbre

- Le DyTree est le cube matérialisé
- Les points (faits) sont positionnés dans l'espace au fur et à mesure de leur arrivée. Ils sont les feuilles de l'arbre
- Les points sont regroupés dans un MBS. Lorsqu'un MBS est plein :
 - il est divisé (split)
 - un MBS de points couvrants est créé
 - La mesure agrégée est calculée



- →les MBS sont des morceaux de cuboïdes
- →les MBS sont de plus en plus détaillés
- → les MBS créés sont naturellement denses


Le prototype

- Efficience du Dytree et des algorithmes associés ?
- Comportement en fonction des contextes d'exécution ?

Workflow de l'expérimentation

Métriques de performance

- Métriques de performance
 - Temps d'exécution
 - Temps cumulé pour l'insertion d'un ensemble de faits
 - Temps d'insertion atomique d'un fait
 - Temps de réponse aux requêtes
 - Taille de l'arbre en mémoire
 - Les feuilles (faits) sont stockés sur disque
 - Les nœuds (agrégats) en mémoire

Métriques de comportement

- Métriques sur l'arbre
 - Nombre de nœuds internes
 - Nombre de super nœuds
 - Profondeur
 - Largeur
- Métriques sur les nœuds
 - Taux de remplissage

$$fillRatio(node) = \frac{number\ of\ children(node)}{directory\ node\ capacity}$$

- Volume et Densité
 - Calculé sur le résultat (N) d'un drill-down des coordonnées du MBS (M)
 - Nombre de points couverts et nombre de points inclus

$$volume(M) = |N|$$
 and $density(node) = \frac{||N||}{volume(M)}$

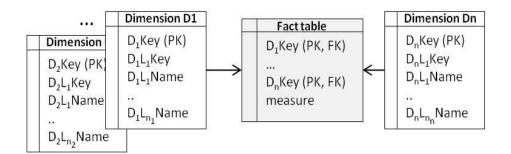
Métriques vers indicateurs

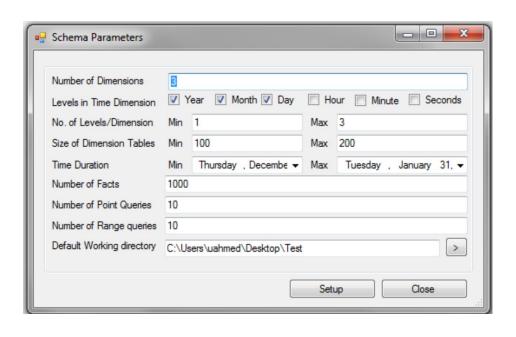
- Transformer les mesures en indicateurs (→ signification, impact)
- Métriques de performance
 - Temps d'exécution
 - Insertion d'un fait, temps cumulé, requête
 - Taille de l'arbre en mémoire
- Métriques de comportement
 - Métriques portant sur l'arbre
 - Nombre de nœuds internes
 - Nombre de super nœuds
 - Profondeur
 - Largeur
 - Métriques portant sur les nœuds
 - Taux de remplissage
 - Volume
 - Densité

→ efficience de la solution dans un contexte BI "agile"

→ nombre d'agrégats matérialisés

→ granularité des agrégats

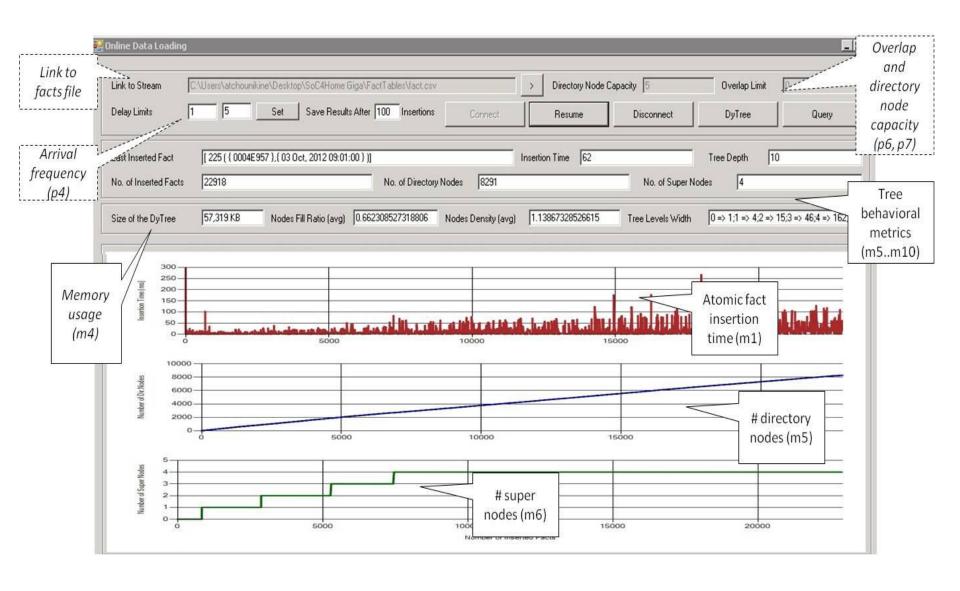

→ pertinence des agrégats

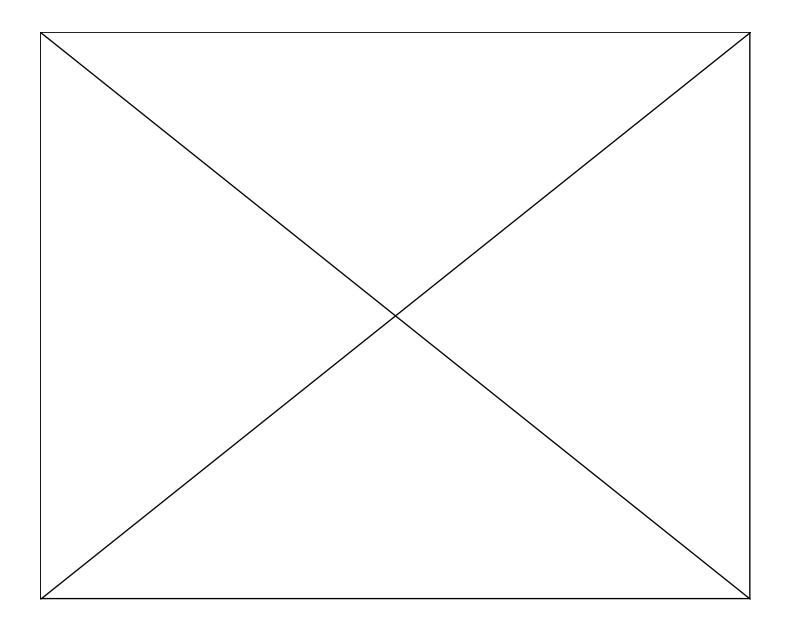

Eléments en entrée

- Lister et caractériser les inputs pour créer des scénarios d'exécution
- Paramétrage des algorithmes
 - Capacité des nœuds
 - Recouvrement (overlap)
- Paramétrage des data sets
 - Schéma
 - Taille (cardinalité des dimensions, volume de faits)
 - Densité
 - Ordre
 - Fréquence d'arrivée
- Paramétrage des requêtes
 - Nombre de requêtes
 - Types (point, range, group by)

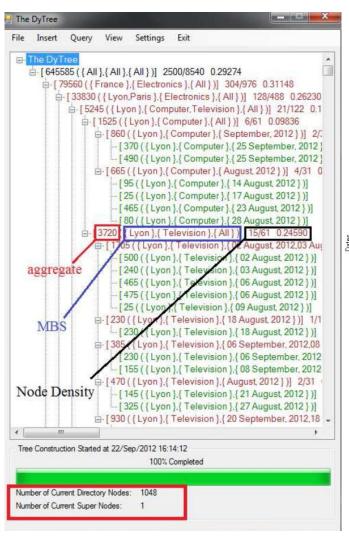
Schéma des data sets

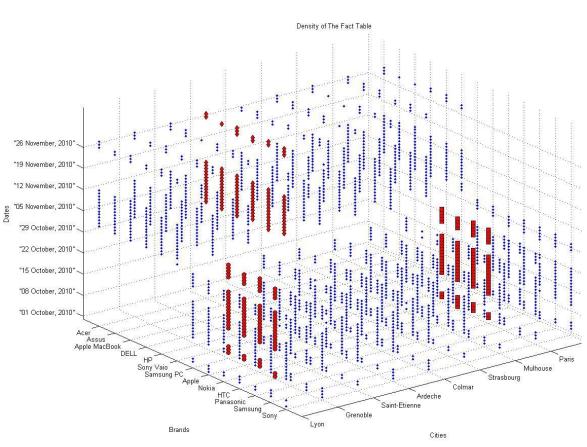
- Benchmark : Star Schema Benchmarks
- Données synthétiques
- Données réelles : SoQ4Home
 - Bâtiments intelligents
 - Capteurs de température
 - Déployé sur le campus LyonTech

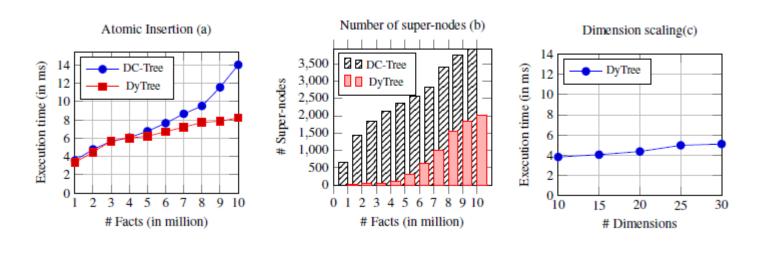


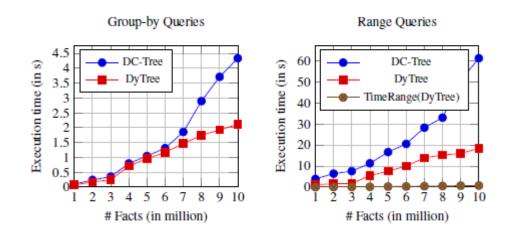

Constitutions de scenarios

• En faisant varier les paramètres en entrée


Scenario	Data Set	# dim	# fact	density	arrival freq	order	dir cap	overlap
Varying overlap	SSB	4	10M	calc.	na	na	15	0 to 15
Varying dir. cap.	SSB	4	10M	calc.	na	na	5 to 75	0
Scaling # facts	SSB	4	up to 10M	calc.	na	na	15	5
	synth	10	up to 100M	calc.	na	0%	15	5
	Soq4Home	2	na	na	na	na	15	5
Scaling # dim.	synth	2 to 30	up to 100M	calc.	1 to 5 ms	0%	15	5
Varying density	synth	10	calc.	0.2 to 0.6	1 to 5 ms	0%	15	5
Delayed arrival	synth	10	up to 100M	calc.	1 to 5 ms	5 to 80%	15	5


Outils de monitoring : en temps réel




Outils de monitoring : des instantanés

Outils de monitoring : analyses a posteriori

Conclusions

- Ce prototypage nous a permis d'illustrer le modèle
- Une démarche expérimentale permet de valoriser le prototypage
 - Instancié sur notre exemple mais adaptable
- Approche complémentaire aux approches benchmark
- Perspectives
 - Les requêtes
 - Type de requêtes
 - Volume des résultats...
 - Data set synthétiques
 - Génération de faits sous contraintes